
HAL Id: hal-03644013
https://hal.science/hal-03644013

Submitted on 17 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Genetic Algorithm Applied to State-Feedback Control
Design of Grid and Circulating Current in Modular

Multilevel Converters
Rashad Ghassani, Antoneta Iuliana Bratcu, Remus Teodorescu

To cite this version:
Rashad Ghassani, Antoneta Iuliana Bratcu, Remus Teodorescu. Genetic Algorithm Applied to State-
Feedback Control Design of Grid and Circulating Current in Modular Multilevel Converters. IFAC
CPES 2022 - 11th Symposium on Control of Power and Energy Systems (CPES 2022), Jun 2022,
Moscow, Russia. �10.1016/j.ifacol.2022.07.075�. �hal-03644013�

https://hal.science/hal-03644013
https://hal.archives-ouvertes.fr


Genetic Algorithm Applied to
State-Feedback Control Design of Grid and
Circulating Current in Modular Multilevel

Converters

Rashad Ghassani ∗ Antoneta Iuliana Bratcu ∗

Remus Teodorescu ∗∗

∗ Univ. Grenoble Alpes (UGA), CNRS, Grenoble INP, GIPSA-lab,
38402, Saint-Martin d’Hères Cedex, France

Institute of Engineering Univ. Grenoble Alpes, (e-mail:
rashad.ghassani@gipsa-lab.grenoble-inp.fr), (Tel: +33476826384;

e-mail: antoneta.bratcu@gipsa-lab.grenoble-inp.fr)
∗∗ Department of Energy Technology,

Aalborg University, Aalborg, Denmark, (e-mail: ret@et.aau.dk)

Abstract: This paper discusses the application of a genetic algorithm (GA) to control system
design for Modular Multilevel Converters (MMCs). In particular, genetic algorithm is used to
compute the gains of a state-feedback controller for multi-input/multi-output (MIMO) plant
model. This GA-optimized state-feedback controller is used to control both grid and circulating
current of the MMC. This assures that the two currents’ input-coupled dynamics are managed
using a MIMO strategy. A detailed MATLAB®/Simulink® model of a three-phase MMC is
further used to validate the proposed control technique. Different simulations show that the
GA-optimized state-feedback controller outperforms the conventional cascaded control.
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1. INTRODUCTION

With the fast improvement of wind farms, the request for
high-power, high-quality transmission systems is becoming
more urgent. Modular Multilevel Converter (MMC) which
is based on high-voltage direct-current (HVDC) innova-
tion gives a promising solution (Lesnicar and Marquardt
(2003)). In recent years, MMCs have become one of the
most appealing topologies for high-voltage industrial ap-
plications such as HVDC, medium-voltage motor drives,
and energy storage systems. The modularity, flexible ex-
pandability, transformer-less architecture, and low cost of
MMCs have all contributed to their widespread acceptance
in the industry.

Controlling the transferred power through the MMC to
the grid is the main objective. Two control structures
have been proposed in the literature, which are multi-
variable (Munch et al. (2010)) and cascaded (Bergna Diaz
et al. (2013)) approaches. The first approach allows to
handle the MMC state-space equations as a nonlinear
multi-variable model. It requires some advanced control
strategies in order to derive the associated control law and
perform stability analysis. The second approach, which
is based on different time scales assumptions, treats the
system in a decoupled way, such that the control algorithm
is created and modified step by step (Yijing et al. (2014)).

The cascaded approach in dealing with all the different
variables of MMC MIMO plant is the most preferred
approach in the industry. The control design approach to

MIMO systems requires the state space representation, in
which the state feedback control is used. The most com-
monly used strategy for state-feedback control design is the
Linear Quadratic Regulation (LQR) (Solihin et al. (2010)).
Despite the positive results produced by this approach,
control design is a difficult process due to the trial-and-
error method used in the weight matrix creation where
hard tuning the controller parameters could be tedious
task. However, using Artificial Intelligent (AI) control de-
sign techniques can be a promising alternative. Control-
design approaches make use of this domain knowledge for
the control application to come up with a control system
that minimizes some weighted performance function. The
genetic algorithm (GA) is heuristic search method that
holds a great potential in the control system design prob-
lem (Sivanandam and Deepa (2007)).

This paper proposes a new optimal control strategy for
a MIMO state-feedback controller that controls both grid
and circulating current using GA to find the controller
gains. The state-feedback optimization problem is solved
under the balanced-grid model, but it is tested under
the unbalanced conditions. This paper is organized as
follows. Section 2 introduces the balanced-grid three-phase
MMC model, which is used later to design the proposed
GA-optimized MIMO state-feedback controller in Section
3. Section 4 discusses the GA setup and calibration.
Section 5 shows the results obtained on a comprehensive
MATLAB®/Simulink® three-phase MMC model. The
conclusion is presented in the last Section 6.



2. MMC CURRENT STATE EQUATIONS

A detailed diagram of a typical three-phase MMC is shown
in Figure 1. Each arm consists of N sub-modules (SM),
the arm resistance (adding the losses within each arm) and
arm inductance. The voltage of each SM, that is composed
of a two semiconductors switches and a capacitor, is
defined by vk,j , where subscript k represents the converters
arms (k = u, l, upper arm and lower arm respectively) and
subscript j represents phase (j = a, b, c). On the ac side,
the converter is assumed to be connected to the grid. The
dc side of converter is grounded at its midpoint. Using
Kirchhoff voltage law (KVL), the dynamic equations of
MMC system in each phase can be expressed by:

vd
2
−vu−Riu−L

diu
dt

= va
−vd
2

+vl+Ril+L
dil
dt

= va

(1)

In Figure 1, each sub-module capacitor is represented
by an (A-B) Block. Different MMC parameters can be
summarized as follows: dc variables (current and voltage)
are represented by the subscript ”d”, ac variables for each
phase are denoted by va,b,c. The number of sub-modules
in each arm is N , while the resistance and inductance of
the arm are R and L, respectively.

Fig. 1. Structure of a typical three-phase MMC, showing
all the important variables including the dc and ac
bus Sharifabadi et al. (2016)

For each phase, the voltage for a single SMi is denoted as
vicu,l for the upper and lower arm with an insertion index

defined as ni
u,l = 1 if the SM is inserted and 0 otherwise.

The total arm voltage can be defined as total number

of inserted capacitor SMs such that vu,l =
∑N

i=1 n
i
u,l ·

vicu,l and the sum of capacitor voltages on an arm is

defined as vΣcu,l =
∑N

i=1 v
i
cu,l, while the insertion index

in an arm is defined as nu,l = (1/N)
∑N

i=1 n
i
u,l. Assuming

that all capacitor voltages are equal, and combining the
above-mentioned formulas, the following conclusion holds:
vu,l = nu,l · vΣcu,l. Therefore, the output current is and
output voltage vs can be written as:

is = iu − il, vs = (vu − vl)/2 (2)

and the circulating current ic and internal voltage vc can
be defined as:

ic = (iu + il)/2, vc = (vu + vl)/2 (3)

Based again on Figure 1 and Equations (1), (2), and
(3), the dynamic equations of MMC for phase j can be
expressed by:

{
i̇c = −R/L · ic − 1/(2L) · vu − 1/(2L) · vl + 1/(2L) · vd
i̇s = R/L · is − 1/L · vu − 1/L · vl − 2/L · va

(4)

Replacing vs from (2) and vc from (3), (4) is obtained.
It can be shown that the circulating current ic follows a
first-order dc-dynamics and output current is obeys a first-
order ac-circuit dynamics.

i̇c = −R/L · ic − vc/L+ 1/(2L) · vd (5)

i̇s = −R/L · is + 2/L · vs − 2/L · va (6)

The two currents can be regulated individually using
proportional integral (PI) or proportional-resonant (PR)
linear controllers by employing vc in (2) and vs in (3) as
control inputs Sharifabadi et al. (2016).

3. STATE-FEEDBACK CONTROL DESIGN

In this section, the state-feedback controller (Bratcu and
Teodorescu (2020)), is introduced. Starting from the state
equations (5) and (6) characterizing the dynamics of the
two currents on a single phase, a new control design
can be made. It is worth noting that these dynamics
are intertwined at the input level: upper and lower-arm
voltages intervene in both, which will now be the control
inputs. On the second-order system, dc voltage vd acts as
a constant disturbance, whereas voltage va is perceived as
a grid-frequency sinusoidal disturbance.{
i̇c = −R/L · ic − 1/(2L) · vu − 1/(2L) · vl + 1/(2L) · vd
i̇s = R/L · is − 1/L · vu − 1/L · vl − 2/L · va

(7)

For the MIMO plant (7), a full-state feedback is developed
to achieve the necessary closed-loop dynamics (Bratcu
and Teodorescu (2020)). In order to place the desired
closed-loop dynamics and to achieve the required control
objectives: ensuring a constant-reference tracking for the
dc-component of ic, a ω-sinusoidal-reference tracking for
is, as well as a 2ω-sinusoidal disturbance rejection on ic.
To this end, five extra integral states were added to achieve
the desired objectives as follows:

ẋi1 = −xi2 + i∗s − is
ẋi2 = ω2 · xi1

ẋi3 = i∗c − ic
ẋi4 = −xi5 + i∗c − ic
ẋi5 = 4ω2 · xi4

(8)



States xi1 and xi2 correspond to a resonant integrator on
the grid frequency ω, state xi3 is that of an ordinary inte-
grator that tries to eliminate the dc steady state error and
finally, states xi4 and xi5 refer to a resonant integrator on
double the grid frequency, 2ω. This combination between
state-feedback control and resonant integrators can be seen
as alternative to the classical integrators.

The MMC model can be represented by MIMO extended
plant with xe = [ic is xi1 xi2 xi3 xi4 xi5]

T as
state variables, ue = [vu vl]

T as control input vec-
tor and up = [vd va]

T as disturbance input vector.
Thus, the whole MIMO system can be described as
ẋe = Ae · xe +Be · ue +Bp · up, where the state matrix
Ae and input matrices Be and Bp are as follows:

Ae=



−R/L 0 0 0 0 0 0
0 −R/L 0 0 0 0 0
0 −1 0 −1 0 0 0
0 0 ω2 0 0 0 0
−1 0 0 0 0 0 0
−1 0 0 0 0 0 −1
0 0 0 0 0 4ω2 0


Be=

[
−1/(2L) −1/L 0 0 0 0 0
−1/(2L) −1/L 0 0 0 0 0

]T
Bp=

[
1/(2L) 0 0 0 0 0 0

0 −2/L 0 0 0 0 0

]T
After ensuring that the extended system (Ae, Be) is
controllable, a full state-feedback controller of the form
ue = −Ke · xe can be computed to impose the desired
closed-loop dynamics Bratcu and Teodorescu (2020). Two
of the new poles correspond to the original second-order
dynamics of both currents, ic and is, the other five poles
correspond to the integral states. Vector control input
is ue = [v∗u v∗l ]

T . Internal voltage v∗c = (v∗u + v∗l )/2
and grid voltage v∗s = (v∗l − v∗u)/2 are computed, then
sent as references to the modulation process, in order to
obtain the desired upper and lower arm indices n∗

u and n∗
l ,

respectively.

The biggest challenge in this proposed state-feedback
controller is how to choose the imposed closed-loop poles,
because this choice will determine the control gain vector,
Ke. In the next section, a genetic algorithm technique is
proposed to find the controller gains, which are optimal in
view of a suitably defined criterion.

4. PROPOSED GENETIC-ALGORITHM-BASED
COMPUTATION OF GAINS

Genetic Algorithms (GA) are based on Darwin’s ideas
of natural selection and evolutionary processes. Only the
fittest individuals survive in a selection process, leaving the
poor performers behind. The cost function is commonly
referred to as a fitness function, and the process of ‘survival
of the fittest’ entails a maximization approach. A GA
begins by random population of initial solutions, and then
applies a series of operations to generate a new population.
Following that, the worst individuals are eliminated from
the population, while the best ones are included in the
next generation (Sivanandam and Deepa (2007)).

4.1 Fitness Function

As stated earlier, the GA begins with a purely random
initial population; in this case the initial population is
a pool of the closed-loop poles to be optimized. Using
some cost function each candidate solution (set of poles) is
evaluated in the initial population, the top elite candidates
are then transferred directly to the new generation, while
the other individuals undergo different genetic algorithm
operators such as crossover, in which two individuals
from the initial population (parents) are reproduced to
produce two new individuals (children), and mutation
which yields a new intermediate generation. The next
generation is formed by applying these same rules, and the
process is repeated until a convergence criterion is reached.
Using GA-based techniques, a way to find the state-
feedback controller gains to meet the design specifications
is proposed in this work. The suggested approach is used
to determine the appropriate state-feedback parameters
and eliminate the time-consuming and repetitive trial-and-
error procedure. As a result, no weight matrices must be
chosen as in the LQR technique. The output current and
circulating current tracking error are the chosen design
specifications. So, it is proposed that the fitness function
to take into account the circulating current and output
current error as follows:

J =
1

Ns

Ns∑
i=1

k1 · |ici − i∗c |+
1

Ns

Ns∑
i=1

k2 · |isi − i∗s| (9)

where k1 and k2 are weights to be adjusted, i∗c and i∗s
are the circulating current and output current references
respectively, while Ns is the number of samples in the
finite-horizon model.
As previously stated, the proposed MIMO extended MMC
plant contains 7 states and 2 control inputs, the ”optimal”
feedback matrix Ke to be found is represented by 14
variables. The optimal closed-loop poles are found first
using the proposed GA and after that the state-feedback
control gainKe is calculated. Algorithm 1 presents the dif-
ferent steps of the optimization procedure. The crossover
probability Pc, mentioned in line 6, is equal to 0.9, while
the mutation probability Pm is chosen to be equal to
0.3. The chosen population size is 120 and the number
of generations is set to 50. Since it is equally important
to control both currents, the weight parameters k1 and
k2 are fixed to 1. The different steps of the proposed
GA can be summarized as follows: first of all, the initial
purely random and bounded population P0 is created.
After that, the evaluation of all the candidate poles is
started. This evaluation process is done by running off-
line the complete MMC simulation model presented in
Appendix A for a time of 1 s under normal grid conditions,
by using the candidate poles to be evaluated. As it is run
off-line, this algorithm can work for any number of sub-
modules per arm, N . This process is then repeated for all
the population.

5. RESULTS AND NUMERICAL SIMULATIONS

The genetic algorithm optimization effectively identified
the MIMO optimum controller’s feedback gains after pass-
ing through 50 generations and calculating for around two



Algorithm 1: Proposed genetic algorithm

Input: P-population of individuals: pool of random
poles bounded with upper and lower bound

Output: Best individual (”optimal” closed-loop poles
in term of fitness function)

Initialize t = 0;
Create an initial population P0;
Evaluate individuals - Calculate the value of fitness
function for each individual in the population P0;
while t < Number of iterations and Stop
Condition Not Reached do

Select 5 elite individuals for new population;
Crossover operation with a probability Pc;
Mutation of individuals with a probability Pm;
foreach x ∈ Pt do

Run the MMC model simulation for 1 s;
Compute fitnessFunction J

Replace the old population with new one;
t = t+ 1;

hours. The 7-variable vector of the imposed closed-loop
poles results from the proposed genetic algorithm. The
feedback matrix Ke is then easily computed using pole
placement, while Ke 3phase, the three-phase extension of
single phase gain Ke, is used as the feedback gain matrix
to the optimized state-feedback controller.

A detailed MATLAB®/Simulink® model of a three-phase
MMC, whose parameters are presented in Appendix A,
is used to validate the suggested control technique. The
traditional control system, which is commonly used in
practice and is based on many cascaded control levels
Sharifabadi et al. (2016), is used as a baseline here. Indeed,
the suggested state-feedback controller substitutes the two
distinct control loops of ic and is, while preserving other
control levels present in the global multiple-level-based
control method. As a result, the energy control level, as
well as PWM modulation implementation, are preserved.
The chosen scenario to test the proposed approach is set
at 1.3 s, with an imbalance in grid conditions starting at
time 0.7 s and ending at time 1.1 s. The balanced grid is
defined by grid voltage positive sequence vg pos = 1 p.u.
and a voltage negative sequence vg neg = 0 p.u., while
the unbalance grid is characterized by a positive sequence
vg pos = 0.8 p.u. and a negative sequence vg neg = 0.2 p.u..

5.1 GA-optimized state-feedback control results

The MIMO full-state feedback based on genetic algorithm
is compared with the conventional cascaded control under
the same relevant scenarios. The variables of interest
are the output current is (both positive and negative
sequence) and the internal dynamics, which contains the
circulating current ic, energy sum of each phase WΣ,
energy difference W∆, and sum capacitor voltage.

Figure 2 shows internal control results when traditional
control is used. It is obvious that, once the voltage is
unbalanced (0.7 s), the control is no longer functional.
As a result, oscillations in the three-phase circulating
current (second plot) and the sum of capacitors voltages
(first plot) are increasing in amplitude and this leads to
instability. Control of the energy sum WΣ (third plot)

is slow and has some steady-state error. Meanwhile, the
control of energy difference has a lot of variance from
zero reference. Results of internal control through the
proposed method are shown in Figure 3 (same variables
as before). It is noticed that, after the fault occurs, the
closed-loop behavior is stabilized. Two of the circulating
currents stabilize at about the same value, while that of
the third phase stabilizes at a larger steady-state value.

Figure 4 shows the grid negative-sequence current i−s when
conventional control is used. The result shows the closed-
loop performance of the grid current negative sequence d
and q axis components, while in the case of GA-optimized
state-feedback control it is obvious that in Figure 5 the
proposed controller improves the negative sequence grid
reference tracking in terms of accuracy and transients
between faulty and normal grid circumstance, which has
a good influence on power evolution. Note that, only the
negative sequence current is shown, while both controllers
have similar effects on the positive sequence.

In Figures 6 and 7 the results for the circulating current
ic and energy difference W∆ for phase c are introduced
(similar results in the other two phases). This result
indicates that the proposed GA performance is comparable
to that of the standard conventional control, and even
better when the fault occurs, the cascaded control tending
to be unstable in such condition.

5.2 Simulation-Based Robustness Checking

To perform the simulation-based robustness checking, a
parameter study is performed, that is, it is supposed
that some parameters may vary in some ranges. The
uncertainty system parameters has also been investigated
for the same test scenario. For instance, the sub-module
capacitance C, the arm’s inductance L, and the arm’s
resistance R were let to vary randomly within +/- 20%,
around their nominal values. The performance of the
proposed GA optimized state-feedback controller being
tested under these conditions Figure 8 for the circulating
current ic. As can be seen, the controller’s dynamics
response is still pretty good. The controller obtained
with a parameter inaccuracy converges to the desired
reference but with some higher ripples. This result suggests
that the circulating current using the proposed controller
converges to a boundary layer near the specified reference.
A systematic robustness study should confirm this result.

6. CONCLUSION

In this paper, a GA-optimized MIMO state-feedback con-
trol of both the grid and the circulating current in MMCs
has been proposed. This approach can be seen as an alter-
native to the LQR and pole placement methods. Although
the proposed approach requires some computation time to
identify the ”optimal” poles, this will be done just once
and in an off-line way. Furthermore, there are very few
parameters to tune which can save a lot of design time.
Under imbalanced grid configurations, simulations reveal
improved performance as compared to the traditional con-
trol. Future work should focus on developing a control
method that takes explicitly account of positive, negative,
and zero sequences.



Fig. 2. Simulation results obtained for the cascaded conventional internal control of both ic and is, under unbalanced
grid conditions starting at time 0.7 s and lasting for 0.4 s

Fig. 3. Simulation results obtained for the MIMO GA-optimized state-feedback internal control of both ic and is, under
unbalanced grid conditions starting at time 0.7 s and lasting for 0.4 s
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Fig. 4. Negative-sequence output current i−s (d − q axis)
control the case of conventional control

Fig. 5. Negative-sequence output current i−s (d − q axis)
control in the case of GA-optimized feedback control

Appendix A. THREE-PHASE MMC MODEL
PARAMETERS

Electrical parameters

Rated apparent power Srated=150 MVA; DC-bus voltage
vd=200 kV; grid frequency ω=2π·50 rad/s; number of SMs
N=12; arm resistance R=3.2 Ω; arm inductance L=50.9
mH; grid inductance Lg=3.2 mH; SM capacitance C=450
µF; Open-loop poles: –31.415, –31.415 (rad/s)

Control parameters

Open-loop poles: –31.415, –31.415 (rad/s)
Imposed closed-loop poles: –1322.68, –2240.46, –84.37,
–691.24, –1059.26, –187.22, –2824.61 (rad/s)

Genetic Algorithm parameters

Dimension vector: 7, number of population: 120, number
of generations: 50, probability of crossover Pc = 0.9,
probability of mutation Pm = 0.3, upper bound= –5000
rad/s, lower bound –31.4159 rad/s (open-loop poles).

Fig. 6. Phase c circulating current ic control: compari-
son between conventional and GA-optimized state-
feedback control under unbalanced grid conditions

Fig. 7. Phase c energy difference W∆ control: compari-
son between conventional and GA-optimized state-
feedback control under unbalanced grid conditions

Fig. 8. Numerical results for ic current: comparison be-
tween nominal case against parameter-perturbed case


