
HAL Id: hal-03644039
https://hal.science/hal-03644039v2

Submitted on 2 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Abstractions for the local-time semantics of timed
automata: a foundation for partial-order methods

R. Govind, Frédéric Herbreteau, B. Srivathsan, Igor Walukiewicz

To cite this version:
R. Govind, Frédéric Herbreteau, B. Srivathsan, Igor Walukiewicz. Abstractions for the local-time
semantics of timed automata: a foundation for partial-order methods. 37th Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2022, Aug 2022, Haifa, Israel. �hal-03644039v2�

https://hal.science/hal-03644039v2
https://hal.archives-ouvertes.fr

Abstractions for the local-time semantics of timed
automata: a foundation for partial-order methods

R. Govind, Frédéric Herbreteau, B. Srivathsan and Igor Walukiewicz

Abstract
A timed network is a parallel composition of timed automata

synchronizing on common actions. We develop a methodol-

ogy that allows to use partial-order methods when solving

the reachability problem for timed networks. It is based on

a local-time semantics proposed by [Bengtsson et al. 1998].

A new simulation based abstraction of local-time zones is

proposed. The main technical contribution is an efficient al-

gorithm for testing subsumption with respect to this abstrac-

tion operator. The abstraction is not finite for all networks. It

turns out that, under relatively mild conditions, there is no fi-

nite abstraction for local-time zones that works for arbitrary

timed networks. To circumvent this problem, we introduce

a notion of a bounded-spread network. The spread of a net-

work is a parameter that says how far the local times of

individual processes need to diverge. For bounded-spread

networks, we show that it is possible to use subsumption

and partial-order methods at the same time.

1 Introduction
The reachability problem for timed automata [3] is to decide

if a given automaton has an execution from an initial to a final

state. Very frequently a model is given as a network of timed

automata working in parallel and synchronizing on common

actions. It is tempting to exploit the concurrency information

provided by such a representation to speed up reachability

testing. For untimed systems, partial-order methods [2, 15,

19, 20, 22, 35, 37, 38] can provide exponential improvements.

The presence of time greatly complicates the picture because

individual automata may synchronize implicitly via time. In

this work we extend the classical zone based approach to the

reachability problem so that partial-order reduction methods

become applicable.

Let us explain the challenge on a simple example. Figure 1a

shows a network of two processes. The first process does

a local action 𝑏, the second a local action 𝑐 , and then they

synchronize on action $. If we ignore the timing constraints,

the graph of all executions of this system has a diamond:
since 𝑏 and 𝑐 are executed on different processes they are

independent, so the sequence 𝑏𝑐 leads to the same state as

𝑐𝑏 as shown in Figure 1b. The timing constraints break this

diamond: the sequence 𝑐𝑏 is impossible since doing 𝑐 requires

to wait at least 2 time units, and then it is too late for doing

𝑏 that needs to be executed within 1 time unit from the

Logic in Computer Science, 2-5 August 2022, Haifa, Israel
.

P1

0

1

2

𝑏
𝑥 ≤ 1

$

P2

0

1

2

𝑐
𝑦 ≥ 2

$

(a) Network

(0, 0)

(1, 0) (0, 1)

(1, 1)

(2, 2)

𝑏 𝑐

𝑏𝑐

$

(b) Untimed

product

(0, 0) 𝑥, 𝑦 ≥ 0

(1, 0) 𝑥, 𝑦 ≥ 0 (0, 1) 𝑥, 𝑦 ≥ 2

(1, 1) 𝑥, 𝑦 ≥ 2

(2, 2) 𝑥, 𝑦 ≥ 2

𝑏 𝑐

𝑐

$

(c) Timed product

Figure 1. A network of two processes. Timing constraints

break the diamond formed by two independent actions.

start, as in Figure 1c. This is a major obstacle for applying

partial-order methods in the timed automata setting.

Before addressing this obstacle let us review how the

reachability problem of a single timed automaton is solved.

Most efficient solutions to the reachability problem construct

an explicit graph, that we call here an abstract zone graph
with subsumptions. Zones [17] are special convex sets of clock
valuations with the property that a set of valuations reach-

able from a zone is once again a zone. The nodes of the

graph represent the zones that are reachable by the tran-

sitions of the automaton. For some timed automata, there

could be infinitelymany reachable zones. This is why abstrac-
tions [6, 17], such as Extra𝐿𝑈 or 𝔞≼𝐿𝑈 , are used to "abstract"

a finite number of representative sets. Finally, only zones

whose abstractions are maximal with respect to inclusion

are kept during exploration. This technique is called sub-
sumption [17], and it is essential for efficiency.

When applying this method to networks of timed au-

tomata, the state explosion problem occurs. For untimed

systems this problem can be alleviated either by partial-

order methods, or by symbolic methods based on BDDs

or SAT-solving. For timed systems BDD and SAT based so-

lutions [4, 5, 7, 18, 33, 34, 39] have been tried with mixed

results. Here we pursue a partial-order approach to tackle

the state explosion problem.

Partial-order methods limit the search space by using the

diamonds present in the graph of executions. In our example

from Figure 1b, it is enough to explore the sequence 𝑏𝑐$ as

thanks to the diamond we are sure that the sequence 𝑐𝑏$

leads to the same state. For more complicated cases, this ap-

proach can give exponential gains in time as well in the size

of the graph to be explored. In order to apply partial-order

Logic in Computer Science, 2-5 August 2022, Haifa, Israel R. Govind, Frédéric Herbreteau, B. Srivathsan and Igor Walukiewicz

(0, 0) 𝑡1 = 0, 𝑡2 = 0

(1, 0) 𝑡1 = 0, 𝑡2 = 0 (0, 1) 𝑡1 = 0, 𝑡2 = 2

(1, 1) 𝑡1 = 0, 𝑡2 = 2

(2, 2) 𝑡1 = 2, 𝑡2 = 2

𝑏 𝑐

𝑏𝑐

$

Figure 2. Diamonds are recovered in local-time semantics.

In the rightmost path the local times of the two process differ.

methods for timed systems it is essential to recover the dia-

monds lost due to implicit synchronization caused by time

constraints. Otherwise, choosing 𝑐𝑏$ as a representative for

𝑏𝑐$ in Figure 1c would lead to incompleteness. Solutions pro-

posed in the literature consider only diamonds where time

does not elapse [9, 10, 29], or try to deduce which diamonds

are still bound to stay despite time constraints [16, 24]. Here

we develop a set of theoretical results permitting a much

wider use of partial-order methods in constructing abstract

zone graphs with subsumption.

Our starting point is the local-time semantics [8] for net-

works of timed automata, that addresses exactly the diamond

problem by making time local to each process. The processes

are required to synchronize their times when performing

common actions. As a result, local-time semantics can be ac-

tually used to solve the reachability problem despite allowing

more behaviours than the standard global-time semantics.

Moreover, actions executing on different processes are inde-

pendent as there are no implicit synchronizations on time.

Let us revisit our example to see how diamonds are re-

covered thanks to local-time. Figure 2 illustrates the graph

of executions under the local-time semantics. The two pro-

cesses have their local and independent times represented

by clocks 𝑡1 and 𝑡2, respectively. The path 𝑏𝑐$ is still feasible

as before, by keeping the local times of process 𝑃1 and 𝑃2
synchronized. But now, 𝑐𝑏$ becomes feasible as well. 𝑃2 may

delay by 2 time units and do 𝑐 while 𝑃1 does not delay at all.

Then, 𝑃1 can do 𝑏, and then delay 2 time units to synchro-

nize its time with 𝑃2 and enable the common action $. As

in the standard (global-time) setting, there is a notion of a

local-zone, and one can try to use the local-zone graph for

checking reachability. However, this graph may be infinite.

What is lacking to make the local-time approach algorith-

mically interesting, is an efficient abstraction operator that

would guarantee finiteness of abstract local-zone graphs. An

abstraction operator has been proposed in [8], but as we

show here, the associated decision problem is Pspace-hard

(Proposition 2), so there is little hope that it can be used to

give an efficient solution.

To sum up, to be able to use partial-order methods with the

help of local-time semantics, we need to find an abstraction

operator for local zones that:

1. preserves reachability,

2. leads to a finite abstract local-zone graph,

3. is efficient algorithmically,

4. preserves diamonds of actions from distinct processes.

The first two conditions are required for correctness and ter-

mination of an exploration algorithm. The third is essential

to be competitive with existing solutions: computing an in-

clusion between two abstracted zones should be easier than

solving the reachability problem in the first place. The fourth

condition is needed to apply partial-order methods. The for-

malization of the fourth condition is actually weaker than

requiring diamonds to exist in the abstract local-zone graph

with subsumptions. The latter property would be much too

strong to demand; c.f. Figure 3.

Our first result is an extension of the well-known 𝔞≼𝐿𝑈
abstraction for global-time semantics [6, 26] to the local-

time setting (Theorem 5). We call it 𝔞★≼𝐿𝑈 . The main tech-

nical result is an efficient algorithm for testing inclusion

𝔞★≼𝐿𝑈 (𝑍) ⊆ 𝔞★≼𝐿𝑈 (𝑍 ′) in time O((|𝑋 | + 𝑛)2), where |𝑋 | is the
number of clocks, and 𝑛 is the number of processes in the

network (Theorem 6). This complexity is essentially the same

as in the global-time setting, with the factor 𝑛 coming due

to extra clocks added by the local-time semantics.

Unfortunately, the 𝔞★≼𝐿𝑈 abstraction is not finite, that is, it

does not satisfy property (2). Actually, we observe a strong

negative result: there is no simulation based abstraction op-

erator satisfying properties (1), (2) and (4) at the same time

(Theorem 3). This is a serious obstacle because we do not

know how to guarantee (4) for abstractions that are not sim-

ulation based. To the best of our knowledge, all abstractions

used in timed automata verification algorithms are simula-

tion based. The main hindrance to get finiteness is that the

local times of processes can drift from each other by arbitrary

amounts, but this quantity cannot be abstracted away.

Given this roadblock, we propose a restricted setting of

bounded-spread networks. These are networks where the drift
between processes can be controlled: every sequence of ac-

tions can be realized while maintaining a bounded drift be-

tween processes. For such networks, a suitable adaptation of

the 𝔞★≼𝐿𝑈 abstraction becomes finite, and has all the required

four properties (Theorem 7).

The final step is to apply partial-ordermethods to the finite

abstract local-zone graph with subsumptions. This is slightly

delicate because the abstract local-zone graph with subsump-

tions does not have diamonds, precisely due to subsumptions

(cf. Figure 3). Yet, we do not want to disallow subsumptions

as they are essential to get an effective and an algorithmically

efficient solution. We show that every partial-order method

that works on graphs without subsumptions, intuitively for

untimed systems, can be used for bounded-spread networks

(Theorem 2). Abstractly, we see a partial-order method as

computing a function src indicating for every state a subset

of its outgoing transitions, such that exploring the smaller

Abstractions for the local-time semantics of timed automata Logic in Computer Science, 2-5 August 2022, Haifa, Israel

set of transitions is sufficient to verify reachability. In our

example from Figure 1b we may have src(0, 0) = {𝑏} indicat-
ing that it is sufficient to explore only the transition 𝑏 from

the initial node. Since the 𝔞★≼𝐿𝑈 abstraction is based on a sim-

ulation, we can show that if the src function is correct for the

local-zone graph (without subsumptions), it is also correct to

use it for the abstract local-zone graph with subsumptions,

even though the latter does not have diamonds.

Putting these results together we obtain a methodology

allowing to apply existing partial-order methods to timed-

systems. The methodology is not general because it applies

only to networks of bounded spread, while in general net-

works could have unbounded spread. Moreover, computing

a spread of a given network is at least as difficult as testing

reachability. On a positive side, we give examples of some

types of networks that are guaranteed to have a bounded

spread. We also propose a method to convert an arbitrary

network into a bounded-spread network by introducing syn-

chronizations between processes. We conclude with simple

examples where our method can bring exponential gains.

Related work. Local-time semantics has been considered

by three groups. Bengtsson et al. in their paper introducing

local-time semantics [8] propose an algorithm for reachabil-

ity checking. For this they introduce an abstraction called

catch-up equivalence. It is rather improbable that an algo-

rithm using this equivalence can be competitive against stan-

dard solutions because, as we show here, checking if two

valuations are catch-up equivalent is PSPACE-hard. In [32]

another equivalence is proposed, but it turns out to be not

sound [23]. Paper [23] introduces sync-subsumption, but

this subsumption does not preserve diamonds, hence it is

not suitable for partial-order reduction.

An alternative to local-time zones was proposed by Lugiez

et. al. [31]. In that approach zones maintain a partial-order

between clocks. To get finiteness an abstraction similar to

sync-subsumption of [23] is used. Once again, this does not

preserve diamonds and hence this approach is not suitable

for partial-order reduction on the control states.

Other works have proposed partial-order methods for

timed automata, while keeping the standard semantics. For

example, limiting partial-order methods only to parts where

independent actions occur in zero-time [11, 29, 33]. Some

works propose ways to discover which actions remain in-

dependent despite time constraints, either statically [16]

or dynamically [24]. Two works [12, 13] apply unfolding

techniques to bounded timed automata which admit a finite

representation of their state space without abstraction.

Partial-order methods have been introduced in the 90s [22,

35, 37] as a method to speed up verification of transition

systems. Later the accent shifted to program verification, and

in particular to stateless model-checking [21]. The subject

has become very active since the work of Abdulla et al. [1,

2] introducing a notion of optimal partial order reduction

(see [14, 28, 40] and references within). In this paper we take

an abstract view of partial-order methods and do not focus

on any concrete methods. The most recent works need some

adaptation to be applicable in our setting. One reason is

that they consider only straight-line processes, i.e., without

branching. This is too restrictive in our setting.

Synopsis. In the Preliminaries, we introduce local-time se-

mantics, local-zone graphs and their most important proper-

ties. We also present a succinct description of partial-order

methods that is sufficient for this work. In Section 3 we in-

troduce a notion of abstraction for local-zone graphs, and

study conditions under which an abstraction can be used for

reachability. In Section 4 we show how partial-order methods

can be used in the presence of abstractions. Unfortunately,

under mild assumptions, abstractions of local-zone graphs

compatible with partial-order cannot be finite (Section 5).

Our solution is to put a restriction on timed networks, but

before this we develop in Section 6 an abstraction operator

𝔞★≼𝐿𝑈 , which is a generalization of the well-known 𝔞≼𝐿𝑈 op-

erator. We show that inclusion testing with respect to the

new operator 𝔞★≼𝐿𝑈 can be done efficiently. In Section 7 we

introduce bounded-spread networks, give examples of such

networks, as well as a general construction transforming a

timed network into a bounded-spread network. We show

that a modification of 𝔞★≼𝐿𝑈 is finite on bounded-spread net-

works. We conclude with some examples where our method

gives exponential gains and discuss where they come from.

2 Preliminaries
In this section we introduce networks of timed automata,

local-time semantics, and partial-order reduction.We present

the standard global-time semantics as a special case of the

local-time semantics. This clearly shows the differences be-

tween the two. Our approach allows to transfer any partial-

order method from the untimed setting to the timed setting.

In this paper, a partial-order method is given as an oracle

that tells which transitions need to be explored. The only

constraint is that the method keeps at least one execution

from each trace equivalence class. At the end of the section,

we introduce local-zone graphs, and state their properties.

We use N for the set of natural numbers, R for the set

of reals and R≥0 for the set of non-negative reals. Let 𝑋 be

a finite set of variables called clocks. Let 𝜙 (𝑋) denote a set
of clock constraints generated by the following grammar:

𝜙 := 𝑥 ∼ 𝑐 | 𝜙∧𝜙 where 𝑥 ∈ 𝑋 , 𝑐 ∈ N, and∼ ∈ {<, ≤,=, ≥, >}.
The base constraints 𝑥 ∼ 𝑐 will be called atomic constraints.

A network of timed automata is a collection of timed au-

tomata communicating with each other via shared actions.

We have seen an example of a network in Figure 1a. Each

automaton participating in the network is called a process.
Formally, a timed network is a 𝑘-tuple of processes N =

⟨𝐴1, . . . , 𝐴𝑘⟩. Each process𝐴𝑝 = ⟨𝑄𝑝 , Σ𝑝 , 𝑋𝑝 , 𝑞
init
𝑝 ,𝑇𝑝⟩ has a fi-

nite set of states𝑄𝑝 , a finite alphabet of actions Σ𝑝 , a finite set

Logic in Computer Science, 2-5 August 2022, Haifa, Israel R. Govind, Frédéric Herbreteau, B. Srivathsan and Igor Walukiewicz

of clocks𝑋𝑝 . We require that the sets of states, and the sets of

clocks are pairwise disjoint:𝑄𝑝1 ∩𝑄𝑝2 = ∅, and𝑋𝑝1 ∩𝑋𝑝2 = ∅
for 𝑝1 ≠ 𝑝2. The sets of labels need not be disjoint - a label

shared by two processes represents an action synchronizing

the processes. The remaining components are an initial state

𝑞init𝑝 and a set of transitions𝑇𝑝 ⊆ (𝑄𝑝×Σ𝑝×𝜙 (𝑋𝑝)×2𝑋𝑝×𝑄𝑝).
A transition (𝑞,𝑏, 𝑔, 𝑅, 𝑞′) ∈ 𝑇𝑝 has a label 𝑏, a guard 𝑔, and
a set 𝑅 of clocks to be reset. We write Proc for the set of

all processes. We will use some abbreviations: 𝑄 = Π𝑘
𝑝=1𝑄𝑝 ,

Σ =
⋃𝑘

𝑝=1 Σ𝑝 and 𝑋 =
⋃𝑘

𝑝=1𝑋𝑝 . For a tuple of states 𝑞 ∈ 𝑄 ,
we write 𝑞(𝑝) to be the state of process 𝑝 in the tuple 𝑞.

Every action 𝑏 has its domain dom(𝑏) = {𝑝 : 𝑏 ∈ Σ𝑝 }. The
execution of action 𝑏 requires participation of all processes

in the domain. We denote by 𝑞𝑖𝑛𝑖𝑡 the tuple of initial states

𝑞𝑖𝑛𝑖𝑡𝑝 for each process 𝑝 .

Local-time semantics. We introduce the local-time seman-

tics of timed automata [8], and then the standard global-time

semantics as a particular case. Fix a timed network N .

In the local-time semantics, each process 𝑝 has its local

time represented by a clock 𝑡𝑝 . The processes synchronize

their times when doing a common action. The clock 𝑡𝑝 , called

the reference clock of process 𝑝 , is never tested in a guard

nor reset by the process. We will denote by 𝑋 𝑡
the set {𝑡𝑝 |

𝑝 ∈ Proc} of reference clocks. The other clock variables will

store the local-time when the clock was last reset. Thus the

value of 𝑡𝑝 cannot be smaller than values of clocks of process

𝑝 . More formally, a local valuation assigns a value, a real

number, to each clock in 𝑋 ∪ 𝑋 𝑡
:

𝑣 : (𝑋 ∪ 𝑋 𝑡) → R provided 𝑣 (𝑡𝑝) ≥ 𝑣 (𝑥) for 𝑥 ∈ 𝑋𝑝

With this intuition, the difference 𝑣 (𝑡𝑝) − 𝑣 (𝑥) gives the time

since the last reset of clock 𝑥 . This is what is considered as

the value of 𝑥 in the standard semantics. In the local-time

semantics we allow negative values for 𝑣 (𝑡𝑝), 𝑣 (𝑥) since we
will always work with the difference 𝑣 (𝑡𝑝) − 𝑣 (𝑥) and allow-

ing for negative values offers some simplicity later while

handling zones of local valuations. We use LocalVal(𝑋, Proc)
for the set of local valuations, but mostly we will just write

LocalVal as 𝑋 and Proc will be clear from the context.

Operations of clock reset for local valuations as well as

local time elapse are defined accordingly, based on the in-

terpretation given above. For a set of clocks 𝑅, let 𝑣 [𝑅] de-
note the local valuation obtained by resetting 𝑅 in 𝑣 . That

is: 𝑣 [𝑅] (𝑥) = 𝑣 (𝑡𝑝) if 𝑥 ∈ 𝑅 ∩ 𝑋𝑝 for some 𝑝 ∈ 𝑃𝑟𝑜𝑐 , and

𝑣 [𝑅] (𝑥) = 𝑣 (𝑥) otherwise. For a tuple of non-negative reals
Δ = {𝛿𝑝 ∈ R≥0}𝑝∈Proc we define 𝑣

Δ−−→ 𝑣 ′ when 𝑣 ′ (𝑡𝑝) =

𝑣 (𝑡𝑝) + 𝛿𝑝 for all 𝑝 ∈ Proc, and 𝑣 ′ (𝑥) = 𝑣 (𝑥) for all 𝑥 ∈ 𝑋 .
This denotes a local delay of Δ from the valuation 𝑣 . The

notion of a local valuation satisfying a guard is also adapted

to this interpretation. For 𝑥 a clock of process 𝑝 , i.e. 𝑥 ∈ 𝑋𝑝 ,

we define 𝑣 ⊨ 𝑥 ∼ 𝑐 if 𝑣 (𝑡𝑝) − 𝑣 (𝑥) ∼ 𝑐 for ∼ ∈ {<, ≤,=, ≥, >}.
Remark: One may wonder why not just keep the value

of the clock in 𝑣 (𝑥). This interpretation gives a big problem

later when we consider zones of local valuations. It turns out

that in this interpretation the set of valuations reachable by a

transition from a zone may not be a zone. Quite remarkably

the interpretation presented above avoids this problem [8].

A configuration of the network is a pair (𝑞, 𝑣) where 𝑞
is a tuple of control states of all processes, and 𝑣 is a local

valuation. An initial valuation 𝑣0 associates the same real to

each clock: 𝑣0 (𝑟 − 𝑠) = 0 for all 𝑟, 𝑠 ∈ 𝑋 ∪ 𝑋 𝑡
. Let 𝑉0 denote

the set of initial local valuations. The initial configurations

are {𝑞𝑖𝑛𝑖𝑡 }×𝑉0. For an action 𝑏, the networkN can execute a

transition (𝑞, 𝑣) 𝑏−−→ (𝑞′, 𝑣 ′) if there is a tuple of 𝑏-transitions
{(𝑞𝑝 , 𝑏, 𝑔𝑝 , 𝑅𝑝 , 𝑞′𝑝)}𝑝∈dom(𝑏) such that:

• states of involved processes change: 𝑞𝑝 = 𝑞(𝑝), 𝑞′𝑝 =

𝑞′ (𝑝), if 𝑝 ∈ dom(𝑏), and 𝑞(𝑝) = 𝑞′ (𝑝) if 𝑝 ∉ dom(𝑏);
• local times are synchronized: 𝑣 (𝑡𝑝1) = 𝑣 (𝑡𝑝2), for every
𝑝1, 𝑝2 ∈ dom(𝑏);

• guards are satisfied: 𝑣 ⊨ 𝑔𝑝 , for every 𝑝 ∈ dom(𝑏);
• resets are performed: 𝑣 ′ = 𝑣 [⋃𝑝∈dom(𝑏) 𝑅𝑝];

A local run of N is a sequence of local delay and action

transitions from an initial configuration (𝑞0, 𝑣0):

(𝑞0, 𝑣0)
Δ0−−→ (𝑞0, 𝑣′0)

𝑏1−−→ (𝑞1, 𝑣1)
Δ1−−→ · · · 𝑏𝑛−−→ (𝑞𝑛, 𝑣𝑛)

Δ𝑛−−→ (𝑞𝑛, 𝑣′𝑛)

Wewrite (𝑞0, 𝑣0)
𝑢
99K (𝑞𝑛, 𝑣 ′𝑛) to say that there is a sequence

as above for 𝑢 = 𝑏1 . . . 𝑏𝑛 and adequate delays.

Global-time semantics and reachability. The standard
semantics of a network, which we refer to as global-time

semantics or just global semantics in short, is given by the

semantics of the monolithic timed automaton obtained as the

“synchronized product” of the individual processes. There is

a common time for all processes: their reference clocks are

always equal. In other words global semantics uses only syn-
chronized valuations 𝑣 where 𝑣 (𝑡𝑝) = 𝑣 (𝑡𝑞) for all 𝑝, 𝑞 ∈ 𝑃𝑟𝑜𝑐 .
In consequence, in the global semantics, we only allow global

delays 𝑣
Δ−−→ 𝑣 ′ which are local delays such that 𝛿𝑝 = 𝛿𝑞 for

any two processes 𝑝, 𝑞 ∈ 𝑃𝑟𝑜𝑐 . We use 𝛿 for global delays to

distinguish from local delays Δ. A global run ofN is an alter-

nating sequence of global delay and action transitions start-

ing from a synchronized valuation: (𝑞0, 𝑣0)
𝛿0−−→ (𝑞0, 𝑣 ′0)

𝑏1−−→
(𝑞1, 𝑣1)

𝛿1−−→ (𝑞1, 𝑣 ′1)
𝑏2−−→ · · · 𝑏𝑛−−→ (𝑞𝑛, 𝑣𝑛)

𝛿𝑛−−→ (𝑞𝑛, 𝑣 ′𝑛). Ob-
serve that all the valuations on a global run are synchronized.

The reachability problem asks if a state 𝑞𝑓 is reachable in

the global-time semantics. In other words, does there exist a

global run from an initial configuration to a configuration

(𝑞𝑓 , 𝑣) for some synchronized valuation 𝑣 . This problem is

known to be Pspace-complete [3]. Most algorithms solving

the reachability problem use the global semantics [6, 17, 25,

26]. The state 𝑞𝑓 that we check for reachability is called the

final state of the network N in the sequel.

Partial-order reduction (POR). We give a general outline

of partial-order reductions that is sufficient for this work. The

main idea is to use information about concurrency to avoid

Abstractions for the local-time semantics of timed automata Logic in Computer Science, 2-5 August 2022, Haifa, Israel

exploring equivalent interleavings of actions. In Figure 1,

we have seen that the order of execution between 𝑏 and 𝑐 is

irrelevant: starting from (0, 0) both sequences end in (1, 1).
We say that 𝑏 and 𝑐 are independent in a transition system

S if this property holds for every state of S. The notion of

independence leads to trace equivalence on sequences: two

sequences are trace equivalent, denoted𝑢 ∼S 𝑣 , if one can be

obtained from the other by permuting adjacent independent

actions. This is an equivalence relation on sequences of ac-

tions. Moreover, if 𝑢 leads from an initial to a final state in S
then so does 𝑣 . A POR method aims at exploring at least one

path from every trace-equivalence class, but preferably not

much more. For instance in Figure 1 we may only explore

the sequence 𝑏𝑐$, and ignore the sequence 𝑐𝑏$. This avoids

visiting state (0, 1). In some cases this optimization may lead

to exponential reductions in the number of visited states.

We think of a POR method as a way of computing for a

given transition system S a source function, src : 𝑄 → P(Σ)
assigning to every state of S a set of relevant actions. A path

inS is a source path if it is a path in the restriction ofS where

from every state 𝑞 we eliminate transitions on actions that

are not in src(𝑞). A source function should be trace-faithful
meaning that for every state 𝑞 and every path 𝑞

𝑢−→ 𝑞𝑓 to

a final state 𝑞𝑓 , there must be a trace-equivalent sequence

𝑣 ∼S 𝑢 such that𝑞
𝑣−→ 𝑞𝑓 is a source path. In the example from

Figure 1 we may take src(0, 0) = src(0, 1) = {𝑏}, src(1, 0) =
{𝑐} and src(1, 1) = {$}. The goal is to find a trace-faithful

source function without exploring the transition system.

A common way to get a src function is to look at the par-

allelism in a given system. In a network of automata without

timing constraints, two actions with disjoint domains are

independent in the sense of the previous paragraph. Stub-

born sets [37], ample sets [35], persistent sets [22], faithful

decompositions [27], stamper sets [36], source sets [2], are

different ways of computing a source function in this setting.

Our goal in this work is to develop a theory allowing to use

the same approach for networks of timed automata. As seen

in Figure 1c, in timed networks, two domain-disjoint actions

may not be independent. Global time destroys diamonds,

making it difficult to find out which actions are independent.

Local-time semantics allows to recover diamonds, cf. Figure 2.

Reachability can be solved using local-time, as we see next.

Reachability and diamonds in local-time. Observe that
every global run is a local-time run. Conversely, for every

local-time run there is a trace equivalent global run.

Lemma 1. [23] Let 𝑣, 𝑣 ′ be synchronized local valuations, and
let (𝑞, 𝑣) 𝑢

99K (𝑞′, 𝑣 ′) be a local run. Then there exists a global
run (𝑞, 𝑣) 𝑤

99K (𝑞′, 𝑣 ′) such that 𝑢 ∼ 𝑤 .

Since the initial valuations are all synchronized, the above

lemma ensures that a control state 𝑞 is reachable in the local-

time semantics iff it is reachable in the global-time semantics.

This is particularly true of the final state 𝑞𝑓 . Given this cor-

respondence, we will henceforth work completely with the

local-time semantics. Additionally, the local-time semantics

offers the diamond property which is essential for POR.

Lemma 2 (Diamond property). Suppose dom(𝑎) ∩dom(𝑏) =
∅. If (𝑞, 𝑣) 𝑎𝑏

99K (𝑞′, 𝑣 ′) then (𝑞, 𝑣) 𝑏𝑎
99K (𝑞′, 𝑣 ′).

Local-zone graphs. To make the local-time semantics feasi-

ble for use in algorithms, a notion of local-zones, analagous

to the zones in the global-time setting [17], is employed. A

local-zone is a set of local valuations given by conjunctions

of constraints: 𝑥 −𝑦 ⋖ 𝑐 where 𝑥,𝑦 ∈ 𝑋 ∪𝑋 𝑡
and ⋖ ∈ {<, ≤}.

For a set of local valuations𝑊 , define:

• local-elapse(𝑊) := {𝑣 + Δ | 𝑣 ∈𝑊, Δ ∈ R𝑘≥0},
• 𝑊 [𝑅] := {𝑣 [𝑅] | 𝑣 ∈𝑊 }, for a set of clocks 𝑅 ⊆ 𝑋 .
• 𝑊 ∩ 𝑔 := {𝑣 | 𝑣 ⊨ 𝑔} for a guard 𝑔.

It can be shown that for a local-zone𝑍 , the sets local-elapse(𝑍)
(local-time delay), 𝑍 [𝑅] (clock reset) and 𝑍 ∩ 𝑔 (intersection
with guard) are local-zones [8, 23].

Local-zones can be implemented using Difference Bound

Matrices (DBMs), similar to the case of standard zones. Hence,

they can be computed and stored as efficiently as standard

zones. Before defining the local zone graph, we lift the local

semantics from configurations to sets of configurations.

Definition 1 (Symbolic transition relation). Let𝑊 be a set of

local valuations. We write (𝑞,𝑊) 𝑏
==⇒ (𝑞′,𝑊 ′) if there exists

a tuple of 𝑏-transitions {(𝑞𝑝 , 𝑏, 𝑔𝑝 , 𝑅𝑝 , 𝑞′𝑝)}𝑝∈dom(𝑏) such that

• 𝑞(𝑝) = 𝑞𝑝 and 𝑞′ (𝑝) = 𝑞′𝑝 for all 𝑝 ∈ dom(𝑏), and
𝑞(𝑝) = 𝑞′ (𝑝) for all 𝑝 ∉ dom(𝑏);

• 𝑊 ′ = local-elapse(𝑊2) is not empty, where𝑊2 is de-

fined as follows:𝑊2 = 𝑊1 [
⋃

𝑝∈dom(𝑏) 𝑅𝑝] and𝑊1 =

𝑊 ∩ (∧𝑝∈dom(𝑏) 𝑔𝑝 ∧
∧{𝑡𝑝 = 𝑡𝑞 | 𝑝, 𝑞 ∈ dom(𝑏)})

We write (𝑞,𝑊)
𝑏1 ...𝑏𝑛
======⇒ (𝑞𝑛,𝑊𝑛) if there is a sequence of

symbolic transitions (𝑞,𝑊)
𝑏1
==⇒ (𝑞1,𝑊1) · · ·

𝑏𝑛
==⇒ (𝑞𝑛,𝑊𝑛).

The following lemma states the relation between transi-

tions on zones and on valuations. Its proof follows from the

definition of symbolic transitions. We say that a local zone

𝑍 is time-elapsed if 𝑍 = local-elapse(𝑍).

Lemma 3 (Pre and post properties). For every network of
timed automata and every action 𝑏:

pre-property: If (𝑞, 𝑣) 𝑏
99K (𝑞′, 𝑣 ′) and 𝑣 ∈ 𝑍 for some

time-elapsed local-zone 𝑍 then (𝑞, 𝑍) 𝑏
==⇒ (𝑞′, 𝑍 ′) and 𝑣 ′ ∈ 𝑍 ′

for some local-zone 𝑍 ′.

post-property: If (𝑞, 𝑍) 𝑏
==⇒ (𝑞′, 𝑍 ′) and 𝑣 ′ ∈ 𝑍 ′ for local-

zones 𝑍, 𝑍 ′, then (𝑞, 𝑣) 𝑏
99K (𝑞′, 𝑣 ′) for some 𝑣 ∈ 𝑍 .

Definition 2 (Local-zone graph LZG(N)). The local-zone
graph LZG(N) of a networkN is a transition system whose

Logic in Computer Science, 2-5 August 2022, Haifa, Israel R. Govind, Frédéric Herbreteau, B. Srivathsan and Igor Walukiewicz

nodes are of the form (𝑞, 𝑍) where 𝑞 is a state of the net-

work, and 𝑍 is a local-zone. The initial node is (𝑞0, 𝑍0) with
𝑍0 = local-elapse(𝑉0) where𝑉0 is the set of initial valuations
and 𝑞0 = 𝑞𝑖𝑛𝑖𝑡 . The transitions are given by the symbolic

transition relation (𝑞, 𝑍) 𝑏
==⇒ (𝑞′, 𝑍 ′).

The initial zone is time-elapsed. This entails that every

zone reachable by ==⇒ transitions is also time-elapsed, due to

Definition 1. Using this observation along with the pre- and

post-properties of Lemma 3, we get the following theorem.

Theorem 1. [8, 23] For a given network N , there is a run of
N reaching a state 𝑞 iff there is a path in LZG(N) from the
initial node to a node (𝑞, 𝑍).

This theorem suggests that the local-zone graph LZG(N)
could potentially be used to analyze reachability. The local-

zone graph is an untimed transition system and we are in-

terested in applying partial-order methods on it. As desired,

domain-disjoint actions are independent in the local zone

graph. This is a consequence of Lemmas 2 and 3.

Proposition 1 (Diamond property of LZG(N)). Let dom(𝑎)∩
dom(𝑏) = ∅. If (𝑞, 𝑍) 𝑎𝑏

==⇒ (𝑞′, 𝑍 ′) then (𝑞, 𝑍) 𝑏𝑎
==⇒ (𝑞′, 𝑍 ′).

Let us remark that the so called enabledness property [15]

may not hold in a local-zone graph: it is possible to construct

a network, a local-zone 𝑍 and two independent actions 𝑎,

𝑏 such that from (𝑞, 𝑍) there are both

𝑎
==⇒ and

𝑏
==⇒ transi-

tions but neither

𝑎𝑏
==⇒ nor

𝑏𝑎
==⇒ are feasible from (𝑞, 𝑍) [32].

Enabledness is however true at the level of configurations.

Although the local-zone graph is sound and complete

for reachability, and has the diamond property, there are

networks for which the local-zone graph is infinite. Hence

a finite abstraction of the local-zone graph is required for

analysis. This is the subject for the next section.

3 Abstract local-zone graphs
The goal of this section is to study finite abstractions of local-

zone graphs that can be used to answer the reachability ques-

tion. We introduce a general definition of an abstraction and

of an abstract local-zone graph. Then we put restrictions on

abstractions that make the abstract local-zone graph sound

and complete for reachability. We fix a timed network N .

This allows us to omit indexing every notion with N .

Definition 3. A quasi-abstraction operator 𝔞 : P(LocalVal) →
P(LocalVal) is a function from sets of local valuations to sets

of local valuations such that 𝔞(𝔞(𝑊)) = 𝔞(𝑊) for all sets
of local valuations𝑊 . If the operator additionally satisfies

𝑊 ⊆ 𝔞(𝑊) for all sets𝑊 , we call it an abstraction operator. A
quasi-abstraction operator is finite if its co-domain is finite:

there are finitely many sets 𝔞(𝑊).

The definition of the abstraction operator is the same as in

the global-time semantics [6, 26], except that now we work

with local valuations. We will use the weaker notion which

we have called a quasi-abstraction to get finite abstractions

in our setting.

A quasi-abstraction operator allows to compute an ab-

stract local-zone graph. An exploration of a local-zone graph

is stopped when a node with a bigger abstraction is already

in the graph. The smaller node is said to be subsumed by the

bigger node. If the quasi-abstraction is finite, then we can

have a finite abstract graph.

Definition 4 (LZG
𝔞 (N)). Suppose 𝔞 is a quasi-abstraction

operator. An abstract local-zone graph is a subset of nodes

and edges of LZG(N) together with some new edges called

subsumption edges. Each node is labeled either covered or

uncovered. The graph must satisfy the following conditions:

• The initial node of LZG(N) belongs to the graph.

• For every uncovered node (𝑞, 𝑍), all its successors to-
gether with associated transitions (𝑞, 𝑍) 𝑏

==⇒ (𝑞′, 𝑍 ′)
in LZG(N) should be in the graph.

• For every covered node (𝑞, 𝑍) there is an uncovered

node (𝑞, 𝑍 ′) with 𝔞(𝑍) ⊆ 𝔞(𝑍 ′); moreover there is an

explicit subsumption edge (𝑞, 𝑍) ⇝ (𝑞, 𝑍 ′).
• Every node of the graph must be reachable from the

initial node by a path of =⇒ edges.

We denote by LZG
𝔞 (N) some abstract zone graph forN One

can imagine that we take the first one in some fixed order

on graphs.

A point worth noting is that the algorithm stores zones and

not abstract sets. Indeedwe do not assume that an abstraction

of a zone is a zone, and therefore we do not know a priori

how to store and manipulate an abstract set directly.

The question now is when it is correct to examine the

abstract local-zone graph instead of the network itself: when

can we say that a given state is reachable by a run in a

network iff it is reachable in its abstract local-zone graph.

Since every node of LZG
𝔞 (N) is reachable by a sequence of

==⇒ transitions, we have:

Lemma 4. Every abstract local-zone graph is sound: if a final
state is reachable in LZG

𝔞 (N) then it is reachable in N .

We now study the converse implication.

Definition 5. A quasi-abstraction operator 𝔞 is complete
when reachability of a state 𝑞 in N implies its reachability

in LZG
𝔞 (N) .

The challenge is to get complete and finite quasi-abstraction

operators for which the test 𝔞(𝑍) ⊆ 𝔞(𝑍 ′) is efficient. Ab-

stractions for the global semantics are based on simulation

relations [6, 17, 26]. Our next direction would be to consider

abstractions based on simulations for the local semantics.

Definition 6. A (time-abstract) simulation relation ≼ on the

local semantics is a reflexive and transitive relation (𝑞, 𝑣) ≼

Abstractions for the local-time semantics of timed automata Logic in Computer Science, 2-5 August 2022, Haifa, Israel

(𝑞, 𝑣 ′) between configurations having the same discrete state

that satisfies two conditions:

1. for every local delay transition (𝑞, 𝑣) Δ−−→ (𝑞, 𝑣1), there
exists a local delay Δ′

such that (𝑞, 𝑣 ′) Δ′
−−→ (𝑞, 𝑣 ′

1
) and

(𝑞, 𝑣1) ≼ (𝑞, 𝑣 ′
1
),

2. for every transition (𝑞, 𝑣) 𝑏−−→ (𝑞1, 𝑣1) there is a transi-
tion (𝑞, 𝑣 ′) 𝑏−−→ (𝑞1, 𝑣 ′1) with (𝑞1, 𝑣1) ≼ (𝑞1, 𝑣 ′1).

We say 𝑣 ≼ 𝑣 ′ if (𝑞, 𝑣) ≼ (𝑞, 𝑣 ′) for all states 𝑞. When Δ′ = Δ
in the first condition above, the relation is called a strong-
timed simulation.

Definition 7. A quasi-abstraction operator 𝔞 is simulation
based if there is a simulation ≼ such that 𝔞(𝑊) ⊆ {𝑣 : ∃𝑣 ′ ∈
𝑊 . 𝑣 ≼ 𝑣 ′}.

In particular, there is the biggest abstraction operator

based on a simulation ≼. It is simply the downward closure

operator with respect to ≼.

Lemma 5. A simulation based abstraction operator is com-
plete.

This lemma (whose proof is in Appendix A) is not true

in general for quasi-abstractions. The proof of the lemma

crucially uses 𝑍 ⊆ 𝔞(𝑍), a property which may not hold in

a quasi-abstraction. We propose an additional condition for

quasi-abstractions that requires the abstraction 𝔞(𝑍) to keep
some of the “good” valuations from the local-zone 𝑍 .

Definition 8. A quasi-abstraction 𝔞 keeps runs if for every
node (𝑞, 𝑍) in LZG(N) that is reachable from the initial node,

and every path (𝑞, 𝑍) 𝑢
==⇒ (𝑞𝑓 , 𝑍 𝑓) to the final state 𝑞𝑓 there

is a valuation 𝑣 ∈ 𝔞(𝑍) and a run (𝑞, 𝑣) 𝑢
99K (𝑞𝑓 , 𝑣 𝑓).

This property means that 𝔞 should keep all paths leading

to a final state. Observe that every abstraction operator keeps

runs since 𝑍 ⊆ 𝔞(𝑍). The property of keeping runs, along

with the operator being simulation based, gives a complete

quasi-abstraction.

Lemma 6. A simulation based quasi-abstraction operator
that keeps runs is complete for reachability.

The aim now is to come upwith a concrete quasi-abstraction

𝔞 that satisfies the properties of the above lemma and for

which the test 𝔞(𝑍) ⊆ 𝔞(𝑍 ′) is efficient. We make a short

digression into one of the first quasi-abstractions proposed

for the local-time semantics.

Catch-up equivalence. A quasi-abstraction operator based

on a relation between configurations called catch-up equiva-
lence has been defined in [8]. However, as we show below,

deciding whether two configurations are catch-up equivalent

is Pspace-hard.

We start with a definition of the equivalence. A delay

(𝑞, 𝑣) Δ−−→ (𝑞, 𝑣 ′) is a catch-up delay if max({𝑣 ′ (𝑡)}𝑡 ∈𝑇) =

(𝑞, 𝑍)

(𝑞𝑎, 𝑍𝑎) (𝑞𝑏, 𝑍𝑏)

(𝑞𝑎𝑏, 𝑍𝑎𝑏)

(𝑞𝑏, 𝑍 ′
𝑏
)

(𝑞𝑎𝑏, 𝑍 ′
𝑎𝑏
)

𝑎 𝑏

𝑏

⇝

𝑎

Figure 3. A diamond that is destroyed by a subsumption.

max({𝑣 (𝑡)}𝑡 ∈𝑇). So catch-up delays only allow the processes

that are behind in time to join the most advanced processes.

Two local-time configurations (𝑞, 𝑣) and (𝑞′, 𝑣 ′) are catch-up
equivalent if the two can reach the same synchronized re-

gions (i.e. Alur & Dill’s regions [3]) through catch-up delays

and discrete transitions.

Proposition 2. The problem of deciding if two given config-
urations (𝑞, 𝑣), (𝑞′, 𝑣 ′) of a given timed network are catch-up
equivalent is Pspace-hard.

The proof is by a reduction from the language emptiness of

intersection of finite automata. It is presented in Appendix B.

This hardness result makes it very unlikely that catch-up

equivalence is suitable in practice.

To summarize this section, we have seen the properties

we need of a quasi-abstraction to get a correct abstract local-

zone graph (Lemma 6). In Section 6 we will present an ef-

ficient simulation based abstraction for local-zone graphs.

Before that, we talk about partial-order reduction.

4 POR on abstract local-zone graphs
We discuss how to use partial-order methods on abstract

zone graphs. At this point, we have a local-zone graph of

a network LZG(N) that has diamonds but may be infinite.

We suppose that we have some quasi-abstraction 𝔞 giving

a finite abstract local-zone graph LZG
𝔞 (N). We would like

to use partial-order methods on LZG
𝔞 (N), but this graph

may not have diamonds as we illustrate in Figure 3. Due

to subsumption there are no transitions from (𝑞𝑏, 𝑍𝑏). So,
LZG(N) has diamonds but may be infinite, and LZG

𝔞 (N) is
finite but has no diamonds.We show that when 𝔞 satisfies the

conditions given by Lemma 6, every partial-order method

for LZG(N) can be used on LZG
𝔞 (N).

In this section we will assume that we have a source func-

tion src for LZG(N) given by a partial-order method as de-

scribed in Section 2. In LZG(N), we have diamonds and so

we can use any partial-order method to calculate a source

function. Recall that the nodes of LZG(N) are pairs (𝑞, 𝑍).
The graph LZG(N) may be infinite since there are infinitely

many local-zones. As we want the source function to be

given by some finite description, we assume that it does not

depend on the local-zone, and instead depends only on the

state 𝑞 and the set of actions enabled from (𝑞, 𝑍), denoted
as enabled(𝑞, 𝑍).

Logic in Computer Science, 2-5 August 2022, Haifa, Israel R. Govind, Frédéric Herbreteau, B. Srivathsan and Igor Walukiewicz

Definition 9. A source function for a timed network N is

a function src : 𝑄 × P(Σ) → P(Σ). A source function of N
is trace-faithful if for every node (𝑞, 𝑍) and a path 𝑢 from

(𝑞, 𝑍) to a final state there is a source path𝑤 ∼ 𝑢 from (𝑞, 𝑍).
The concept of trace-faithful source function is directly

inspired by partial-order methods. Indeed, they always com-

pute trace-faithful source functions as they guarantee that

every path has at least one equivalent source path.

Remark. Partial-order methods in general require both

the diamond and enabledness properties [15]. In our case

LZG(N) has diamonds, but not necessarily the enabledness

property. The latter property is not needed if, for example,

final states are reached by a global synchronization action,

or final states are determined by a state of one of the pro-

cesses. The definition above of the source function hides

this problem. When applying some existing partial-order

methods, some precaution, or transformation of a system,

should be done to ensure that the source function is indeed

trace-faithful.

We can now combine abstraction and partial-order reduc-

tion.

Definition 10. For a timed networkN and a source function

src : 𝑄 × P(Σ) → P(Σ), the graph LZG
src (N) is obtained

from LZG(N) by keeping only the edges allowed by the src

function: (𝑞, 𝑍) 𝑏
==⇒ (𝑞′, 𝑍 ′) such that𝑏 ∈ src(𝑞, enabled(𝑞, 𝑍)).

Then, LZG
𝔞,src (N) is a graph obtained from LZG

src (N)
that satisfies the conditions in Definition 4.

We now have a graph LZG
𝔞,src (N) on which both sub-

sumption and POR have been applied. Used separately, both

of them yield transition systems that are sound and complete

for reachability. The next theorem, proved in Appendix C

says that even the combination is correct.

Theorem 2. If src is a trace-faithful source function and 𝔞 is a
simulation based quasi-abstraction that keeps runs, then a final
state is reachable in LZG(N) iff it is reachable in LZG𝔞,src (N).

5 No finite abstractions for local-zone
graphs

Theorem 2 gives a sufficient condition for a quasi-abstraction

to be compatible with POR. There is one ingredient miss-

ing to get an algorithm. We need a finite quasi-abstraction.

Unfortunately, we show that this is impossible under the

assumptions made on the quasi-abstraction in Theorem 2.

In the argument below, we do not really need that the quasi-

abstraction keeps all runs. It would be enough to keep for

every path a run with the same Parikh image.

Theorem 3. There is a network N− such that LZG𝔞 (N−) is
infinite for every simulation based quasi-abstraction operator
that keeps runs.

Proof. We present a network N−
such that LZG

𝔞 (N−) is
infinite for every simulation based quasi-abstraction 𝔞 that

keeps runs. The same example appears in Lugiez et al. [31]

in a similar context. The networkN−
, presented in Figure 4,

consists of two processes𝐴1 and𝐴2. It is easy to see that any

accepting run of the network executes an equal number of

𝑏’s and 𝑐’s followed by the global synchronizing action $.

𝑝0

𝑝1

𝑏, (𝑥 = 1), {𝑥 }
$, (𝑥 = 1)

A1

𝑞0

𝑞1

𝑐, (𝑦 = 1), {𝑦}
$, (𝑦 = 1)

A2

Figure 4. A network of two processes without a finite ab-

stract zone graph that contains all runs.

Consider LZG(N−), the local zone graph ofN−
. For every

𝑚,𝑛 ≥ 0, the network has a run on 𝑏𝑚𝑐𝑛 . Let (𝑝0, 𝑞0, 𝑍𝑚,𝑛)
be the node in LZG(N−) reached from the initial node after

the sequence 𝑏𝑚𝑐𝑛 : (𝑝0, 𝑞0, 𝑍0)
𝑏𝑚𝑐𝑛

=====⇒ (𝑝0, 𝑞0, 𝑍𝑚,𝑛). Pick 𝑖 >
𝑗 ≥ 0. We claim that:

• 𝔞(𝑍𝑖, 𝑗) ̸⊆ 𝔞(𝑍𝑘,𝑙) for any 𝑘, 𝑙 ≥ 0 with (𝑖 − 𝑗) ≠ (𝑘 − 𝑙).
Suppose to the contrary that 𝔞(𝑍𝑖, 𝑗) ⊆ 𝔞(𝑍𝑘,𝑙) for some

𝑖, 𝑗, 𝑘, 𝑙 with (𝑖− 𝑗) ≠ (𝑘−𝑙). Consider an execution (𝑝0, 𝑞0, 𝑣0)
𝑏𝑖𝑐 𝑗

999K (𝑝0, 𝑞0, 𝑣𝑖, 𝑗)
𝑐𝑖− 𝑗

$

9999K (𝑝1, 𝑞1, 𝑣) of N−
. We have 𝑣𝑖, 𝑗 ∈

𝑍𝑖, 𝑗 . Hence by pre-property from Lemma 3, there is a path

(𝑝0, 𝑞0, 𝑍𝑖, 𝑗)
𝑐𝑖− 𝑗

===⇒ (𝑝1, 𝑞1, 𝑍) in LZG(N−). Now, as the opera-
tor 𝔞 keeps runs, there is 𝑣 ′𝑖, 𝑗 ∈ 𝔞(𝑍𝑖, 𝑗) and a run (𝑝0, 𝑞0, 𝑣 ′𝑖, 𝑗)
𝑐𝑖− 𝑗

999K (𝑝1, 𝑞1, 𝑣 ′). By 𝔞(𝑍𝑖, 𝑗) ⊆ 𝔞(𝑍𝑘,𝑙) we have 𝑣 ′𝑖, 𝑗 ∈ 𝔞(𝑍𝑘,𝑙).
Since 𝔞 is simulation based there is 𝑣𝑘,𝑙 ∈ 𝑍𝑘,𝑙 with config-

uration (𝑝0, 𝑞0, 𝑣𝑘,𝑙) simulating (𝑝0, 𝑞0, 𝑣 ′𝑖, 𝑗). Hence, we have

(𝑝0, 𝑞0, 𝑣𝑘,𝑙)
𝑐𝑖− 𝑗

$

9999K (𝑝1, 𝑞1, 𝑢) inN−
. From the fact that 𝑣𝑘,𝑙 ∈

𝑍𝑘,𝑙 and the post-property (Lemma 3), there is an execution

(𝑝0, 𝑞0, 𝑣0)
𝑏𝑘𝑐𝑙

9999K (𝑝0, 𝑞0, 𝑣𝑘,𝑙). Combining the last two ex-

ecutions we obtain: (𝑝0, 𝑞0, 𝑣0)
𝑏𝑘𝑐𝑙

9999K (𝑝0, 𝑞0, 𝑣𝑘,𝑙)
𝑐𝑖− 𝑗

$

9999K
(𝑝1, 𝑞1, 𝑢). This is impossible for (𝑖 − 𝑗) ≠ (𝑘 − 𝑙).
By the diamond property of LZG(N−), any sequence con-

taining 𝑘 occurrences of 𝑏, and 𝑙 occurrences of 𝑐 ends in

(𝑝0, 𝑞0, 𝑍𝑘,𝑙). From 𝔞(𝑍𝑖, 𝑗) ̸⊆ 𝔞(𝑍𝑘,𝑙), the node (𝑝0, 𝑞0, 𝑍𝑖, 𝑗)
(reached by any sequence containing 𝑖 occurrences of 𝑏 and

𝑗 occurrences of 𝑐) cannot be subsumed by any other node.

This shows that there are infinitely many nodes in LZG
𝔞 (N)

as there is at least one for every difference (𝑖 − 𝑗). □

In [23], a simulation based quasi-abstraction is defined

which is shown to be finite and complete. This operator

however does not keep runs, which is in accordance with

the above result. Due to this reason, this operator is not

amenable for partial-order reduction.

Abstractions for the local-time semantics of timed automata Logic in Computer Science, 2-5 August 2022, Haifa, Israel

In the following sections we propose a way out from the

apparent deadlock created by Theorems 2 and 3. One direc-

tion could be to find an abstraction operator not satisfying

the hypothesis of Theorem 3, that is, either not simulation

based or not keeping runs. We do not know how to do this

while still preserving some form of Theorem 2. Our solution

is to put some restrictions on the timed networks we con-

sider. We will first generalize the 𝔞≼𝐿𝑈 abstraction [6] for

global-time semantics to the local-time semantics. Then we

will show sufficient conditions under which it is finite.

6 𝐿𝑈 -simulation for the local semantics
We will present a concrete strong-timed simulation that gen-

eralizes of the 𝐿𝑈 -simulation [6] known in the global se-

mantics to the local semantics. It is parameterized by two

functions 𝐿 and 𝑈 that keep for each clock the maximum

constant among lower bound constraints 𝑥 ≥ 𝑐, 𝑥 > 𝑐 and

upper bound constraints 𝑥 ≤ 𝑐, 𝑥 < 𝑐 respectively. The simu-

lation induces an abstraction operator 𝔞★≼𝐿𝑈 which is sound,

complete and keeps runs for networks with bounds 𝐿 and

𝑈 . The impossibility result from the previous section still

applies though. Indeed the operator is not finite. In Section 7,

we will present a restriction on timed networks and modify

the abstraction operator to a quasi-abstraction operator that

will be finite for the restricted class of networks.

Definition 11. An 𝐿𝑈 -bounds is a pair of functions 𝐿 :

𝑋 → N ∪ {−∞} and 𝑈 : 𝑋 → N ∪ {−∞}, each of which

maps process clocks to a natural number or −∞. An atomic

constraint 𝑥 ∼ 𝑐 is an 𝐿𝑈 -constraint if 𝑐 ≤ 𝐿(𝑥) when ∼∈ {≥
, >} (lower bound constraint) and if 𝑐 ≤ 𝑈 (𝑥) when∼∈ {<, ≤
} (upper bound constraint). A network N is an 𝐿𝑈 -network
if every guard in N is a conjunction of 𝐿𝑈 -constraints.

We next lift the 𝐿𝑈 -preorder [6], written as ≼𝐿𝑈 and de-

fined for the global-time semantics to the local-time setting.

Here, when we relate 𝑣 and 𝑣 ′, we require that the difference
between reference clocks is the same for both 𝑣 and 𝑣 ′.

Definition 12 (≼★
𝐿𝑈
-preorder). Given 𝐿𝑈 -bounds 𝐿 and 𝑈 .

For two local valuations 𝑣, 𝑣 ′, we say 𝑣 ≼★
𝐿𝑈
𝑣 ′ if:

• 𝑣 (𝑡𝑝 − 𝑡𝑞) = 𝑣 ′ (𝑡𝑝 − 𝑡𝑞) for all 𝑝, 𝑞 ∈ Proc
• for all 𝑝 ∈ Proc and all 𝑥 ∈ 𝑋𝑝

– 𝑣 (𝑡𝑝 − 𝑥) ≤ 𝑈𝑥 ⇒ 𝑣 ′ (𝑡𝑝 − 𝑥) ≤ 𝑣 (𝑡𝑝 − 𝑥)
– 𝑣 (𝑡𝑝 − 𝑥) ≤ 𝐿𝑥 ⇒ 𝑣 ′ (𝑡𝑝 − 𝑥) ≥ 𝑣 (𝑡𝑝 − 𝑥)
– 𝑣 (𝑡𝑝 − 𝑥) > 𝐿𝑥 ⇒ 𝑣 ′ (𝑡𝑝 − 𝑥) > 𝐿𝑥

Intuitively, the relation 𝑣 ≼★
𝐿𝑈
𝑣 ′ ensures the following: (1)

whenever 𝑣 + Δ synchronizes 𝑡𝑝 and 𝑡𝑞 , 𝑣
′ + Δ also synchro-

nizes them, (2) whenever 𝑣 + Δ satisfies an 𝐿𝑈 -constraint,

𝑣 ′ + Δ also satisfies the same constraint. This is the basis for

≼★
𝐿𝑈

to induce a simulation over the local semantics. When

𝑣, 𝑣 ′ are synchronized valuations, the ≼★
𝐿𝑈

preorder is identi-

cal to the ≼𝐿𝑈 preorder of the global-time semantics.

We overload the notation ≼★
𝐿𝑈

to a relation between con-

figurations: we define (𝑞, 𝑣) ≼★
𝐿𝑈

(𝑞, 𝑣 ′) whenever 𝑣 ≼★
𝐿𝑈
𝑣 ′.

The next theorem (proved in Appendix D) states that ≼★
𝐿𝑈

relation is a strong-timed simulation onN . We illustrate the

theorem on an example. Consider a transition 𝑞
𝑏−→ 𝑞′ with

guard 𝑥1 > 𝑐 ∧ 𝑥2 ≤ 𝑑 and a reset {𝑥1}. Action 𝑏 is shared

between processes 1 and 2. Suppose (𝑞, 𝑣) 𝑏−→ (𝑞1, 𝑣1). Then
𝑣 (𝑡1) = 𝑣 (𝑡2), and 𝑣 satisfies the guard. Let 𝑣 ≼★𝐿𝑈 𝑣 ′. We will

see that (𝑞, 𝑣 ′) 𝑏−→ (𝑞1, 𝑣 ′1) and 𝑣1 ≼★𝐿𝑈 𝑣 ′
1
. Firstly, we have

𝑣 ′ (𝑡1) = 𝑣 ′ (𝑡2) by the first item in the ≼★
𝐿𝑈

definition. Next,

we have 𝑣 (𝑡1−𝑥1) > 𝑐 and 𝑣 (𝑡2−𝑥2) ≤ 𝑑 . If 𝑣 (𝑡1−𝑥1) ≤ 𝐿(𝑥1),
then 𝑣 ′ (𝑡1 − 𝑥1) ≥ 𝑣 (𝑡1 − 𝑥1) by the second sub-item in the

second condition; else 𝑣 ′ (𝑡1 − 𝑥1) > 𝐿(𝑥1) by third sub-item.

Since 𝐿(𝑥1) ≥ 𝑐 , we get 𝑣 ′ (𝑡1−𝑥1) > 𝑐 in both cases. Similarly,

we can argue that 𝑣 ′ (𝑡2 − 𝑥2) ≤ 𝑑 using the first sub-item

with 𝑈 (𝑥2). Moreover, after resetting 𝑥1, all conditions of

≼★
𝐿𝑈

are still satisfied in the resulting valuations 𝑣1 and 𝑣
′
1
.

Theorem 4. Let N be an 𝐿𝑈 -network. The relation ≼★
𝐿𝑈

is a
strong-timed simulation on the local semantics of N .

Definition 13. The abstraction operator 𝔞★≼𝐿𝑈 is defined as

𝔞★≼𝐿𝑈 (𝑊) := {𝑣 | 𝑣 ≼★
𝐿𝑈
𝑣 ′ for some 𝑣 ′ ∈𝑊 } for every set of

local valuations𝑊 . This is the downward closure of𝑊 with

respect to the ≼★
𝐿𝑈

relation.

Theorem 5. For every LU-network N , the abstraction opera-
tor 𝔞★≼𝐿𝑈 is sound and complete. It also keeps runs.

Unfortunately, despite this theorem we still miss two

pieces to analyze timed networks with local semantics:

• We need an efficient test for 𝔞★≼𝐿𝑈 (𝑍) ⊆ 𝔞★≼𝐿𝑈 (𝑍 ′) be-
cause it is used in the definition of LZG

𝔞★≼𝐿𝑈 (N).
• We need LZG

𝔞★≼𝐿𝑈 (N) to be finite.

We discuss an efficient inclusion test in Section 6.1. The im-

possibility result from Theorem 3 tells us that LZG
𝔞★≼𝐿𝑈 (N)

cannot be always finite. To address this, we introduce the

concept of a bounded-spread network in Section 7 and show

that a variant of LZG
𝔞★≼𝐿𝑈 (N) is finite there.

6.1 An algorithm for 𝔞★≼𝐿𝑈 (𝑍) ⊆ 𝔞★≼𝐿𝑈 (𝑍 ′)
The counterpart of 𝔞★≼𝐿𝑈 in the global-semantics is the ab-

straction operator 𝔞≼𝐿𝑈 [6]. It is well known that the 𝔞≼𝐿𝑈
abstraction of a zone need not result in a zone, in fact, it

may not even be convex [6, 26]. The current abstraction op-

erator 𝔞★≼𝐿𝑈 is a generalization of 𝔞≼𝐿𝑈 which is identical to

𝔞≼𝐿𝑈 over zones that contain only synchronized valuations.

Therefore, 𝔞★≼𝐿𝑈 is not convex. As in the global setting, the

challenge is to decide the inclusion 𝔞★≼𝐿𝑈 (𝑍) ⊆ 𝔞★≼𝐿𝑈 (𝑍 ′) by
looking at zones 𝑍 and 𝑍 ′

. We start with some simplification

steps. Since 𝔞★≼𝐿𝑈 is the downward closure operator with

respect to ≼★
𝐿𝑈
, we make the first simplication below.

Lemma 7. For every pair of zones𝑍, 𝑍 ′: 𝔞★≼𝐿𝑈 (𝑍) ⊆ 𝔞★≼𝐿𝑈 (𝑍 ′)
iff 𝑍 ⊆ 𝔞★≼𝐿𝑈 (𝑍 ′).
The test 𝑍 ⊆ 𝔞★≼𝐿𝑈 (𝑍 ′) can be seen as checking whether

for every 𝑣 ∈ 𝑍 there exists a 𝑣 ′ ∈ 𝑍 ′
such that 𝑣 ≼★

𝐿𝑈
𝑣 ′.

Logic in Computer Science, 2-5 August 2022, Haifa, Israel R. Govind, Frédéric Herbreteau, B. Srivathsan and Igor Walukiewicz

Define ⟨𝑣⟩★ := {𝑣 ′ | 𝑣 ≼★
𝐿𝑈
𝑣 ′}. The next lemma shows that

we can reduce inclusion to intersection.

Lemma8. Let𝑍, 𝑍 ′ be non-empty zones. Then,𝑍 ̸⊆ 𝔞★≼𝐿𝑈 (𝑍 ′)
iff there exists 𝑣 ∈ 𝑍 satisfying ⟨𝑣⟩★ ∩ 𝑍 ′ = ∅.

As mentioned before, when 𝑍, 𝑍 ′
contain only synchro-

nized valuations, we have 𝔞★≼𝐿𝑈 (𝑍) = 𝔞≼𝐿𝑈 (𝑍), 𝔞★≼𝐿𝑈 (𝑍 ′) =
𝔞≼𝐿𝑈 (𝑍 ′) and the test boils down to checking 𝑍 ⊆ 𝔞≼𝐿𝑈 (𝑍 ′),
which is studied in [26] for the global semantics. In the local

semantics we need to consider valuations that are desyn-

chronized. However, by definition of ≼★
𝐿𝑈
, for 𝑣 ≼★

𝐿𝑈
𝑣 ′, we

require 𝑣 (𝑡𝑝 − 𝑡𝑞) = 𝑣 ′ (𝑡𝑝 − 𝑡𝑞). This property allows us to

lift the technique used in [26] to our setting.

For our analysis, we will make use of a graph representa-

tion of local-zones, called distance graphs [26, 30]. A distance

graph has vertices 𝑋 ∪ 𝑋 𝑡
. For every 𝑥,𝑦 ∈ 𝑋 ∪ 𝑋 𝑡

there is

an edge 𝑥 → 𝑦 with a weight that is either (<,∞) or of the
form (⋖, 𝑐) with 𝑐 ∈ R and ⋖ standing for ≤ or <. The edge

𝑥
(⋖,𝑐)
−−−−→ 𝑦 represents the constraint 𝑦 − 𝑥 ⋖ 𝑐 . For example,

the zone 𝑍1 := 𝑡1 −𝑥 ≥ 5∧ 𝑡2 −𝑦 ≤ 2 can be represented as a

graph with edges: 𝑡1
(≤,−5)
−−−−−→ 𝑥 , 𝑡2

(≤,0)
−−−−→ 𝑦 and 𝑦

(≤,2)
−−−−→ 𝑡2. To

reason about cumulative constraints of a path in this graph

representation, an arithmetic over weights is defined.

Order: for 𝑐1, 𝑐2 ∈ R, we say (⋖1, 𝑐1) < (⋖2, 𝑐2) if 𝑐1 < 𝑐2,

or 𝑐1 = 𝑐2, ⋖1 is < and ⋖2 is ≤; secondly, we have (⋖, 𝑐) <
(<,∞) for every 𝑐 ∈ R. Addition: for 𝑐1, 𝑐2 ∈ R, we have

(⋖1, 𝑐1) + (⋖2, 𝑐2) to be equal to (⋖, 𝑑) where 𝑑 = 𝑐1 + 𝑐2 and
⋖ is < if one of ⋖1 or ⋖2 is <, and ⋖ is ≤ otherwise; secondly,

(⋖, 𝑐) + (<,∞) is defined to be (<,∞) for every weight (⋖, 𝑐).
The addition allows us to define the weight of a path in a

distance graph, as the sum of weights of the edges. A distance

graph is canonical if for all pairs of vertices𝑥 ≠ 𝑦, the smallest

weight of a path from 𝑥 to 𝑦 is given by the weight of the

edge 𝑥 −→ 𝑦. For a zone 𝑍 we denote by 𝑍𝑥𝑦 the weight of

the 𝑥 → 𝑦 edge in the canonical distance graph representing

𝑍 . We now have all the notation to state our inclusion test.

Details of arriving at this test are in Appendix E.

Theorem 6. Let 𝑍, 𝑍 ′ be non-empty local zones. We have
𝑍 ⊈ 𝔞★≼𝐿𝑈 (𝑍 ′) iff there exist two variables 𝑥,𝑦 ∈ 𝑋 ∪ 𝑋𝑡 s.t.

• 𝑍 ′
𝑦𝑥 < 𝑍𝑦𝑥 , and

• (≤,𝑈𝑥) + 𝑍𝑡𝑝𝑥 ≥ (≤, 0) if 𝑥 ∈ 𝑋𝑝 for a process 𝑝 , and
• (<,−𝐿𝑦) + 𝑍 ′

𝑦𝑥 < 𝑍𝑡𝑞𝑥 , if 𝑦 ∈ 𝑋𝑞 for some process 𝑞.

The test runs over pairs of variables 𝑥,𝑦 and uses weights

𝑍𝑦𝑥 , 𝑍
′
𝑦𝑥 , 𝑍𝑡𝑝𝑥 and 𝑍𝑡𝑞𝑥 to check the conditions given by

the theorem. This procedure can be implemented in time

O(|𝑋 ∪ 𝑋𝑡 |2). When we look at local-zones consisting of

only synchronized valuations, we can add constraints 𝑡𝑝 = 𝑡𝑞
and derive the test 𝑍 ⊆ 𝔞≼𝐿𝑈 (𝑍 ′) in the global-setting as a

special case of the above theorem.

7 Bounded-spread networks
The impossibility result for local time semantics (Theorem 3)

says that no simulation based abstraction can ensure finite-

ness of an abstract zone graph. Even if we go to quasi-

abstractions, it is impossible to get a finite abstraction that

keeps runs. As we do not know how to obtain abstractions

that would go around this problem, we need to look for

subclasses of timed networks where abstraction guarantees

finiteness. In the example from the proof of Theorem 3, the

local times of the two processes can differ by an arbitrary

amount, and moreover this difference influences future be-

havior. We give a sufficient condition to avoid this situation.

We introduce the notion of bounded-spread networks and

show how we can adapt the 𝔞★≼𝐿𝑈 abstraction (Definition 13)

to get a finite quasi-abstraction that keeps runs for bounded-

spread networks. This gives an algorithm for bounded-spread

networks that can use both subsumption and POR at the same

time. We also discuss some cases when a network is guaran-

teed to be of bounded spread, as well as present a method of

converting any network into an equivalent bounded-spread

network by adding some synchronizations.

Definition 14. The spread between processes 𝐴𝑝 , 𝐴𝑞 in a

local valuation 𝑣 is the absolute value of the difference be-

tween their reference clocks: |𝑣 (𝑡𝑝) − 𝑣 (𝑡𝑞) |. Let 𝐷 ≥ 0 be

a natural number. We say that a valuation 𝑣 has spread 𝐷 if

the spread between every pair of processes in 𝑣 is at most 𝐷 .

Definition 15. A run in the local time semantics

(𝑞0, 𝑣0)
Δ0−−→ (𝑞0, 𝑣′0)

𝑏1−−→ (𝑞1, 𝑣1)
Δ1−−→ · · · 𝑏𝑛−−→ (𝑞𝑛, 𝑣𝑛)

Δ𝑛−−→ (𝑞𝑛, 𝑣′𝑛)

is said to be 𝐷-spread if all 𝑣0, 𝑣
′
0
. . . , 𝑣𝑛, 𝑣

′
𝑛 have spread 𝐷 .

Definition 16. A network N is said to be 𝐷-spread if ev-

ery local run of N can be converted to a 𝐷-spread run

by adjusting the delays: that is, for every run (𝑞0, 𝑣0)
Δ0−−→

(𝑞0, 𝑣′
0
)

𝑏1−−→ (𝑞1, 𝑣1)
Δ1−−→ · · · 𝑏𝑛−−→ (𝑞𝑛, 𝑣𝑛)

Δ𝑛−−→ (𝑞𝑛, 𝑣′𝑛) there ex-

ists a 𝐷-spread run (𝑞0, 𝑣0)
Δ′
0−−→ (𝑞0, 𝑣′

0
)

𝑏1−−→ (𝑞1, 𝑣1)
Δ′
1−−→ · · · 𝑏𝑛−−→

(𝑞𝑛, 𝑣𝑛)
Δ′𝑛−−→ (𝑞𝑛, 𝑣′𝑛) where 𝑣0 = 𝑣0.

Example. Consider the network in Figure 1a. We have

two processes one with clock 𝑥 and the other with clock

𝑦. There are also two reference clocks 𝑡1 and 𝑡2. Let 𝑣𝑖, 𝑗
stand for a valuation 𝑡1 = 𝑖, 𝑡2 = 𝑗, 𝑥 = 𝑦 = 0. In particu-

lar, 𝑣0,0 is an initial valuation. In the local semantics we have

a run (0, 0, 𝑣0,0)
(0,9)
−−−→ (0, 0, 𝑣0,9)

𝑐−−→ (0, 1, 𝑣0,9)
𝑏−−→ (1, 1, 𝑣0,9).

Valuation 𝑣0,9 has spread 9. Yet the run has a spread 1 be-

cause we can adjust the delays: (0, 0, 𝑣0,0)
(1,2)
−−−→ (0, 0, 𝑣1,2)

𝑐−−→
(0, 1, 𝑣1,2)

𝑏−−→ (1, 1, 𝑣1,2). If we did not allow for adjusting de-

lays in the definition of 𝐷-spread, this network would have

an unbounded spread. With the adjustment, it is 1-spread.

Abstractions for the local-time semantics of timed automata Logic in Computer Science, 2-5 August 2022, Haifa, Israel

7.1 When is a network bounded-spread
We give some examples where it is easy to check that a net-

work is of bounded spread. For such classes we can apply

the verification method presented in this work. In general,

checking if the spread of a network is bounded by a given 𝐷

is at least as hard as checking reachability. So an approach

consisting of taking an arbitrary network, calculating its

spread, and then applying our method, would not work. Ob-

serve that every network can be made 0-spread if one makes

all the processes synchronize on all actions. However, this

removes all parallelism in the network and any possibility

of applying POR. We show a less radical method of con-

verting any network to a 𝐷-spread network. The method

introduces some new synchronizations, but still leaves some

parallelism where partial-order methods can be applied. We

start with some sufficient conditions for a network to be

bounded spread and later describe the general construction.

Acyclic systems. We claim that acyclic systems are bounded-

spread where the bound depends on the size of the network

description. The local-zone graph of an acyclic network is

finite and no abstraction is needed. But, making use of “cross”

subsumptions reduces the state-space when there are multi-

ple ways to reach a state. Showing that an acyclic system is

bounded-spread allows to use both subsumption and POR.

Lemma 9. Suppose𝑀 is a maximal constant in guards. The
spread of a run of length 𝑛 is bounded by 𝑛𝑀 + 1.

Here is an example where we get the maximal spread:

𝑏,𝑥>𝑀,𝑥 :=0−−−−−−−−→ · · · 𝑏,𝑥>𝑀,𝑥 :=0−−−−−−−−→
𝑎,𝑦=0
−−−−→

Actions 𝑎 and 𝑏 are local actions of two processes. At the

beginning the two clocks are at 0. The clock of 𝑏 process gets

to some 𝑛𝑀 + 𝜖′ for 0 < 𝜖′ < 1, while the clock of 𝑎 process

is still 0. Lemma 9 gives an upper bound for the spread of

any run in an acyclic system (see Appendix F for proofs).

Corollary 1. An acyclic timed network N = ⟨𝐴1, . . . , 𝐴𝑘⟩ is
(∑𝑖=𝑘

𝑖=1 |𝑇𝑖 |) ×𝑀 + 1-spread bounded where |𝑇𝑖 | is the number
of transitions in 𝐴𝑖 , and𝑀 is the maximum constant in N .

Frequently communicating systems. More interesting

examples of bounded-spread systems are frequently commu-

nicating client/server systems. In such systems we have one

server process 𝑆 , and a number of client processes𝐶1, . . . ,𝐶𝑛 .

The only communication actions are between the server and

clients: the domain of an action can be either a singleton or

{𝑆,𝐶𝑖 } for some 𝑖 . Such a network is frequently communicat-

ing if there is a bound𝐷 such that every client communicates

with server in every time interval of length 𝐷 . It is not diffi-

cult to see that in this case the network is 2𝐷-spread.

Another example is a network with barriers that can be

modeled as global synchronizations. Assume there are no

other communication actions: each action is either local to

a process or it is a global synchronization. If we know that

there is a synchronizing action on every loop of every process

then the system is bounded-spread thanks to Lemma 9.

This idea of frequent communication resulting in bounded-

spread brings us to the next construction. It is possible to

convert an arbitrary system to a bounded-spread system, at

the price of reducing concurrency. Lemma 9 suggests adding

global synchronizations, say on every loop. This would in-

deed bound the spread as the length of runs between two

global configurations would be bounded. This transforma-

tion is unfortunately not correct: we miss some behaviors

of the original system. Another solution is to synchronize

everybody every 𝐷 units of time, which we formalize below.

Definition 17. Let N be an arbitrary timed network and

𝐷 ≥ 1 a natural number. DefineN𝐷
to be the timed network

obtained from N as follows. Add a fresh clock 𝑧𝑝 to every

process 𝑝 , and a new synchronization action 𝑠 whose domain

is the set of all processes. To every state of every process we

add a self-loop on 𝑠 with a guard 𝑧𝑝 = 𝐷 and reset of 𝑧𝑝 . To

every other transition add 𝑧𝑝 < 𝐷 to the existing guard.

The construction ensures that in every 𝐷 units of time

every process needs to do the 𝑠 transition. Hence the result-

ing system is 𝐷-spread bounded. Moreover reachability is

preserved as every state that is reachable is reachable by a

global run (Lemma 1) and global runs are 0-spread. Hence

all global runs ofN appear inN𝐷
, with embedded 𝑠 actions.

Proposition 3. For every network N and natural number
𝐷 ≥ 1, the systemN𝐷 is𝐷-spread. A final state𝑞𝑓 is reachable
in N iff it is reachable in N𝐷 .

The methodology that we develop in the subsequent sec-

tion can be applied to N𝐷
. While independence between

actions of the original network N is preserved in N𝐷
, there

may be more traces due to new synchronization actions. In

Section 8, we will see an example where these extra traces

get compensated by POR, in fact by an exponential factor.

7.2 Abstraction for bounded-spread networks
We come back to the crucial point of obtaining finite abstrac-

tions of bounded-spread networks. For a given bound 𝐷 we

use 𝔞★≼𝐿𝑈 abstraction restricted to 𝐷-spread valuations. We

show that this guarantees finiteness of the abstract graph.

Definition 18. For a set of valuations𝑊 define spread𝐷 (𝑊)
to be {𝑣 ∈𝑊 | 𝑣 has spread 𝐷}. The quasi-abstraction oper-

ator 𝔞𝐷≼𝐿𝑈 is defined as 𝔞𝐷≼𝐿𝑈 (𝑊) := 𝔞★≼𝐿𝑈 (spread𝐷 (𝑊)) for
every set of valuations𝑊 .

Theorem 7. Quasi-abstraction 𝔞𝐷≼𝐿𝑈 is sound, complete, fi-
nite, and keeps runs for 𝐷-spread networks. The inclusion
𝔞𝐷≼𝐿𝑈 (𝑍) ⊆ 𝔞𝐷≼𝐿𝑈 (𝑍 ′) can be checked in time O(|𝑋 ∪ 𝑋𝑡 |2)
for time-elapsed local-zones 𝑍, 𝑍 ′.

Proof. Soundness follows from Lemma 4. We now show that

𝔞𝐷≼𝐿𝑈 keeps runs. Consider a𝐷-spread networkN and a node

Logic in Computer Science, 2-5 August 2022, Haifa, Israel R. Govind, Frédéric Herbreteau, B. Srivathsan and Igor Walukiewicz

(𝑞, 𝑍) reachable from the initial node in LZG(N): there exists
a path (𝑞0, 𝑍0)

𝑢′
==⇒ (𝑞, 𝑍). Let (𝑞, 𝑍) 𝑢

==⇒ (𝑞𝑓 , 𝑍 𝑓) be a path to

a final state. By post-property there is a local run (𝑞0, 𝑣0)
𝑢′
99K

(𝑞, 𝑣) 𝑢
99K (𝑞𝑓 , 𝑣 𝑓) with 𝑣0 ∈ 𝑍0, 𝑣 ∈ 𝑍 and 𝑣 𝑓 ∈ 𝑍 𝑓 . SinceN

is 𝐷-spread we can assume 𝑣 ∈ spread𝐷 (𝑍), and hence by

Definition 18 we have 𝑣 ∈ 𝔞𝐷≼𝐿𝑈 (𝑍). This proves that 𝔞𝐷≼𝐿𝑈
keeps runs, as per Definition 8. Lemma 6 then entails that

𝔞𝐷≼𝐿𝑈 is complete. By using the inclusion test from Theorem 6,

we show that an order between zones defined as 𝑍 ≼ 𝑍 ′
if

𝔞𝐷≼𝐿𝑈 (𝑍) ⊆ 𝔞𝐷≼𝐿𝑈 (𝑍 ′) is a well-quasi order (Lemma 14 in

Appendix F.1). This proves finiteness of 𝔞𝐷≼𝐿𝑈 . Complexity of

the inclusion test is discussed in Lemma 13 of Appendix F.

Since the local-zone graph has only time-elapsed zones, it is

sufficient to consider such zones for the inclusion test. □

8 Examples with exponential gain
Theorems 7 and 2, along with Definitions 10 and 9 give an

algorithm for testing reachability in bounded-spread net-

works: explore the local zone graph restricted to the succes-

sors given by the src function, and for each fresh node (𝑞, 𝑍)
that is discovered, do not explore further if is subsumed, that

is 𝔞𝐷≼𝐿𝑈 (𝑍) ⊆ 𝔞𝐷≼𝐿𝑈 (𝑍 ′) for an already visited node (𝑞, 𝑍 ′).
We now present two examples on which this method gives

exponential gain.

The first example shows advantages of local-time seman-

tics together with partial-order methods. Consider a network

of 𝑁 timed automata A𝑖 as depicted below, where 𝑎𝑖 and 𝑏𝑖
are local actions, whereas $ is a synchronized action:

𝑞0 𝑞1 𝑞2 𝑞3
𝑎𝑖 , (𝑥𝑖 ≤ 𝑖), {𝑥𝑖 } 𝑏𝑖 , (𝑥𝑖 ≥ 2𝑖) $

Notice that not all sequences of actions are feasible in

global time. For instance, 𝑏2 requires a delay of 4 time units,

hence it cannot happen before 𝑎3 which only allows a delay

of 3 time units. Still, all 3
𝑁
combinations of states 𝑞0, 𝑞1 and

𝑞2 are reachable, although some of them are deadlocks. POR

cannot be applied in algorithms using global-time semantics

since the guards remove most diamonds.

In the local-time semantics, all sequences of actions are

feasible. The spread is bounded by 2𝑁 . We can apply a very

simple partial-order technique: if there is a local action in

enabled(𝑞, 𝑍) then keep only the action of the smallest pro-

cess, otherwise only $ action is enabled and keep this action.

This source function is complete for reachability of the final

state (𝑞3, . . . , 𝑞3). There is only one source path and it fol-

lows the sequence of actions 𝑎1𝑏1𝑎2𝑏2 · · ·𝑎𝑁𝑏𝑁 $. Recall that
without POR at least 3

𝑁
states are visited.

The second example illustrates the general construction

given in Definition 17 converting any network to a bounded-

spread network (Proposition 3). Recall the example of a net-

work with unbounded spread from Figure 4. We consider an

extension of it to 𝑛 processes, N−
𝑛 . We apply to it the con-

struction for bounding the spread to 1, obtaining a network

N+
𝑛 = ⟨𝐴1, . . . , 𝐴𝑛⟩, where 𝐴𝑖 are as in the figure below. The

actions 𝑠 and $ are global actions and 𝑏𝑖 is local to 𝐴𝑖 .

𝑝𝑖 𝑞𝑖

𝑏𝑖 , 𝑧𝑖 < 1 ∧ 𝑥𝑖 = 1, {𝑥𝑖 }

𝑠, 𝑧𝑖 = 1, {𝑧𝑖 }

$, 𝑧𝑖 < 1 ∧ 𝑥𝑖 = 1

Consider a src function that gives for each (𝑝, 𝑍𝜎), the
action 𝑠 and the action 𝑏𝑖 with the least index that is enabled

at 𝑍𝜎 . Denote by LZG
1,𝑠𝑟𝑐
𝐿𝑈 (N+

𝑛) the abstract local-zone graph
over the 𝔞𝐷≼𝐿𝑈 operator with 𝐷 = 1. The uncovered nodes

in LZG
1,𝑠𝑟𝑐
𝐿𝑈 (N+

𝑛) are those accessible by paths 𝑠𝑏1 . . . 𝑏𝑖 for

0 ≤ 𝑖 < 𝑛 and by 𝑠𝑏1 . . . 𝑏𝑖𝑠𝑏1 . . . 𝑏 𝑗 where 0 ≤ 𝑖 < 𝑛 and

0 ≤ 𝑗 < 𝑖 . The covered nodes are the ones accessible by paths

𝑠𝑏1 . . . 𝑏𝑛 and by 𝑠𝑏1 . . . 𝑏𝑖𝑠𝑏1 . . . 𝑏 𝑗𝑠 where 0 ≤ 𝑖 < 𝑛, 0 ≤
𝑗 ≤ 𝑖 . This gives an O(𝑛2) bound on the number of nodes

present in LZG
1,𝑠𝑟𝑐
𝐿𝑈 (N+). Without partial-order reduction,

there will be a node (𝑝, 𝑍𝑠𝑢) for each 𝑢 that is a sequence of

𝑏 actions without repetitions. This is because 𝑍𝑠𝑢1
and 𝑍𝑠𝑢2

with 𝑢1 and 𝑢2 not being interleavings of each other cannot

be covered with respect to each other by the 𝔞𝐷≼𝐿𝑈 quasi-

abstraction. A detailed analysis, presented in Appendix G,

shows that without a partial-order method, an exploration

needs to visit exponentially many zones, be it in local or

global-time semantics.

9 Conclusion
We have introduced a framework for applying partial-order

methods to the analysis of timed automata. It uses local-time

semantics in order to regain commutativity of independent

actions. However, the resulting local-time zone graph is usu-

ally infinite, and prior finite abstractions were either imprac-

tical or incompatible with partial-order methods. We have

introduced a new abstraction 𝔞★≼𝐿𝑈 that is simulation based,

and hence compatible with partial-order methods. The ab-

straction 𝔞★≼𝐿𝑈 is generally not finite. Even worse, as we have

shown here, there does not exist an abstraction that is finite,

and simulation based. To circumvent this obstacle, we have

introduced bounded-spread timed networks, for which the

𝔞★≼𝐿𝑈 abstraction can be made finite. This requires the intro-

duction of quasi-abstractions. We have given examples of

subclasses of timed networks that are naturally bounded-

spread, and we have shown that every timed network can be

made bounded-spread, at the cost of reducing concurrency.

We have illustrated the benefits of our framework on two

examples.

Our next steps will be designing concrete partial-order

methods that provide exponential gains for a wide class

of timed networks. We hope that our framework can be ex-

tended to other verification problems, like liveness or solving

timed games, as well as to richer timed models, like push-

down timed automata, or weighted timed automata.

Abstractions for the local-time semantics of timed automata Logic in Computer Science, 2-5 August 2022, Haifa, Israel

A Appendix for Section 3
▶ Lemma 5. A simulation based abstraction operator is

complete.

Proof. Let ≼ be the simulation on which the abstract lo-

cal zone graph is based on. Let (𝑞0, 𝑣0)
Δ0−−→ (𝑞0, 𝑣 ′0)

𝑏1−−→
(𝑞1, 𝑣1) · · ·

𝑏𝑛−−→ (𝑞𝑛, 𝑣𝑛)
Δ𝑛−−→ be a local run. For every (𝑞𝑖 , 𝑣𝑖)

we will identify an uncovered node (𝑞𝑖 , 𝑍𝑖) and a valuation

𝑢𝑖 ∈ 𝑍𝑖 such that 𝑣𝑖 ≼ 𝑢𝑖 .
Base case is easy since the initial node (𝑞0, 𝑍0) contains the

initial valuation 𝑣0. Assume we have identified (𝑞𝑖 , 𝑍𝑖) and𝑢𝑖 .
By property of simulations, there is a local run (𝑞𝑖 , 𝑢𝑖)

Δ′
𝑖−−→

(𝑞𝑖 , 𝑢′𝑖)
𝑏𝑖+1−−→ (𝑞𝑖+1, 𝑢𝑖+1) such that 𝑣 ′𝑖 ≼ 𝑢𝑖 and 𝑣𝑖+1 ≼ 𝑢𝑖+1.

By pre-property (Lemma 3) there is a symbolic transition

(𝑞𝑖 , 𝑍𝑖)
𝑏𝑖−→ (𝑞𝑖+1, 𝑍𝑖+1) with 𝑢𝑖+1 ∈ 𝑍𝑖+1. If (𝑞𝑖+1, 𝑍𝑖+1) is un-

covered, we are done. If not, we have a node (𝑞𝑖+1, 𝑍𝑖+1) such
that 𝔞(𝑍𝑖+1) ⊆ 𝔞(𝑍𝑖+1). Since 𝔞 is an abstraction operator,

we have 𝑍𝑖+1 ⊆ 𝔞(𝑍𝑖+1). Hence there exists a 𝑢𝑖+1 ∈ 𝑍𝑖+1
such that 𝑢𝑖+1 ≼ 𝑢𝑖+1. This node (𝑞𝑖+1, 𝑍𝑖+1) and valuation

𝑢𝑖+1 give the required conclusion. □

▶ Lemma 6. A simulation based quasi-abstraction operator

that keeps runs is complete for reachability.

Proof. We show a more general result in Theorem 2. This

lemma follows by taking src in Theorem 2 to be the set of

all enabled actions for every (𝑞, 𝑍). □

B Catch-up equivalence is
PSPACE-complete

Adelay (𝑙, 𝑣) Δ−−→ (𝑙, 𝑣 ′) is a catch-up delay if max({𝑣 ′ (𝑡)}𝑡 ∈𝑇) ≤
max({𝑣 (𝑡)}𝑡 ∈𝑇). So catch-up delays only allow the processes

that are behind in time to join the most advanced processes.

Two local-time configurations (𝑞, 𝑣) and (𝑞′, 𝑣 ′) are catch-
up equivalent if (𝑞, 𝑣) and (𝑞′, 𝑣 ′) can reach the same syn-

chronized regions (i.e. Alur&Dill’s regions) through catch-up

delays and discrete transitions.

In the sequel we consider the following decision problem:

INPUT: A network of timed automata N and two local-

time configurations (𝑞, 𝑣) and (𝑞′, 𝑣 ′) of N .

QUESTION: are (𝑞, 𝑣) and (𝑞′, 𝑣 ′) catch-up equivalent?

To warm-up we consider a simple network:

𝑞0
0

P0

𝑞1
0

𝑞1
1

𝑐, (𝑥 = 0)

P1

Process 0 has no transitions, and process 1 has one tran-

sition guarded with 𝑥 = 0. We claim that the following

configurations are not catch-up equivalent:

(𝑞0
0
, 𝑞0

1
, [𝑡0 = 𝑡1 = 1, 𝑥 = 0]) ≁ (𝑞0

0
, 𝑞1

0
, [𝑡0 = 1, 𝑡1 = 𝑥 = 0])

Indeed, in the first configuration no catchup transition is pos-

sible. In the second process 1 can do transition 𝑐 immediately,

and then wait in 𝑞1
1
reaching (𝑞0

0
, 𝑞1

1
, [𝑡0 = 1, 𝑡1 = 𝑥 = 1]).

On the other hand if there is no 𝑐 transition then the two

configurations are equivalent, because the onl thing possible

is that process 1 lets the time pass to catch-up with process

0.

We use the same idea to reduce the language emptiness

of the intersection of 𝑛 finite automata.

𝑞0
0

P0

𝐴1

𝑞1
0

𝑞1
𝑓

𝑞1𝑟

𝑐, (𝑥 = 0)

𝑏

(𝑥 = 1)

P1
. . .

𝐴𝑛

𝑞𝑛
0

𝑞𝑛
𝑓

𝑞𝑛𝑟

𝑐, (𝑥 = 0)

𝑏

(𝑥 = 1)

Pn

We are given automata A1, . . . ,A𝑛 with initial states 𝑞𝑖
0

and final states 𝑞𝑖
𝑓
. We guard every transition of every au-

tomaton with 𝑥 = 0 (technically we need 𝑥𝑖 for every process

but this just makes notation worse). Moreover on a new let-

ter 𝑏 we add transitions from the initial state of automaton

A𝑖 to every state ofA𝑖 . Finally, from the tuple of finite states

(𝑞1
𝑓
, . . . , 𝑞𝑛

𝑓
) we add a transition 𝑐 with the guard 𝑥 = 0, the

transition synchronizes process 1, . . . , 𝑛. We claim that if

𝐿(A1) ∩ · · · ∩ 𝐿(A𝑛) ≠ ∅ then the two configurations are

not equivalent:

conf
1,1 =(𝑞00, 𝑞10, . . . , 𝑞𝑛0 , [𝑡0 = 𝑡1 = · · · = 𝑡𝑛 = 1, 𝑥 = 0])

conf
1,0 =(𝑞00, 𝑞10, . . . , 𝑞𝑛0 , [𝑡0 = 1, 𝑡1 = · · · = 𝑡𝑛 = 𝑥 = 0])

If intersection is empty then transition 𝑐 cannot be taken.

The synchronized configurations reachable from conf
1,1 are

all combinations of states ofA1, . . . ,A𝑛 thanks to the added

𝑏 transitions. Similarly, from conf
1,0, as the processes can

just wait in the initial state to conf
1,1.

If the intersection is non-empty then from 𝑐𝑜𝑛𝑓1,0 pro-

cesses can get to𝑞1
𝑓
, . . . , 𝑞𝑛

𝑓
in 0-time, and then do 𝑐 transition

reaching (𝑞0
0
, 𝑞1𝑟 , . . . , 𝑞

𝑛
𝑟 , [𝑡0 = 𝑡1 · · · = 𝑡𝑛 = 1, 𝑥 = 0]). This

synchronized state is not possible to reach from conf
1,1.

C Appendix for Section 4
▶ Theorem 2. If src is a trace-faithful source function and

𝔞 is a simulation based quasi-abstraction that keeps runs,

then a final state is reachable in LZG(N) iff it is reachable

in LZG
𝔞,src (N).

Logic in Computer Science, 2-5 August 2022, Haifa, Israel R. Govind, Frédéric Herbreteau, B. Srivathsan and Igor Walukiewicz

Proof. If a final state is reachable in LZG
𝔞,src (N) then it is

reachable by a sequence of ===⇒ transitions by definition (c.f.

Definitions 10, 4). This gives a path in LZG(N).
Consider left-to-right direction. Since src is trace-faithful,

it is sufficient to show that each source path in LZG(N)
that leads to a final state has a representative source path in

LZG
𝔞 (N), potentially with subsumption edges, that goes to

a final state. The latter is a path in LZG
𝔞,src (N) by definition.

Suppose 𝑤0 is a source path in LZG(N) from (𝑞0, 𝑍0) to
(𝑞𝑛, 𝑍𝑛), with 𝑞𝑛 an accepting state. Let 𝑛 = |𝑤0 | be the

length of𝑤0. By induction on 𝑖 we show that there are paths

𝑢𝑖 ,𝑤𝑖 such that:

• (𝑞0, 𝑍0)
𝑢𝑖
==⇒ (𝑞𝑖 , 𝑍𝑖) is a source path in LZG

𝔞,src (N),
• (𝑞𝑖 , 𝑍𝑖)

𝑤𝑖

==⇒ (𝑞𝑛, 𝑍 𝑖
𝑛) is a source path in LZG(N),

• |𝑤𝑖 | = 𝑛 − 𝑖
The initial step is trivial. The induction step is easy if (𝑞𝑖 , 𝑍𝑖)
is uncovered in LZG

𝔞,src (N). In this case, let 𝑏 be the first

letter of𝑤𝑖 :𝑤𝑖 = 𝑏𝑤𝑖+1. We have (𝑞𝑖 , 𝑍𝑖)
𝑏
==⇒ (𝑞𝑖+1, 𝑍𝑖+1) and

𝑏 ∈ src(𝑞𝑖 , enabled(𝑍𝑖)). Hence taking 𝑢𝑖+1 = 𝑢𝑖𝑏 and 𝑤𝑖+1
we obtain the induction step.

It remains to check what happens when (𝑞𝑖 , 𝑍𝑖) is covered
in LZG

𝔞,src (N). Say (𝑞𝑖 , 𝑍𝑖) is subsumed by (𝑞𝑖 , 𝑍 ′
𝑖), mean-

ing 𝔞(𝑍𝑖) ⊆ 𝔞(𝑍 ′
𝑖). Since (𝑞𝑖 , 𝑍𝑖)

𝑤𝑖

==⇒ (𝑞𝑛, 𝑍 𝑖
𝑛) and 𝔞 keeps

runs, there exists a valuation 𝑣𝑖 ∈ 𝔞(𝑍𝑖) and an execution

(𝑞𝑖 , 𝑣𝑖)
𝑤𝑖−−→ (𝑞𝑛, 𝑣𝑛). From 𝔞(𝑍𝑖) ⊆ 𝔞(𝑍 ′

𝑖), we have 𝑣𝑖 ∈ 𝔞(𝑍 ′
𝑖).

Secondly, as 𝔞 is simulation based, there exists 𝑣 ′𝑖 ∈ 𝑍 ′
𝑖 such

that 𝑣𝑖 ≼ 𝑣
′
𝑖 , where ≼ is the simulation on which 𝔞 is based

on. Hence we also have an execution (𝑞𝑖 , 𝑣 ′𝑖)
𝑤𝑖−−→ (𝑞𝑛, 𝑣 ′𝑛).

By pre-property of zones (𝑞𝑖 , 𝑍 ′
𝑖)

𝑤𝑖

==⇒ (𝑞𝑛, 𝑍 ′
𝑛) in LZG(N).

Since𝑤𝑖 is a path reaching a final state, and src function is

trace faithful, there is a source path (𝑞𝑖 , 𝑍 ′
𝑖)

𝑤′
𝑖

==⇒ (𝑞𝑛, 𝑍 ′
𝑛) in

LZG(N) with𝑤𝑖 ∼ 𝑤 ′
𝑖 . In particular, |𝑤𝑖 | = |𝑤 ′

𝑖 |. Let 𝑏 be the
first letter of𝑤 ′

𝑖 , i.e.,𝑤
′
𝑖 = 𝑏𝑤𝑖+1. We claim that𝑢𝑖+1 = 𝑢𝑖𝑏 and

𝑤𝑖+1 satisfy the induction conditions. The path 𝑢𝑖𝑏 contains

a subsumption edge. □

D Appendix for Section 6
▶ Theorem 4. Let N be an 𝐿𝑈 -network. The relation ≼★

𝐿𝑈

is a strong-timed simulation on the local semantics of N .

Proof. It is easy to see that ≼★
𝐿𝑈

is reflexive and transitive.

Moreover, notice that if 𝑣 ≼★
𝐿𝑈
𝑣 ′ then (𝑣 +Δ) ≼★

𝐿𝑈
(𝑣 ′+Δ) for

every local delay Δ. Hence ≼★
𝐿𝑈

is a reflexive and transitive

relation that satisfies condition (1) required for a simulation

as in Definition 6.

We now show condition (2). Let 𝑣 ≼★
𝐿𝑈

𝑣 ′ and suppose

(𝑞, 𝑣) 𝑏−−→ (𝑞1, 𝑣1). This first means that all processes in

dom(𝑏) are synchronized in 𝑣 , that is, 𝑣 (𝑡𝑝 − 𝑡𝑞) = 0 for

all 𝑡𝑝 , 𝑡𝑞 ∈ dom(𝑏). From the first item of Definition 12, we

have 𝑣 ′ (𝑡𝑝 − 𝑡𝑞) = 0 as well, for 𝑝, 𝑞 ∈ dom(𝑏). Hence the

processes in dom(𝑏) are synchronized in 𝑣 ′ too. Next, from

the definition of the local step (𝑞, 𝑣) 𝑏−−→ (𝑞1, 𝑣1), there is

a tuple of 𝑏-transitions {(𝑞𝑝 , 𝑔𝑝 , 𝑅𝑝 , 𝑞′𝑝)}𝑝∈dom(𝑏) such that

𝑣 |= 𝑔𝑝 for all 𝑝 ∈ dom(𝑝). Since 𝑏 is enabled at 𝑣 , valuation

𝑣 satisfies all the constraints occurring in all the guards 𝑔𝑝 .

We will now show that 𝑣 ′ satisfies all these constraints by
invoking the second item of Definition 12.

Since N is an 𝐿𝑈 -network, for every 𝑥 ⋖ 𝑐 (resp. 𝑦 ⋗ 𝑑)
occurring in the tuple, we have 𝑐 ≤ 𝑈 (𝑥) (resp. 𝑑 ≤ 𝐿(𝑦)).
Consider a constraint 𝑥 ⋖ 𝑐 from some 𝑔𝑝 . As 𝑣 (𝑡𝑝 − 𝑥) ⋖ 𝑐 ,
we have 𝑣 (𝑡𝑝 − 𝑥) ≤ 𝑈𝑥 . Hence 𝑣

′ (𝑡𝑝 − 𝑥) ≤ 𝑣 (𝑡𝑝 − 𝑥) from
the first sub-item. This implies 𝑣 ′ (𝑡𝑝 − 𝑥) ⋖ 𝑐 . Consider a
constraint 𝑦 ⋗ 𝑑 . As 𝑣 |= 𝑦 ⋗ 𝑑 , we have 𝑣 (𝑡𝑝 − 𝑦) ⋗ 𝑑 . If
𝑣 (𝑡𝑝 − 𝑦) ≤ 𝐿𝑦 , then 𝑣

′ (𝑡𝑝 − 𝑦) ≥ 𝑣 (𝑡𝑝 − 𝑦) from the second

sub-item. This implies 𝑣 ′ |= 𝑦 ⋗ 𝑑 . Otherwise, from the third

sub-item, 𝑣 ′ (𝑡𝑝 − 𝑦) > 𝐿𝑦 ≥ 𝑑 , which again implies that

𝑣 ′ |= 𝑦 ⋗ 𝑑 .
Therefore there is a transition (𝑞, 𝑣 ′) 𝑏−−→ (𝑞1, 𝑣 ′1). It re-

mains to show that 𝑣1 ≼
★
𝐿𝑈
𝑣 ′
1
. Since the transition 𝑏 is instan-

taneous, 𝑣1 (𝑡𝑝−𝑡𝑞) = 𝑣 (𝑡𝑝−𝑡𝑞) and 𝑣 ′1 (𝑡𝑝−𝑡𝑞) = 𝑣 ′ (𝑡𝑝−𝑡𝑞) for
all 𝑝, 𝑞. As 𝑣 (𝑡𝑝−𝑡𝑞) = 𝑣 ′ (𝑡𝑝−𝑡𝑞)we get 𝑣1 (𝑡𝑝−𝑡𝑞) = 𝑣 ′1 (𝑡𝑝−𝑡𝑞)
for all 𝑝, 𝑞 ∈ Proc. This gives the first item in the ≼★

𝐿𝑈
def-

inition. Secondly, notice that 𝑣1 = [𝑅]𝑣 and 𝑣 ′
1
= [𝑅]𝑣 ′.

Therefore, for all clocks 𝑥 ∉ 𝑅, the second item is already

satisfied for valuations 𝑣1 and 𝑣
′
1
. For all 𝑥 ∈ 𝑅, we have

𝑣1 (𝑡𝑝 − 𝑥) = 𝑣 ′1 (𝑡𝑝 − 𝑥) = 0, when 𝑥 ∈ 𝑋𝑝 . Hence the second

item is true for such clocks as well. □

▶ Theorem 5. For every LU-network N , the abstraction

operator 𝔞★≼𝐿𝑈 is sound and complete. It also keeps runs.

Proof. Soundness and completeness follow from Lemmas 4,

5. Since 𝑍 ⊆ 𝔞★≼𝐿𝑈 (𝑍), the abstraction also keeps runs. □

E Appendix for Section 6.1
▶ Lemma 7. For every pair of zones 𝑍, 𝑍 ′

: 𝔞★≼𝐿𝑈 (𝑍) ⊆
𝔞★≼𝐿𝑈 (𝑍 ′) iff 𝑍 ⊆ 𝔞★≼𝐿𝑈 (𝑍 ′).

Proof. The left-to-right direction is immediate since 𝑍 ⊆
𝔞★≼𝐿𝑈 (𝑍). For the right-to-left direction, suppose𝑍 ⊆ 𝔞★≼𝐿𝑈 (𝑍 ′).
Pick 𝑣 ∈ 𝔞★≼𝐿𝑈 (𝑍). There exists 𝑣1 ∈ 𝑍 such that 𝑣 ≼★

𝐿𝑈
𝑣1.

From𝑍 ⊆ 𝔞★≼𝐿𝑈 (𝑍 ′), we have 𝑣1 ∈ 𝔞★≼𝐿𝑈 (𝑍 ′), and hence there
is 𝑣 ′

1
∈ 𝑍 ′

such that 𝑣1 ≼
★
𝐿𝑈
𝑣 ′
1
. This also implies that 𝑣 ≼★

𝐿𝑈
𝑣 ′
1
,

and hence 𝑣 ∈ 𝔞★≼𝐿𝑈 (𝑍). □

E.1 Representing local zones
Local zones can be represented using Difference Bound Ma-

trices (DBMs). For our analysis, we will make use of a graph

representation of local zones, called distance graphs. A dis-

tance graph has vertices𝑋 ∪𝑋 𝑡
. For every 𝑥,𝑦 ∈ 𝑋 ∪𝑋 𝑡

there

is an edge 𝑥 → 𝑦 with a weight is either (<,∞) or of the
form (⋖, 𝑐) with 𝑐 ∈ R and ⋖ standing for ≤ or <. The edge

𝑥
(⋖,𝑐)
−−−−→ 𝑦 represents the constraint 𝑦 − 𝑥 ⋖ 𝑐 . For a graph

𝐺 , we will write [[𝐺]] for the set of valuations satisfying

Abstractions for the local-time semantics of timed automata Logic in Computer Science, 2-5 August 2022, Haifa, Israel

all the constraints given by 𝐺 . To reason about cumulative

constraints of a path in this graph representation, we define

an arithmetic over weights:

Order. for 𝑐1, 𝑐2 ∈ R, we say (⋖1, 𝑐1) < (⋖2, 𝑐2) if 𝑐1 <
𝑐2, or 𝑐1 = 𝑐2, ⋖1 is < and ⋖2 is ≤; secondly, we have
(⋖, 𝑐) < (<,∞) for every 𝑐 ∈ R,
Addition. for 𝑐1, 𝑐2 ∈ R, we have (⋖1, 𝑐1) + (⋖2, 𝑐2) to
be equal to (⋖, 𝑑) where 𝑑 = 𝑐1 + 𝑐2 and ⋖ is < if

one of ⋖1 or ⋖2 is <, and ⋖ is ≤ otherwise; secondly,

(⋖, 𝑐) + (<,∞) is defined to be (<,∞) for every weight
(⋖, 𝑐).

The addition allows us to define the weight of a path in a

distance graph, as the sum of weights of the edges. A distance

graph is canonical if for all pairs of vertices𝑥 ≠ 𝑦, the smallest

weight of a path from 𝑥 to 𝑦 is given by the weight of the

edge 𝑥 −→ 𝑦. Given two distance graphs 𝐺1,𝐺2 we define

min(𝐺1,𝐺2) to be the graph obtained by replacing the weight
of every edge by the minimum of the corresponding weights

from𝐺1 and𝐺2. Finally, we will often reason about cycles in

a distance graph. A cycle in a distance graph is positive if the
sum of the weights of its edges is greater than or equal to

(≤, 0). Otherwise, it is negative. It is well-known that [[𝐺]]
is non-empty iff there are no negative cycles in 𝐺 .

We end this section with an observation about the local

zones present in the local zone graph. This says that each

local zone in the local zone graph can be described by differ-

ence constraints that use only integers.

Lemma 10. Let N be a network. For every node (𝑞, 𝑍) in
LZG(N), the canonical distance graph of 𝑍 has weight either
(<,∞) or (⋖, 𝑐) with 𝑐 ∈ Z, in each of its edges.

Proof. This is true of the initial zone. We show that this

property is preserved during successor computation.

Suppose 𝐺1,𝐺2 are distance graphs with only integral

weights. Then their intersection min(𝐺1,𝐺2) will have only
integral weights since the canonicalization procedure only

adds weights. This observation is sufficient to show the re-

quired property since each operation in the successor com-

putation either involves removing edges or doing the inter-

section as above. □

E.2 Steps to the final test
For convenience of presentation, we define two sets of clocks

for a given local valuation 𝑣 :

𝐿 -bounded(𝑣) := 𝑇 ∪
⋃

𝑝∈Proc
{𝑥 ∈ 𝑋𝑝 | 𝑣 (𝑡𝑝 − 𝑥) ≤ 𝐿𝑥 }

𝑈 -bounded(𝑣) := 𝑇 ∪
⋃

𝑝∈Proc
{𝑥 ∈ 𝑋𝑝 | 𝑣 (𝑡𝑝 − 𝑥) ≤ 𝑈𝑥 }

Notice that the reference clocks 𝑇 are present in both

𝐿 -bounded(𝑣) and𝑈 -bounded(𝑣).
Define ⟨𝑣⟩★ := {𝑣 ′ | 𝑣 ≼★

𝐿𝑈
𝑣 ′}.

▶ Lemma 8. Let 𝑍, 𝑍 ′
be non-empty zones. Then, 𝑍 ̸⊆

𝔞★≼𝐿𝑈 (𝑍 ′) iff there exists 𝑣 ∈ 𝑍 satisfying ⟨𝑣⟩★ ∩ 𝑍 ′ = ∅.

Definition 19 (Distance graph 𝐻 𝑣
). Let 𝑥,𝑦 ∈ 𝑋 ∪ 𝑋 𝑡

be

two clocks, possibly reference clocks. Assume that𝑦 ≠ 𝑥 and

𝑦 ∈ 𝑋𝑞 ∪ {𝑡𝑞} for some process 𝑞. The weight of the edge

𝑥 → 𝑦 in the distance graph 𝐻 𝑣
is given by:

(≤, 𝑣 (𝑦 − 𝑥)) if 𝑥 ∈ 𝑈 -bounded(𝑣),
𝑦 ∈ 𝐿 -bounded(𝑣)

(≤, 𝑣 (𝑡𝑞 − 𝑥)) + (<,−𝐿𝑦) if 𝑥 ∈ 𝑈 -bounded(𝑣),
𝑦 ∉ 𝐿 -bounded(𝑣), 𝐿𝑦 ≠ −∞

(≤, 𝑣 (𝑡𝑞 − 𝑥)) if 𝑥 ∈ 𝑈 -bounded(𝑣),
𝑦 ∉ 𝐿 -bounded(𝑣), 𝐿𝑦 = −∞

(<,∞) otherwise

Lemma 11. For every valuation 𝑣 , we have [[𝐻 𝑣]] = ⟨𝑣⟩★.
Furthermore, the distance graph 𝐻 𝑣 is in canonical form.

Proof. Proving [[𝐻 𝑣]] ⊆ ⟨𝑣⟩★: Pick 𝑣 ′ ∈ 𝐻 𝑣
. We will prove

𝑣 ≼★
𝐿𝑈
𝑣 ′, by showing that 𝑣 ′ satisfies the conditions of Defi-

nition 12.

For the first item of Definition 12, suppose 𝑥 = 𝑡𝑝 and

𝑦 = 𝑡𝑞 . We have edges 𝑡𝑝 → 𝑡𝑞 and 𝑡𝑞 → 𝑡𝑝 with weights

(≤, 𝑣 (𝑡𝑞 − 𝑡𝑝)) and (≤, 𝑣 (𝑡𝑝 − 𝑡𝑞)) in 𝐻 𝑣
. Hence 𝑣 ′ (𝑡𝑝 − 𝑡𝑞) =

𝑣 (𝑡𝑝 − 𝑡𝑞) as required.
For the second item of Definition 12 take some process 𝑝

and a clock 𝑥 ∈ 𝑋𝑝 . We have three conditions to check.

For the first condition, suppose 𝑣 (𝑡𝑝 − 𝑥) ≤ 𝑈𝑥 . The edge

𝑥 → 𝑡𝑝 gives the constraint (≤, 𝑣 (𝑡𝑝 − 𝑥)) in 𝐻 𝑣
since 𝑥 is

𝑈 -bounded in 𝑣 , and 𝑡𝑝 is 𝐿-bounded in 𝑣 . As 𝑣 ′ satisfies this
constraint, we get the desired 𝑣 ′ (𝑡𝑝 − 𝑥) ≤ 𝑣 (𝑡𝑝 − 𝑥).

For the second condition, suppose 𝑣 (𝑡𝑝−𝑥) ≤ 𝐿𝑥 . The edge

𝑡𝑝 → 𝑥 has weight 𝑣 (𝑥 − 𝑡𝑝). Thus 𝑣 ′ satisfies 𝑣 ′ (𝑥 − 𝑡𝑝) ≤
𝑣 (𝑥 − 𝑡𝑝) equivalent to the required 𝑣 ′ (𝑡𝑝 − 𝑥) ≥ 𝑣 (𝑡𝑝 − 𝑥).

The third condition assumes 𝑣 (𝑡𝑝 − 𝑥) > 𝐿𝑥 . We have two

cases. The first one is when 𝐿𝑥 ≠ −∞. In this case the weight

of the edge 𝑡𝑝 → 𝑥 is (≤, 𝑣 (𝑡𝑝 − 𝑡𝑝)) + (<,−𝐿𝑥). So 𝑣 ′ (𝑥 − 𝑡𝑝)
satisfies (<,−𝐿𝑥), giving 𝑣 ′ (𝑡𝑝 − 𝑥) > 𝐿𝑥 . The second case

is when 𝐿𝑥 = −∞. The constraint on the edge 𝑡𝑝 → 𝑥 is 0,

giving the constraint 𝑣 ′ (𝑡𝑝 − 𝑥) ≥ 0. This constraint always

holds as 𝑣 ′ is a local valuation.
Proving ⟨𝑣⟩★ ⊆ [[𝐻 𝑣]]: Pick 𝑣 ′ ∈ ⟨𝑣⟩★. We will show that

𝑣 ′ satisfies every edge constraint 𝑥 → 𝑦 in 𝐻 𝑣
. Let us start

with the case when 𝑥 is a process clock in 𝑋𝑝 and 𝑦 is a

process clock in 𝑋𝑞 . Then, rewrite 𝑣
′ (𝑦 − 𝑥) as:

𝑣 ′ (𝑦 − 𝑥) = 𝑣 ′ (𝑦 − 𝑡𝑞) + 𝑣 ′ (𝑡𝑞 − 𝑡𝑝) + 𝑣 ′ (𝑡𝑝 − 𝑥) (1)

We restrict to the situation when 𝑥 ∈ 𝑈 -bounded(𝑣), be-
cause if not, the constraint 𝑥 → 𝑦 in 𝐻 𝑣

is (<,∞). We now

make some conclusions from the definition of ≼★
𝐿𝑈

preorder.

Since 𝑥 ∈ 𝑈 -bounded(𝑣), we have 𝑣 ′ (𝑡𝑝 − 𝑥) ≤ 𝑣 (𝑡𝑝 − 𝑥).
Further, we have 𝑣 ′ (𝑡𝑞 − 𝑡𝑝) = 𝑣 (𝑡𝑞 − 𝑡𝑝). Therefore:

𝑣 ′ (𝑦 − 𝑥) ≤ 𝑣 ′ (𝑦 − 𝑡𝑞) + 𝑣 (𝑡𝑞 − 𝑥) (2)

When 𝑦 ∈ 𝐿 -bounded(𝑣), we have 𝑣 ′ (𝑡𝑞 − 𝑦) ≥ 𝑣 (𝑡𝑞 − 𝑦)
from Definition 12. Hence 𝑣 ′ (𝑦 − 𝑡𝑞) ≤ 𝑣 (𝑦 − 𝑡𝑞). Plugging
this to (2) gives gives 𝑣 ′ (𝑦 − 𝑥) ≤ 𝑣 (𝑦 − 𝑥). Hence the 𝑥 → 𝑦

Logic in Computer Science, 2-5 August 2022, Haifa, Israel R. Govind, Frédéric Herbreteau, B. Srivathsan and Igor Walukiewicz

constraint of 𝐻 𝑣
is satisfied. When 𝑦 ∉ 𝐿 -bounded(𝑣) and

𝐿𝑦 ≠ −∞, we have 𝑣 ′ (𝑡𝑞 −𝑦) > 𝐿𝑦 , which gives 𝑣 ′ (𝑦 − 𝑡𝑞) <
−𝐿𝑦 . Plugging this to (2) gives 𝑣 ′ (𝑦 − 𝑥) < −𝐿𝑦 + 𝑣 (𝑡𝑞 − 𝑥).
Hence 𝑣 ′ satisfies the constraint when the edge weight comes

from the second item. When 𝐿𝑦 = −∞, we still have a trivial

constraint that 𝑣 ′ (𝑡𝑞 − 𝑦) ≥ 0 as 𝑣 ′ is a local valuation. This
can be rewritten as 𝑣 ′ (𝑦 − 𝑡𝑞) ≤ 0. Plugging this in (2) gives

𝑣 ′ (𝑦 − 𝑥) ≤ 𝑣 (𝑡𝑞 − 𝑥), therefore satisfying the 𝑥 → 𝑦 edge

constraint when the weight comes from the third item.

When 𝑥 is a reference clock, the third term of (1) is 0.

When 𝑦 is a reference clock, the first term of (1) is 0. The

rest of the argument follows similarly.

Proving that 𝐻 𝑣 is in canonical form. To show that 𝐻 𝑣

is canonical, we will show that the weight of 𝑥 → 𝑦 is

smaller than or equal to weight of the path 𝑥 → 𝑠 → 𝑦

for every variable 𝑠 . When 𝑥 ∉ 𝑈 -bounded(𝑣), edge 𝑥 → 𝑠

has weight (<,∞) and the claim is trivially true. Similarly,

if 𝑠 ∉ 𝑈 -bounded(𝑣), the claim is true as 𝑠 → 𝑦 has weight

(<,∞). Let us therefore assume 𝑥, 𝑠 ∈ 𝑈 -bounded(𝑣).
Suppose to the contrary that the sum of constraints on

𝑥 → 𝑠 → 𝑦 is strictly smaller than the constraint on 𝑥 →
𝑦. Let 𝑤𝑥→𝑠 stand for the constraint on the edge 𝑥 → 𝑠 .

If 𝑦 ∈ 𝐿 -bounded(𝑣) then we get 𝑤𝑥→𝑠 + (≤, 𝑣 (𝑦 − 𝑠)) <

(≤, 𝑣 (𝑦 − 𝑥)). After a simplification this gives 𝑤𝑥→𝑠 < (≤
, 𝑣 (𝑠 − 𝑥)). If 𝑦 ∉ 𝐿 -bounded(𝑣) and 𝐿𝑦 ≠ −∞ then we get

𝑤𝑥→𝑠 + (≤, 𝑣 (𝑡𝑞 − 𝑥)) + (<, 𝐿𝑦) < (≤, 𝑣 (𝑡𝑞 − 𝑠)) + (<, 𝐿𝑦).
Once again this simplifies to𝑤𝑥→𝑠 < (≤, 𝑣 (𝑠 −𝑥)). The same

happens when 𝐿𝑦 = −∞.

It remains to show that 𝑤𝑥→𝑠 < (≤, 𝑣 (𝑠 − 𝑥)) is impos-

sible. If 𝑠 ∈ 𝐿 -bounded(𝑣) then 𝑤𝑥→𝑠 is (≤, 𝑣 (𝑠 − 𝑥)). If
𝑠 ∉ 𝐿 -bounded(𝑣) we have 𝑣 (𝑡𝑝 −𝑠) > 𝐿𝑠 , where 𝑝 is the pro-
cess of the clock 𝑠 . If 𝐿𝑠 ≠ −∞ then𝑤𝑥→𝑠 is (≤, 𝑣 (𝑡𝑝−𝑥))+(<
,−𝐿𝑠). This is strictly bigger than (≤, 𝑣 (𝑡𝑝 − 𝑥)) + (≤, 𝑣 (𝑠 −
𝑡𝑝)) = (≤, 𝑣 (𝑠 − 𝑥)). If 𝐿𝑠 = −∞ then𝑤𝑥→𝑠 is (≤, 𝑣 (𝑡𝑝 − 𝑥)).
Observe that 𝑣 (𝑠−𝑥) = 𝑣 (𝑠−𝑡𝑝)+𝑣 (𝑡𝑝−𝑥). Since 𝑣 (𝑠−𝑡𝑝) ≤ 0

as 𝑣 is a local valuation, we get 𝑣 (𝑠 − 𝑥) ≤ 𝑣 (𝑡𝑝 − 𝑥) =

𝑤𝑥→𝑠 . □

Proposition 4. The intersection ⟨𝑣⟩★ ∩ 𝑍 ′ is empty iff there
are two variables 𝑥,𝑦 ∈ 𝑋 ∪𝑇 s.t. 𝑥 ∈ 𝑈 -bounded(𝑣), 𝐿𝑦 ≠

−∞ when 𝑦 is a process clock, and 𝐻 𝑣
𝑥𝑦 + 𝑍 ′

𝑦𝑥 < (≤, 0).

Proof. Let 𝐻𝑍 ′ be the canonical distance graph of 𝑍 ′
. The

intersection ⟨𝑣⟩★ ∩ 𝑍 ′
is empty iff there is a negative cycle

in 𝐻min := min(𝐻 𝑣, 𝐻𝑍 ′). Suppose 𝐻 𝑣
𝑥𝑦 + 𝑍 ′

𝑦𝑥 < (≤, 0), then
there is a negative cycle in 𝐻min. This gives the right-to-left

direction of the proposition. We will now show the left-to-

right direction.

Suppose ⟨𝑣⟩★ ∩ 𝑍 ′
is empty. Then 𝐻min has a negative

cycle 𝑁 . Note that some of the edges of 𝐻min come from 𝐻 𝑣

and the others come from 𝐻𝑍 ′ . We will now reduce 𝑁 to the

form given in the right-hand-side of the proposition.

Step 1. Since 𝐻 𝑣
and 𝐻𝑍 ′ are canonical, we can replace

consecutive edges 𝑥 → 𝑦 → 𝑢 coming from the same graph

with the edge 𝑥 → 𝑢 from that graph. Hence we can assume

that the edges in 𝑁 alternate between edges from 𝐻 𝑣
and

𝐻𝑍 ′ .

Step 2.We transform 𝑁 so that every edge coming from

𝐻 𝑣
has a weight given by either Item 1 or 2 of Definition 19.

Clearly Item 4 does not apply as the sum of weights in 𝑁 is a

finite negative value, and hence we cannot have edges with

(<,∞) weight in 𝑁 . Suppose there is an edge 𝑥 → 𝑦 falling

under Item 3. This edge can be replaced with the sequence

𝑥 → 𝑡𝑞 → 𝑦 from 𝐻 𝑣
with weight (≤, 𝑣 (𝑡𝑞 − 𝑥)) to edge

𝑥 → 𝑡𝑞 (due to Item 1) and weight (≤, 0) to edge 𝑡𝑞 → 𝑦 (due

to Item 3). The weight of the edge 𝑡𝑞 → 𝑦 in 𝐻𝑍 ′ is lesser

than or equal to (≤, 0): this is because in local valuations the

value of the corresponding reference clock is always greater

than or equal to the value of a process clock, hence 𝑡𝑞 ≥ 𝑦
in all valuations of 𝑍 ′

, reflecting that 𝑦 − 𝑡𝑞 ≤ 0. Therefore

replacing the edge 𝑡𝑞 → 𝑦 in 𝑁 with the corresponding

edge from 𝐻𝑍 ′ gives another negative cycle with weight at

most that of 𝑁 . This way we remove all edges coming from

Item 3. Eventually, we apply once again Step 1 to collapse

consecutive edges from 𝑍 ′
, so we have a cycle 𝑁 with edges

alternating between those of 𝐻 𝑣
and 𝐻𝑍 ′ .

Step 3. Consider an edge 𝑥 → 𝑦 in 𝑁 coming from 𝐻 𝑣
and

having weight due to Item 2, that is, 𝑥 ∈ 𝑈 -bounded(𝑣) ,
𝑦 ∉ 𝐿 -bounded(𝑣) and 𝐿𝑦 ≠ −∞. The weight of the edge is

(≤, 𝑣 (𝑡𝑞 −𝑥)) + (<,−𝐿𝑦), where 𝑡𝑞 is the reference clock of 𝑦.

Replace this edge with two edges 𝑥
(≤,𝑣 (𝑡𝑞−𝑥))−−−−−−−−−→ 𝑡𝑞

(<,−𝐿𝑦)−−−−−−→ 𝑦,

both from𝐻 𝑣
. This keeps the same value of the negative cycle.

Perform this change for every edge coming from Item 2. We

now have a negative cycle 𝑁 where blocks of edges alternate

between 𝐻 𝑣
and 𝐻𝑍 ′ : each 𝐻 𝑣

block either has a single edge

𝑥 → 𝑦 with weight (≤, 𝑣 (𝑦 − 𝑥)) from Item 1, or two edges

𝑥 → 𝑡𝑞 → 𝑦 with 𝑥 → 𝑡𝑞 having weight (≤, 𝑣 (𝑡𝑞 − 𝑥)) from
Item 1, and 𝑡𝑞 → 𝑦 having weight (<,−𝐿𝑦) from Item 2.

Step 4. Suppose 𝑁 has two 𝐻 𝑣
edges 𝑥1 → 𝑦1 and 𝑥2 → 𝑦2

with weights 𝑢1 := (≤, 𝑣 (𝑦1 − 𝑥1)) and 𝑢2 := (≤, 𝑣 (𝑦2 − 𝑥2))
due to Item 1. Therefore, 𝑥1, 𝑥2 ∈ 𝑈 -bounded(𝑣) and𝑦1, 𝑦2 ∈
𝐿 -bounded(𝑣). Let𝑤1 be the weight of the path in 𝑁 from

𝑦1 to 𝑥2 and𝑤2 the weight from 𝑦2 to 𝑥1. The cycle 𝑁 can be

broken into four parts as depicted below:

𝑥1
𝑢1−→ 𝑦1 · · ·𝑤1 · · · 𝑥2

𝑢2−→ 𝑦2 · · ·𝑤2 · · · 𝑥1
From Definition 19, the weights of edges 𝑥1 → 𝑦2 and

𝑥2 → 𝑦1 come due to Item 1. Let the weight of the edge

𝑥1 → 𝑦2 be 𝑢 := (≤, 𝑣 (𝑦2 − 𝑥1)). If 𝑢 ≤ 𝑢1 +𝑤1 +𝑢2, then the

path from 𝑥1 · · ·𝑦2 in 𝑁 can be replaced with the edge 𝑥1
𝑢−→

𝑦2. Else, 𝑢1 +𝑤1 + 𝑢2 < 𝑢. Expanding this inequality, we get:

(≤, 𝑣 (𝑦1−𝑥1))+𝑤1+(≤, 𝑣 (𝑦2−𝑥2)) < (≤, 𝑣 (𝑦2−𝑥1)). Adding
(≤, 𝑣 (𝑥1 − 𝑦2)) on both sides gives 𝑤1 + (≤, 𝑣 (𝑦1 − 𝑥2)) <

(≤, 0). As mentioned in the beginning of this paragraph,

we know that the weight of the edge 𝑥2 → 𝑦1 in 𝐻 𝑣
is

(≤, 𝑣 (𝑦1 − 𝑥2)). Therefore, the situation 𝑢1 + 𝑤1 + 𝑢2 < 𝑢

gives a different negative cycle 𝑦1 · · ·𝑤1 · · · 𝑥2 → 𝑦1, with

the last edge 𝑥2 → 𝑦1 from 𝐻 𝑣
. In both the cases, we replace

Abstractions for the local-time semantics of timed automata Logic in Computer Science, 2-5 August 2022, Haifa, Israel

two Item 1 edges with a single Item 1 edge. Moreover, we still

have the property that between two consecutive 𝑍 ′
edges

on the cycle there is either a single Item 1 edge or a single

Item 1 edge followed by an Item 2 edge. This is because

transitions entering 𝑥1 and 𝑥2 on the cycle must come from

𝑍 ′
. Moreover, transitions from 𝑦1 and 𝑦2 must be either from

𝑍 ′
or Item 2 transitions followed by a transition from𝑍 . After

the reduction we can have two consecutive transitions from

𝑍 ′
, but then we can apply Step 1 to shorten the cycle.

Applying the transformation repeatedly, we are left with a

negative cycle having a single Item 1 edge. This edge can be

followed by an Item 2 edge. There can only be one𝑍 ′
edge on

the cycle. This means that 𝑁 is either 𝑥
(≤,𝑣 (𝑦−𝑥))
−−−−−−−−−→ 𝑦

𝑍 ′
𝑦𝑥−−−→ 𝑥

or 𝑥
(≤,𝑣 (𝑡𝑞−𝑥))−−−−−−−−−→ 𝑡𝑞

(<,−𝐿𝑦)−−−−−−→ 𝑦
𝑍 ′
𝑦𝑥−−−→ 𝑥 . In the latter case, we

can replace 𝑥 → 𝑡𝑞 → 𝑦 with the 𝐻 𝑣
edge 𝑥 → 𝑦 and get

a negative cycle 𝑥
(≤,𝑣 (𝑡𝑞−𝑥))+(<,−𝐿𝑦)−−−−−−−−−−−−−−−−−→ 𝑦

𝑍 ′
𝑦𝑥−−−→ 𝑥 . This finally

gives us a negative cycle in the required form. □

▶ Theorem 6. Let 𝑍, 𝑍 ′
be non-empty local zones. We have

𝑍 ⊈ 𝔞★≼𝐿𝑈 (𝑍 ′) iff there exist two variables 𝑥,𝑦 ∈ 𝑋 ∪𝑇 such

that

• 𝑍 ′
𝑦𝑥 < 𝑍𝑦𝑥 , and

• if 𝑥 ∈ 𝑋𝑝 for some process 𝑝 , then (≤,𝑈𝑥) +𝑍𝑡𝑝𝑥 ≥ (≤
, 0), and

• if 𝑦 ∈ 𝑋𝑞 for some process 𝑞, then (<,−𝐿𝑦) + 𝑍 ′
𝑦𝑥 <

𝑍𝑡𝑞𝑥 .

Proof of Theorem 6
Left-to-right direction. Suppose𝑍 ⊈ 𝔞★≼𝐿𝑈 (𝑍 ′). Then there
is a 𝑣 ∈ 𝑍 such that ⟨𝑣⟩★ ∩ 𝑍 ′ = ∅ (Lemma 8). From Proposi-

tion 4, there exist two clocks 𝑥 ∈ 𝑈 -bounded(𝑣) and if 𝑦 is

a process clock, then 𝐿𝑦 ≠ −∞, and 𝐻 𝑣
𝑥𝑦 + 𝑍 ′

𝑦𝑥 < (≤, 0). We

will use these conclusions to show the right hand side of the

theorem.

We start with the second item, that is, to show that if

𝑥 ∈ 𝑋𝑝 then (≤,𝑈𝑥) + 𝑍𝑡𝑝𝑥 ≥ (≤, 0). As 𝑥 ∈ 𝑈 -bounded(𝑣),
we have 𝑣 (𝑡𝑝 − 𝑥) ≤ 𝑈𝑥 . Secondly, since 𝑣 ∈ 𝑍 , replacing the
𝑥 → 𝑡𝑝 edge of 𝑍 with (≤, 𝑣 (𝑡𝑝 − 𝑥)) will give no negative

cycles. Hence, in particular: (≤, 𝑣 (𝑡𝑝 − 𝑥)) + 𝑍𝑡𝑝𝑥 ≥ (≤, 0).
Plugging 𝑣 (𝑡𝑝 − 𝑥) ≤ 𝑈𝑥 into this inequality gives (≤,𝑈𝑥) +
𝑍𝑡𝑝𝑥 ≥ (≤, 0).

For the first and third items, we make use of a preliminary

lemma.

Lemma 12. Let 𝑍 be a non-empty local zone and let 𝑣 ∈ 𝑍 .
Let 𝑟, 𝑠 ∈ 𝑋 ∪𝑇 be arbitrary clocks, and let (⋖, 𝑑) be a weight
with 𝑑 ∈ Z. If (≤, 𝑣 (𝑟 −𝑠)) + (⋖, 𝑑) < (≤, 0) then (⋖, 𝑑) < 𝑍 𝑟𝑠 .

Proof. Since 𝑣 ∈ 𝑍 , 𝑣 satifies all constraints of 𝑍 . Consider
the weight 𝑍 𝑟𝑠 , which is the weight of the 𝑟 → 𝑠 edge in the

canonical distance graph of 𝑍 . This weight gives an upper

bound for 𝑣 (𝑠 − 𝑟).

Suppose𝑍 𝑟𝑠 = (≤, 𝑐) (with aweak inequality in theweight).
Then 𝑣 (𝑠 − 𝑟) ≤ 𝑐 , which implies −𝑐 ≤ 𝑣 (𝑟 − 𝑠). Since
(≤, 𝑣 (𝑟 −𝑠)) + (⋖, 𝑑) < (≤, 0), we also have (≤,−𝑐) + (⋖, 𝑑) <
(≤, 0). From this inequality, we can infer that either 𝑑−𝑐 < 0,

or 𝑑 = 𝑐 and ⋖ =<. Either way, we get (⋖, 𝑑) < (≤, 𝑐).
Suppose𝑍 𝑟𝑠 = (<, 𝑐) (with a strict inequality in theweight).

Then 𝑣 (𝑠 −𝑟) < 𝑐 , which implies −𝑐 < 𝑣 (𝑟 −𝑠). Let 𝑣 (𝑟 −𝑠) =
−𝑐 + 𝜀 for some 𝜀 > 0. We then have (≤,−𝑐 + 𝜀) + (⋖, 𝑑) < (≤
, 0). By the previous argument, we have (⋖, 𝑑) < (≤, 𝑐 − 𝜀).
Since 𝑑 is an integer, this implies (⋖, 𝑑) < (<, 𝑐).
In both cases, we can infer (⋖, 𝑑) < 𝑍 𝑟𝑠 . □

Thanks to Lemma 12, it is sufficient to show

(≤, 𝑣 (𝑦 − 𝑥)) + 𝑍 ′
𝑦𝑥 < (≤, 0) (3)

to conclude the first item, and

(≤, 𝑣 (𝑡𝑞 − 𝑥)) + (<,−𝐿𝑦) + 𝑍 ′
𝑦𝑥 < (≤, 0) (4)

to conclude the third item.

We consider the case when 𝑦 ∈ 𝐿 -bounded(𝑣). In this

case𝐻 𝑣
𝑥𝑦 is (≤, 𝑣 (𝑦−𝑥)). The assumption𝐻 𝑣

𝑥𝑦 +𝑍 ′
𝑦𝑥 < (≤, 0)

gives immediately (3). For equation (4) we use the fact that

𝑦 is L-bounded, giving us 𝑣 (𝑦 − 𝑡𝑞) ≥ −𝐿𝑦 . Substituting this

inequality into 𝑣 (𝑦−𝑥) = 𝑣 (𝑦−𝑡𝑞) +𝑣 (𝑡𝑞−𝑥) we obtain 𝑣 (𝑦−
𝑥) ≥ −𝐿𝑦 +𝑣 (𝑡𝑞−𝑥). Then the hypothesis𝐻 𝑣

𝑥𝑦 +𝑍 ′
𝑦𝑥 < (≤, 0)

gives the desired (<,−𝐿𝑦) + (≤, 𝑣 (𝑡𝑞 − 𝑥)) + 𝑍 ′
𝑦𝑥 < (≤, 0).

When 𝑦 ∉ 𝐿 -bounded(𝑣), we have 𝐻 𝑣
𝑥𝑦 = (≤, 𝑣 (𝑡𝑞 − 𝑥)) +

(<,−𝐿𝑦). Therefore, (≤, 𝑣 (𝑡𝑞 − 𝑥)) + (<,−𝐿𝑦) + 𝑍 ′
𝑦𝑥 < (≤

, 0). Hence (4) is true. Moreover, 𝑣 (𝑡𝑞 − 𝑦) > 𝐿𝑦 as 𝑦 ∉

𝐿 -bounded(𝑣). Now, 𝑣 (𝑦 − 𝑥) = 𝑣 (𝑦 − 𝑡𝑞) + 𝑣 (𝑡𝑞 − 𝑥) which
is strictly lesser than −𝐿𝑦 + 𝑣 (𝑡𝑞 − 𝑥). In terms of weights,

(≤, 𝑣 (𝑦 − 𝑥)) ≤ (<,−𝐿𝑦) + (≤, 𝑣 (𝑡𝑞 − 𝑥)). This implies that

(≤, 𝑣 (𝑦 − 𝑥)) + 𝑍 ′
𝑦𝑥 < (≤, 0) is also true, proving (3).

Right to left direction. We will show that if the right hand

side is true, there is a valuation 𝑣 ∈ 𝑍 satisfying the left hand

side of Proposition 4 with clocks 𝑥 and 𝑦. The third item of

the right hand side already shows that 𝐿𝑦 ≠ −∞ when 𝑦 is a

process clock. We now need to get a valuation 𝑣 ∈ 𝑍 such

that 𝑥 ∈ 𝑈 -bounded(𝑣) and 𝐻 𝑣
𝑥𝑦 + 𝑍 ′

𝑦𝑥 < (≤, 0). Let 𝐺𝑍 be

the canonical distance graph of 𝑍 .

Step 1. Consider the graph𝐺1 obtained from𝐺𝑍 by replac-

ing weight of edge 𝑥 → 𝑡𝑝 with min((≤,𝑈𝑥), 𝑍𝑥𝑡𝑝) where 𝑝
is the process of clock 𝑥 , 𝑥 ∈ 𝑋𝑝 . Adding this edge causes

no negative cycles, since (≤,𝑈𝑥) + 𝑍𝑡𝑝𝑥 ≥ (≤, 0). Therefore
[[𝐺1]] ≠ ∅ and contains the set of all valuations 𝑣 ∈ 𝑍 such

that 𝑥 ∈ 𝑈 -bounded(𝑣). Let 𝐺∗
1
be the canonical graph de-

rived from 𝐺1. The shortest path from any variable 𝑠 to 𝑥 in

𝐺1 does not involve the edge 𝑥 → 𝑡𝑝 since any path from 𝑠

to 𝑥 containing edge 𝑥 → 𝑡𝑝 will have a cycle, and we have

seen that cycles in 𝐺1 have non-negative weight. Therefore,

weight of 𝑠 → 𝑥 in 𝐺∗
1
is 𝑍𝑠𝑥 .

Step 2. Suppose 𝑍𝑦𝑥 = (⋖𝑦𝑥 , 𝑐𝑦𝑥) and 𝑍𝑡𝑞𝑥 = (⋖𝑡𝑞𝑥 , 𝑐𝑡𝑞𝑥),
where 𝑞 is the process clock of 𝑦. Define 𝜂𝑦𝑥 = 𝑐𝑦𝑥 if ⋖𝑦𝑥
equals ≤, otherwise 𝜂𝑦𝑥 = 𝑐𝑦𝑥 − 0.5. Since 𝑍 ′

𝑦𝑥 < 𝑍𝑦𝑥 and 𝑍 ′

Logic in Computer Science, 2-5 August 2022, Haifa, Israel R. Govind, Frédéric Herbreteau, B. Srivathsan and Igor Walukiewicz

has integer weights, we also have 𝑍 ′
𝑦𝑥 < (≤, 𝜂𝑦𝑥). Similarly,

define𝜂𝑡𝑝𝑥 . From the third item of the rhs, we have (<,−𝐿𝑦)+
𝑍 ′
𝑦𝑥 < (≤, 𝜂𝑡𝑞𝑥).
Let𝐺2 be the distance graph obtained from𝐺

∗
1
by replacing

𝑥 → 𝑦 with (≤,−𝜂𝑦𝑥) and 𝑥 → 𝑡𝑞 with (≤,−𝜂𝑡𝑞𝑥). This gives
the set of valuations simultaneously satisfying 𝑣 (𝑦 − 𝑥) ≤
−𝜂𝑦𝑥 and 𝑣 (𝑡𝑞−𝑥) ≤ −𝜂𝑡𝑞𝑥 . If indeed [[𝐺2]] is non-empty and

there is such a valuation 𝑣 , then we are done: we will have

(≤, 𝑣 (𝑦 − 𝑥)) + 𝑍 ′
𝑦𝑥 < (≤, 0) and (≤, 𝑣 (𝑡𝑞 − 𝑥)) + (<,−𝐿𝑦) +

𝑍 ′
𝑦𝑥 < (≤, 0). Notice that the value of 𝐻 𝑣

𝑥𝑦 comes from either

case 1 or 2 of Definition 19. Hence we get𝐻 𝑣
𝑥𝑦 +𝑍 ′

𝑦𝑥 < (≤, 0).
It remains to show that𝐺2 has no negative cycles. The only

two edges that are modified from 𝐺∗
1
are 𝑥 → 𝑦 and 𝑥 → 𝑡𝑞 .

If there is a negative cycle, it should contain at least one of

these two edges. If it contains both then the cycle can be

broken down into two, with one of them being negative and

containing exactly one of the above two edges. Therefore, we

can assume without loss of generality that the negative cycle

contains exactly one edge 𝑥 → 𝑠 where 𝑠 is either 𝑦 or 𝑡𝑞 .

As𝐺∗
1
is canonical, and the edges of𝐺2 other than these two

come from 𝐺∗
1
, we can conclude that the shortest path from

𝑠 → 𝑥 is the weight of 𝑠 → 𝑥 in 𝐺∗
1
, which we have seen in

the end of Step 1 to be 𝑍𝑠𝑥 . Therefore, the possible negative

cycle is of the form 𝑥 → 𝑠 → 𝑥 with weight (≤,−𝜂𝑠𝑥) + 𝑍𝑠𝑥 .
By construction of 𝜂𝑠𝑥 this cycle cannot be negative for both

the cases, when 𝑠 = 𝑦 and 𝑠 = 𝑡𝑞 .

F Appendix for Section 7
▶ Lemma 9. Suppose 𝑀 is a maximal constant in guards.

The spread of a run of length 𝑛 is bounded by 𝑛𝑀 + 1.

Proof. Consider a timed automaton and let𝑀 be its maximal

constant. We claim that the minimal time for executing 𝑛

actions in the automaton is at most 𝑛𝑀 + 1 in the global

semantics. Indeed, in the global-time semantics there is no

point of waiting more than𝑀 time units in a state, since after

waiting𝑀 time units the valuation is already in the biggest

region and valuations within a region simulate each other

(see [3] for the definition and properties of regions). This

intuition is less evident in local-time semantics but we can

transfer this observation from the global-time to local-time.

Consider a local run on a sequence 𝑏1 . . . 𝑏𝑛 . By Lemma 1

there is a global run on a sequence 𝑐1 . . . 𝑐𝑛 such that 𝑏1 . . . 𝑏𝑛
is trace equivalent to 𝑐1 . . . 𝑐𝑛 . This means that there is a

bijection 𝑓 : [𝑛] → [𝑛] with 𝑏𝑖 = 𝑐 𝑓 (𝑖) and respecting order

of actions on each process: if 𝑏𝑖 and 𝑏 𝑗 are two actions of

process 𝑝 , and 𝑖 < 𝑗 then 𝑓 (𝑖) < 𝑓 (𝑗).
The global run has the form:

(𝑞0, 𝑣0)
𝛿1−−→ (𝑞0, 𝑣 ′0)

𝑐1−−→ (𝑞1, 𝑣1)
𝛿2−−→ . . .

𝑐𝑛−−→ (𝑞𝑛, 𝑣𝑛) .
We can assume that the cumulated time of this run is at most

𝑛𝑀 + 1; this is because if some 𝛿𝑖 is strictly bigger than 𝑀

then we can shorten it to𝑀 + 𝜖 for a 0 < 𝜖 < 1

𝑛
as anyway

the resulting valuation is the maximal region. Let 𝜃𝑖 be the

cumulated time before the 𝑖-th action: 𝜃𝑖 = 𝛿1 + · · · + 𝛿𝑖 . We

construct a local-time execution

(𝑞0, 𝑣0)
Δ1−−→ (𝑞0, 𝑣 ′0)

𝑏1−−→ (𝑞′
1
, 𝑣1)

Δ2−−→ . . .
𝑏𝑛−−→ (𝑞𝑛, 𝑣𝑛) .

such that for every 𝑖 and process 𝑝 ∈ dom(𝑏𝑖) we have

𝑣 ′𝑖 (𝑡𝑝) = 𝜃 𝑓 (𝑖) . This means that we execute action 𝑏𝑖 exactly

the time when the corresponding action 𝑐 𝑓 (𝑖) was executed
in the global run. This constraint determines Δ𝑖 , hence deter-

mines the run completely. It can be checked that it is indeed

a run: all Δ’s are positive, and all guards are satisfied. By

definition we have 𝑣𝑖 (𝑡𝑝) − 𝑣0 (𝑡𝑝) ≤ 𝑛𝑀 + 1 for all reference

clocks and for all 𝑖 . Since all reference clocks are equal in 𝑣0,

we get that the spread is at most 𝑛𝑀 + 1. □

▶ Corollary 1. An acyclic timed networkN = ⟨𝐴1, . . . , 𝐴𝑘⟩
is (∑𝑖=𝑘

𝑖=1 |𝑇𝑖 |) ×𝑀 + 1-spread bounded where |𝑇𝑖 | gives the
number of transitions in process 𝐴𝑖 , and𝑀 is the maximum

constant used in N .

Proof. No transition repeats in an acyclic system. Hence the

length of a run is bounded by (∑𝑖=𝑘
𝑖=1 |𝑇𝑖 |). Lemma 9 gives the

bound (∑𝑖=𝑘
𝑖=1 |𝑇𝑖 |) ×𝑀 + 1 for each run, and hence the system

is spread bounded with this constant. □

▶ Proposition 3. For every networkN and natural number

𝐷 ≥ 1, the system N𝐷
is 𝐷-spread bounded. A final state 𝑞

is reachable in N iff it is reachable in N𝐷
.

Proof. Consider a local run in N𝐷
. Valuations reached after

the 𝑠 action are synchronized. Between any two such valua-

tions, the run can elapse at most𝐷 time units in each process.

As the initial valuation is synchronized, the prefix of the run

upto the first 𝑠 action can also elapse at most 𝐷 time units.

Similarly, after the last 𝑠 action, the run cannot elapse more

then 𝐷 time units in each process. This shows that the run

is 𝐷-spread.

Pick a global run in N . At every delay of 𝐷 time units,

insert the action 𝑠 . This gives a run inN𝐷
. By Lemma 1, every

state 𝑞 reachable in the local semantics is reachable in the

global semantics. As N𝐷
contains a representative for every

global run, we get that N𝐷
is complete for reachability. □

Lemma13. Let𝑍, 𝑍 ′ be time-elapsed zones. The test𝔞𝐷≼𝐿𝑈 (𝑍) ⊆
𝔞𝐷≼𝐿𝑈 (𝑍 ′) can be done in time O(|𝑋 ∪ 𝑋𝑡 |2).

Proof. The test involves two steps: (1) computing𝑍1 := spread𝐷 (𝑍)
and 𝑍 ′

1
:= spread𝐷 (𝑍 ′) and then (2) checking 𝔞★≼𝐿𝑈 (𝑍1) ⊆

𝔞★≼𝐿𝑈 (𝑍 ′
1
). The second step can be done in time O(|𝑋 ∪𝑋𝑡 |2)

thanks to Theorem 6. We show that spread𝐷 (𝑍) can also be

computed in the same complexity.

Let𝐺𝑍 be the canonical distance graphs of𝑍 . Let (⋖𝑥𝑦, 𝑐𝑥𝑦)
be the weight of 𝑥 → 𝑦 in𝐺𝑍 . Since 𝑍 is time-elapsed, there

are no constraints that give an upper bound on the refer-

ence clocks, that is, there are no constraints of the form

𝑡𝑝 − 𝑥 ⋖ 𝑐 . This implies that every edge of the form 𝑥 → 𝑡𝑝

Abstractions for the local-time semantics of timed automata Logic in Computer Science, 2-5 August 2022, Haifa, Israel

with 𝑥 ∈ 𝑋 ∪ 𝑋𝑡 and 𝑡𝑝 ∈ 𝑋𝑡 has weight (<,∞). Same is the

case with 𝐺𝑍 ′ as 𝑍 ′
is time-elapsed.

Computing spread𝐷 (𝑍) involves taking𝐺𝑍 , adding edges

𝑡𝑝
(≤,𝐷)
−−−−→ 𝑡𝑞 between every pair of reference clocks 𝑡𝑝 , 𝑡𝑞 and

canonicalizing the resulting graph. Call this resulting graph

𝐺 . Since 𝐺𝑍 had no incoming edges to reference clocks, the

only incoming edges to 𝑡𝑝 in 𝐺 are from other reference

clocks. In particular, there are no edges in 𝐺 of the form

𝑥 → 𝑡𝑝 where 𝑥 ∈ 𝑋 . Therefore, the only shortest paths that

can change are of the form 𝑡𝑝 → 𝑦, where𝑦 is a process clock.

The shortest path from 𝑡𝑝 to 𝑦 is given by the minimum of

(⋖𝑡𝑝𝑦, 𝑐𝑡𝑝𝑦) and (≤, 𝐷) + (⋖𝑡𝑞𝑦, 𝑐𝑡𝑞𝑦) over all 𝑞. This can be

computed in O(|𝑋 |𝑡) for each 𝑡𝑝 → 𝑦. Overall, ranging over

all such edges, we get a complexity O((|𝑋𝑡 | · |𝑋 |) · |𝑋 |𝑡). This
gives an O(|𝑋 ∪𝑋𝑡 |2) procedure for computing spread𝐷 (𝑍).
The same complexity holds for computing spread𝐷 (𝑍 ′). □

F.1 𝔞𝐷≼𝐿𝑈 is finite.

Since 𝔞𝐷≼𝐿𝑈 first restricts to𝐷-spread valuations, let us restrict

to zones containing only𝐷-spread valuations. For such zones

𝔞𝐷≼𝐿𝑈 (𝑍) ⊆ 𝔞𝐷≼𝐿𝑈 (𝑍 ′) iff 𝑍 ⊆ 𝔞★≼𝐿𝑈 (𝑍 ′). Define an order 𝑍 ≼
𝑍 ′

if 𝑍 ⊆ 𝔞★≼𝐿𝑈 (𝑍 ′).

Lemma 14. The order ≼ on 𝐷-spread zones is a wqo.

Proof. Suppose ≼ is not a wqo. Then there is an infinite

antichain for ≼. If 𝑍 ̸≼ 𝑍 ′
there is a pair of clocks 𝑥 , 𝑦

witnessing the non-inclusion. Since the number of such pairs

is finite, by standard Ramsey arguments, there are two clocks

𝑥 , 𝑦 and infinite sequence 𝑍 1, 𝑍 2, . . . such that 𝑍 𝑖 ̸≼ 𝑍 𝑖+1
for

all 𝑖 ≥ 1 is witnessed by 𝑥 , 𝑦. This by Theorem 6 means that

for all 𝑖 ≥ 1 we have:

1. 𝑍 𝑖+1
𝑦𝑥 < 𝑍 𝑖

𝑦𝑥

2. if 𝑥 ∈ 𝑋𝑝 , then (≤,𝑈𝑥) + 𝑍 𝑖
𝑡𝑝𝑥

≥ (≤, 0),
3. if 𝑦 ∈ 𝑋𝑞 then (<,−𝐿𝑦) + 𝑍 𝑖+1

𝑦𝑥 < 𝑍 𝑖
𝑡𝑞𝑥

Let us assume that 𝑥 and 𝑦 are process clocks, with 𝑥 ∈ 𝑋𝑝

and 𝑦 ∈ 𝑋𝑞 . The argument below can be adapted to the cases

when one of them is a reference clock.

From 2 and from the fact that in all valuations we have

𝑥 − 𝑡𝑝 ≤ 0, we get (≤,−𝑈𝑥) ≤ 𝑍 𝑖
𝑡𝑝𝑥

≤ (≤, 0). From 1, we see

that 𝑍 𝑖+1
𝑦𝑥 keeps decreasing as 𝑖 increases and since the zones

we get have only integer weights, for every 𝐾 ≤ 0, we can

find an 𝑖 such that 𝑍 𝑖
𝑦𝑥 < (≤, 𝐾).

Now, due to canonicity, we have 𝑍 𝑖+1
𝑡𝑝𝑥

≤ 𝑍 𝑖+1
𝑡𝑝𝑡𝑞

+ 𝑍 𝑖+1
𝑡𝑞𝑦

+
𝑍 𝑖+1
𝑦𝑥 . We have 𝑍 𝑖+1

𝑡𝑝𝑡𝑞
≤ (≤, 𝐷) as 𝑍 𝑖+1

is a 𝐷-spread zone and

𝑍 𝑖+1
𝑡𝑞𝑦

≤ 0 as 𝑦 − 𝑡𝑞 ≤ 0 for all local valuations. By choosing

a sufficiently large 𝑖 , we can get a small value for 𝑍 𝑖+1
𝑦𝑥 and

hence the sum 𝑍 𝑖+1
𝑡𝑝𝑡𝑞

+ 𝑍 𝑖+1
𝑡𝑞𝑦

+ 𝑍 𝑖+1
𝑦𝑥 to be strictly smaller than

(≤,−𝑈𝑥). This is a contradiction with 2. □

G Appendix for Section 8
We describe the second example from section 8 in more detail

here.

Since N+
is obtained by applying the construction of Def-

inition 17 to an 𝑛-process extension of N−
, we have N+

𝑛 to

be 1-spread by Proposition 3. We show that network N+
𝑛 is

in fact 0-spread. We will subsequently work with the graph

LZG
𝐷,𝑠𝑟𝑐
𝐿𝑈 (N+

𝑛) by taking 𝐷 = 0 instead of 𝐷 = 1 as this

makes the discussion simpler. The same results hold when

we consider𝐷 = 1 too. Consider an arbitrary local run ofN+
𝑛 .

Since 𝑠 is a global synchronization the valuations reached af-

ter doing 𝑠 are synchronized, hence 0-spread. The final action

$ is also a global synchronization which results in a 0-spread

valuation. Between two 𝑠 actions, we can only have some

𝑏-sequence happening in 0 time. Hence each intermediate

valuation is 0-spread, making the run 0-spread.

Next, we look at some of the valuations reached. From the

above paragraph, every valuation obtained after an action

transition in a run has 𝑧𝑖 = 0 for all 𝑖: action 𝑠 resets 𝑧𝑖 , and

between two 𝑠 there is no time elapse. The 𝑧𝑖 clocks will not

play a role in deciding subsumption and hence we will ignore

𝑧𝑖 clocks for our analysis. For a sequence of actions 𝜎 not

containing $, we let (𝑝, 𝑣𝜎) be the configuration reached after
executing 𝜎 from the initial configuration (𝑝, 𝑣0). Let𝑢,𝑢1, 𝑢2
be 𝑏-sequences. We say 𝑖 ∈ 𝑢 if 𝑢 contains 𝑏𝑖 . Our sequences

of interest are 𝑠𝑢𝑠 , 𝑠𝑢, 𝑠𝑢1𝑠𝑢2𝑠 and 𝑠𝑢1𝑠𝑢2. We tabulate the

values of the valuations reached after such sequences. For

simplicity, we will write 𝑣 (𝑥𝑖) for 𝑣 (𝑡𝑖 − 𝑥𝑖), where 𝑡𝑖 is the
reference clock of 𝐴𝑖 . All valuations below are synchronized.

𝑣𝑠𝑢𝑠 (𝑥𝑖) =
{
1 𝑖 ∈ 𝑢
2 𝑖 ∉ 𝑢

𝑣𝑠𝑢 (𝑥𝑖) =
{
0 𝑖 ∈ 𝑢
1 𝑖 ∉ 𝑢

𝑣𝑠𝑢1𝑠𝑢2𝑠 (𝑥𝑖) =


1 𝑖 ∈ 𝑢2
2 𝑖 ∈ 𝑢1, 𝑖 ∉ 𝑢2
3 otherwise

𝑣𝑠𝑢1𝑠𝑢2
(𝑥𝑖) =


0 𝑖 ∈ 𝑢2
1 𝑖 ∈ 𝑢1, 𝑖 ∉ 𝑢2
2 otherwise

The zone 𝑍𝜎 reached after each sequence 𝜎 as above is given

by local-elapse(𝑣𝜎). The 0-spread valuations in 𝑍𝜎 are those

obtained by elapsing the same local delay on each process

from valuation 𝑣𝜎 . By property of simulations, 𝑣𝜎 ≼
★
𝐿𝑈
𝑣𝜎 ′

implies 𝑣𝜎 + Δ ≼★
𝐿𝑈

𝑣𝜎 ′ + Δ. Therefore, 𝑣𝜎 ≼
★
𝐿𝑈

𝑣𝜎 ′ im-

plies 𝔞0≼𝐿𝑈 (𝑍𝜎) ⊆ 𝔞0≼𝐿𝑈 (𝑍𝜎 ′) (in fact, 𝑣𝜎 ≼
★
𝐿𝑈

𝑣𝜎 ′ implies

𝔞𝐷≼𝐿𝑈 (𝑍𝜎) ⊆ 𝔞𝐷≼𝐿𝑈 (𝑍𝜎 ′) for all 𝐷 ≥ 0 and hence the analysis

that follows will hold for 𝐷 = 1 too). Notice that we have

𝐿 = 𝑈 = 1 for every 𝑥𝑖 . Definition 12 then gives 𝑣𝜎 ≼
★
𝐿𝑈
𝑣𝜎 ′

iff either 𝑣𝜎 (𝑥𝑖) = 𝑣𝜎 ′ (𝑥𝑖) or both 𝑣𝜎 (𝑥𝑖), 𝑣𝜎 ′ (𝑥𝑖) > 1.

Based on the valuations above, we have: 𝑣𝑠𝑢1𝑠𝑢2𝑠 ≼
★
𝐿𝑈
𝑣𝑠𝑢2𝑠 .

Secondly we have 𝑣𝑠𝑏1𝑏2 ...𝑏𝑛 ≼
★
𝐿𝑈
𝑣0 where 𝑣0 is an initial val-

uation that is synchronized and has 𝑣0 (𝑥𝑖) = 0 for all 𝑖 . This

Logic in Computer Science, 2-5 August 2022, Haifa, Israel R. Govind, Frédéric Herbreteau, B. Srivathsan and Igor Walukiewicz

gives 𝔞0≼𝐿𝑈 (𝑍𝑠𝑢1𝑠𝑢2𝑠) ⊆ 𝔞0≼𝐿𝑈 (𝑍𝑠𝑢2𝑠) and 𝔞0≼𝐿𝑈 (𝑍𝑠𝑏1𝑏2 ...𝑏𝑛) ⊆
𝔞0≼𝐿𝑈 (𝑍0). Now consider 𝑣𝑠𝑢 where 𝑢 ≠ 𝑏1𝑏2 . . . 𝑏𝑛 . Valua-

tion 𝑣𝑠𝑢 can neither be simulated by 𝑣𝑠𝑢′ nor any of its time

successors, when 𝑢′ ≠ 𝑢. Similarly, valuation 𝑣𝑠𝑢 cannot be

simulated by valuations of the form 𝑣𝑠𝑢1𝑠 or its time succes-

sors. Therefore, 𝑍𝑠𝑢 cannot be subsumed by any node of the

form 𝑍𝑠𝑢′ or 𝑍𝑠𝑢1𝑠 . An analogous reasoning gives that 𝑍𝑠𝑢1𝑠𝑢2

cannot be subsumed by zones 𝑍𝑠𝑢, 𝑍𝑠𝑢𝑠 , 𝑍𝑠𝑢′
1
𝑠𝑢, 𝑍𝑠𝑢1𝑠𝑢

′
2

where

𝑢1 ≠ 𝑢
′
1
and 𝑢2 ≠ 𝑢

′
2
. This gives an abstract zone graph (with-

out partial-order reduction) where sequences with three 𝑠

actions are covered by a sequence with two 𝑠 actions, and

a sequence 𝑠𝑢 where 𝑢 contains all actions 𝑏𝑖 is covered by

𝑍0. There is an uncovered node for every 𝑍𝑠𝑢 where 𝑢 has at

most 𝑛−1 𝑏𝑖 actions. Hence, without partial-order reduction,

the abstract local zone graph has at least 2
𝑛−1

nodes.

We now look at what happens with partial-order reduc-

tion. Here is a trace-faithful source function: at (𝑝, 𝑍𝜎) the
source function gives 𝑠 , the 𝑏𝑖 with the least index that is

enabled at 𝑍𝜎 and the $ action if it is enabled. Observe that

enabled(𝑍𝑠𝑢) = {𝑠} ∪ {𝑏𝑖 | 𝑖 ∉ 𝑢} ∪ {$ | if 𝑢 is empty} and
enabled(𝑍𝑠𝑢1𝑠𝑢2

) = {𝑠} ∪ {𝑏𝑖 | 𝑖 ∈ 𝑢1, 𝑖 ∉ 𝑢2}. Therefore,
at 𝑍𝑠𝑢 the source function picks the smallest 𝑏𝑖 that is not

present in 𝑢, and at 𝑍𝑠𝑢1𝑠𝑢2
it picks the smallest 𝑏𝑖 that is

present in 𝑢1, but not yet in 𝑢2.

The zone graph for four processes, LZG
0,𝑠𝑟𝑐

𝐿𝑈
(N+

4
) is de-

picted in Figure 5. In the general case, the uncovered nodes in

LZG
0,𝑠𝑟𝑐
𝐿𝑈 (N+

𝑛) are 𝑠𝑏1 . . . 𝑏𝑖 for 0 ≤ 𝑖 < 𝑛 and 𝑠𝑏1 . . . 𝑏𝑖𝑠𝑏1 . . . 𝑏 𝑗
where 0 ≤ 𝑖 < 𝑛 and 0 ≤ 𝑗 < 𝑖 . The covered nodes

are 𝑠𝑏1 . . . 𝑏𝑛 (since 𝑣𝑠𝑏1 ...𝑏𝑛 ≼
★
𝐿𝑈

𝑣0) and 𝑠𝑏1 . . . 𝑏𝑖𝑠𝑏1 . . . 𝑏 𝑗𝑠

where 0 ≤ 𝑖 < 𝑛, 0 ≤ 𝑗 ≤ 𝑖 . This gives an O(𝑛2) bound on

the number of nodes present in LZG
0,𝑠𝑟𝑐
𝐿𝑈 (N+

𝑛).

References
[1] Parosh Aziz Abdulla, Stavros Aronis, Bengt Jonsson, and Konstanti-

nos Sagonas. Optimal dynamic partial order reduction. In Suresh

Jagannathan and Peter Sewell, editors, The 41st Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’14,
San Diego, CA, USA, January 20-21, 2014, pages 373–384. ACM, 2014.

[2] Parosh Aziz Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos

Sagonas. Source sets: A foundation for optimal dynamic partial order

reduction. J. ACM, 64(4):25:1–25:49, 2017.

[3] Rajeev Alur and David L. Dill. A theory of timed automata. Theor.
Comput. Sci., 126(2):183–235, 1994.

[4] Gilles Audemard, Alessandro Cimatti, Artur Kornilowicz, and Roberto

Sebastiani. Bounded model checking for timed systems. In Doron A.

Peled and Moshe Y. Vardi, editors, Formal Techniques for Networked
and Distributed Systems - FORTE 2002, 22nd IFIP WG 6.1 International
Conference Houston, Texas, USA, November 11-14, 2002, Proceedings,
volume 2529 of Lecture Notes in Computer Science, pages 243–259.
Springer, 2002.

[5] Bahareh Badban and Martin Lange. Exact incremental analysis of

timed automata with an smt-solver. In Uli Fahrenberg and Stavros

Tripakis, editors, Formal Modeling and Analysis of Timed Systems - 9th
International Conference, FORMATS 2011, Aalborg, Denmark, September
21-23, 2011. Proceedings, volume 6919 of Lecture Notes in Computer
Science, pages 177–192. Springer, 2011.

0000

1111 111122223333

0111

0011

0001

0000

12222333

02221333 1122 2233

0122 1233

0022 1133

11122223

0112

0012

0002

1223

1123

1113

𝑠
𝑠𝑠

𝑏1

𝑏2

𝑏3

𝑏4

𝑠𝑠

𝑏1
𝑠 𝑠 𝑠

𝑏1
𝑠

𝑏2
𝑠

𝑠𝑠

𝑏1

𝑠
𝑏2

𝑠
𝑏3

𝑠

$

LZG
0,𝑠𝑟𝑐

𝐿𝑈
(N+

4
)

Figure 5. Illustration of the abstract local zone graph

LZG
0,𝑠𝑟𝑐

𝐿𝑈
(N+

4
). The label of the node reached after a sequence

𝜎 represents the value of 𝑥1, 𝑥2, 𝑥3, 𝑥4 in the valuation 𝑣𝜎 . Cov-

ered nodes are shown in blue. Nodes 𝑠𝑢1𝑠𝑢2𝑠 are covered by

𝑠𝑢2𝑠 and node 𝑠𝑏1𝑏2𝑏3𝑏4 is covered by the initial node. Sub-

sumption edges have not been shown explicitly.

[6] Gerd Behrmann, Patricia Bouyer, Kim Guldstrand Larsen, and Radek

Pelánek. Lower and upper bounds in zone-based abstractions of timed

automata. Int. J. Softw. Tools Technol. Transf., 8(3):204–215, 2006.
[7] Gerd Behrmann, Kim Guldstrand Larsen, Justin Pearson, Carsten

Weise, and Wang Yi. Efficient timed reachability analysis using clock

difference diagrams. In Nicolas Halbwachs and Doron A. Peled, editors,

Computer Aided Verification, 11th International Conference, CAV ’99,
Trento, Italy, July 6-10, 1999, Proceedings, volume 1633 of Lecture Notes
in Computer Science, pages 341–353. Springer, 1999.

[8] Johan Bengtsson, Bengt Jonsson, Johan Lilius, and Wang Yi. Partial

order reductions for timed systems. In CONCUR, volume 1466 of

Lecture Notes in Computer Science, pages 485–500, 1998.
[9] FrederikM. Bønneland, Peter Gjøl Jensen, KimG. Larsen, MarcoMuñiz,

and Jirí Srba. Stubborn set reduction for timed reachability and safety

games. In Catalin Dima and Mahsa Shirmohammadi, editors, Formal
Modeling and Analysis of Timed Systems - 19th International Conference,
FORMATS 2021, Paris, France, August 24-26, 2021, Proceedings, volume

12860 of Lecture Notes in Computer Science, pages 32–49. Springer,
2021.

[10] Frederik M. Bønneland, Peter Gjøl Jensen, Kim Guldstrand Larsen,

Marco Muñiz, and Jirí Srba. Start pruning when time gets urgent:

Partial order reduction for timed systems. In Hana Chockler and Georg

Weissenbacher, editors, Computer Aided Verification - 30th International
Conference, CAV 2018, Held as Part of the Federated Logic Conference,
FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, Part I, volume

10981 of Lecture Notes in Computer Science, pages 527–546. Springer,
2018.

[11] Frederik Meyer Bønneland, Peter Gjøl Jensen, Kim Guldstrand Larsen,

Marco Muñiz, and Jirí Srba. Stubborn set reduction for two-player

reachability games. Log. Methods Comput. Sci., 17(1), 2021.
[12] Patricia Bouyer, Serge Haddad, and Pierre-Alain Reynier. Timed un-

foldings for networks of timed automata. In Susanne Graf and Wenhui

Zhang, editors, Automated Technology for Verification and Analysis,
4th International Symposium, ATVA 2006, Beijing, China, October 23-26,
2006, volume 4218 of Lecture Notes in Computer Science, pages 292–306.

Abstractions for the local-time semantics of timed automata Logic in Computer Science, 2-5 August 2022, Haifa, Israel

Springer, 2006.

[13] Franck Cassez, Thomas Chatain, and Claude Jard. Symbolic unfold-

ings for networks of timed automata. In Susanne Graf and Wenhui

Zhang, editors, Automated Technology for Verification and Analysis,
4th International Symposium, ATVA 2006, Beijing, China, October 23-26,
2006, volume 4218 of Lecture Notes in Computer Science, pages 307–321.
Springer, 2006.

[14] Krishnendu Chatterjee, Andreas Pavlogiannis, and Viktor Toman.

Value-centric dynamic partial order reduction. Proc. ACM Program.
Lang., 3(OOPSLA):124:1–124:29, 2019.

[15] Edmund M. Clarke, Orna Grumberg, Marius Minea, and Doron A.

Peled. State space reduction using partial order techniques. Int. J.
Softw. Tools Technol. Transf., 2(3):279–287, 1999.

[16] Dennis Dams, Rob Gerth, Bart Knaack, and Ruurd Kuiper. Partial-order

reduction techniques for real-time model checking. Formal Aspects
Comput., 10(5-6):469–482, 1998.

[17] Conrado Daws and Stavros Tripakis. Model checking of real-time

reachability properties using abstractions. In TACAS, volume 1384 of

Lecture Notes in Computer Science, pages 313–329. Springer, 1998.
[18] Rüdiger Ehlers, Daniel Fass, Michael Gerke, and Hans-Jörg Peter. Fully

symbolic timed model checking using constraint matrix diagrams. In

Proceedings of the 31st IEEE Real-Time Systems Symposium, RTSS 2010,
San Diego, California, USA, November 30 - December 3, 2010, pages
360–371. IEEE Computer Society, 2010.

[19] Cormac Flanagan and Patrice Godefroid. Dynamic partial-order re-

duction for model checking software. In Jens Palsberg and Martín

Abadi, editors, Proceedings of the 32nd ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL 2005, Long Beach,
California, USA, January 12-14, 2005, pages 110–121. ACM, 2005.

[20] Patrice Godefroid. Partial-Order Methods for the Verification of Con-
current Systems - An Approach to the State-Explosion Problem, volume

1032 of Lecture Notes in Computer Science. Springer, 1996.
[21] Patrice Godefroid. Model checking for programming languages us-

ing verisoft. In Peter Lee, Fritz Henglein, and Neil D. Jones, editors,

Conference Record of POPL’97: The 24th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, Papers Presented at
the Symposium, Paris, France, 15-17 January 1997, pages 174–186. ACM
Press, 1997.

[22] Patrice Godefroid and Pierre Wolper. A partial approach to model

checking. Inf. Comput., 110(2):305–326, 1994.
[23] R. Govind, Frédéric Herbreteau, B. Srivathsan, and Igor Walukiewicz.

Revisiting local time semantics for networks of timed automata. In

CONCUR, volume 140 of LIPIcs, pages 16:1–16:15. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2019.

[24] Henri Hansen, Shang-Wei Lin, Yang Liu, Truong Khanh Nguyen, and

Jun Sun. Diamonds are a girl’s best friend: Partial order reduction for

timed automata with abstractions. In CAV, volume 8559 of Lecture
Notes in Computer Science, pages 391–406. Springer, 2014.

[25] Frédéric Herbreteau, B. Srivathsan, and Igor Walukiewicz. Lazy ab-

stractions for timed automata. In CAV, volume 8044 of Lecture Notes
in Computer Science, pages 990–1005. Springer, 2013.

[26] Frédéric Herbreteau, B. Srivathsan, and Igor Walukiewicz. Better

abstractions for timed automata. Inf. Comput., 251:67–90, 2016.
[27] Shmuel Katz and Doron A. Peled. Verification of distributed programs

using representative interleaving sequences. Distributed Comput.,
6(2):107–120, 1992.

[28] Michalis Kokologiannakis, Iason Marmanis, Vladimir Gladstein, and

Viktor Vafeiadis. Truly stateless, optimal dynamic partial order reduc-

tion. Proc. ACM Program. Lang., 6(POPL), jan 2022.

[29] Kim G. Larsen, Marius Mikucionis, Marco Muñiz, and Jirí Srba. Urgent

partial order reduction for extended timed automata. In Dang Van

Hung and Oleg Sokolsky, editors, Automated Technology for Verifica-
tion and Analysis - 18th International Symposium, ATVA 2020, Hanoi,
Vietnam, October 19-23, 2020, Proceedings, volume 12302 of Lecture

Notes in Computer Science, pages 179–195. Springer, 2020.
[30] Kim Guldstrand Larsen, Fredrik Larsson, Paul Pettersson, andWang Yi.

Compact data structures and state-space reduction for model-checking

real-time systems. Real Time Syst., 25(2-3):255–275, 2003.
[31] Denis Lugiez, Peter Niebert, and Sarah Zennou. A partial order se-

mantics approach to the clock explosion problem of timed automata.

Theor. Comput. Sci., 345(1):27–59, 2005.
[32] Marius Minea. Partial order reduction for model checking of timed

automata. In CONCUR, volume 1664 of Lecture Notes in Computer
Science, pages 431–446. Springer, 1999.

[33] Jesper B. Møller, Jakob Lichtenberg, Henrik Reif Andersen, and Hen-

rik Hulgaard. Fully symbolic model checking of timed systems us-

ing difference decision diagrams. Electron. Notes Theor. Comput. Sci.,
23(2):88–107, 1999.

[34] Peter Niebert, Moez Mahfoudh, Eugene Asarin, Marius Bozga, Oded

Maler, and Navendu Jain. Verification of timed automata via satisfia-

bility checking. In Werner Damm and Ernst-Rüdiger Olderog, editors,

Formal Techniques in Real-Time and Fault-Tolerant Systems, 7th In-
ternational Symposium, FTRTFT 2002, Co-sponsored by IFIP WG 2.2,
Oldenburg, Germany, September 9-12, 2002, Proceedings, volume 2469

of Lecture Notes in Computer Science, pages 225–244. Springer, 2002.
[35] Doron A. Peled. All from one, one for all: on model checking using

representatives. In Costas Courcoubetis, editor, Computer Aided Veri-
fication, 5th International Conference, CAV ’93, Elounda, Greece, June
28 - July 1, 1993, Proceedings, volume 697 of Lecture Notes in Computer
Science, pages 409–423. Springer, 1993.

[36] Doron A. Peled, Antti Valmari, and Ilkka Kokkarinen. Relaxed visibility

enhances partial order reduction. Formal Methods Syst. Des., 19(3):275–
289, 2001.

[37] Antti Valmari. Stubborn sets for reduced state space generation. In

Grzegorz Rozenberg, editor, Advances in Petri Nets 1990 [10th Inter-
national Conference on Applications and Theory of Petri Nets, Bonn,
Germany, June 1989, Proceedings], volume 483 of Lecture Notes in Com-
puter Science, pages 491–515. Springer, 1989.

[38] Antti Valmari. A stubborn attack on state explosion. Formal Methods
Syst. Des., 1(4):297–322, 1992.

[39] Farn Wang. Symbolic verification of complex real-time systems with

clock-restriction diagram. In Myungchul Kim, Byoungmoon Chin,

Sungwon Kang, and Danhyung Lee, editors, Formal Techniques for
Networked and Distributed Systems, FORTE 2001, IFIP TC6/WG6.1 -
21st International Conference on Formal Techniques for Networked and
Distributed Systems, August 28-31, 2001, Cheju Island, Korea, volume

197 of IFIP Conference Proceedings, pages 235–250. Kluwer, 2001.
[40] Naling Zhang, Markus Kusano, and ChaoWang. Dynamic partial order

reduction for relaxed memory models. In David Grove and Stephen M.

Blackburn, editors, Proceedings of the 36th ACM SIGPLAN Conference
on Programming Language Design and Implementation, Portland, OR,
USA, June 15-17, 2015, pages 250–259. ACM, 2015.

	Abstract
	1 Introduction
	2 Preliminaries
	3 Abstract local-zone graphs
	4 POR on abstract local-zone graphs
	5 No finite abstractions for local-zone graphs
	6 LU-simulation for the local semantics
	6.1 An algorithm for aLU (Z) aLU (Z')

	7 Bounded-spread networks
	7.1 When is a network bounded-spread
	7.2 Abstraction for bounded-spread networks

	8 Examples with exponential gain
	9 Conclusion
	A Appendix for Section 3
	B Catch-up equivalence is PSPACE-complete
	C Appendix for Section 4
	D Appendix for Section 6
	E Appendix for Section 6.1
	E.1 Representing local zones
	E.2 Steps to the final test

	F Appendix for Section 7
	F.1 aLU D is finite.

	G Appendix for Section 8
	References

