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This paper discusses the application of a genetic algorithm (GA) to control system design for Modular Multilevel Converters (MMCs). In particular, genetic algorithm is used to compute the gains of a state-feedback controller for multi-input/multi-output (MIMO) plant model. This GA-optimized state-feedback controller is used to control both grid and circulating current of the MMC. This assures that the two currents' input-coupled dynamics are managed using a MIMO strategy. A detailed MATLAB ® /Simulink ® model of a three-phase MMC is further used to validate the proposed control technique. Different simulations show that the GA-optimized state-feedback controller outperforms the conventional cascaded control.

INTRODUCTION

With the fast improvement of wind farms, the request for high-power, high-quality transmission systems is becoming more urgent. Modular Multilevel Converter (MMC) which is based on high-voltage direct-current (HVDC) innovation gives a promising solution [START_REF] Lesnicar | An innovative modular multilevel converter topology suitable for a wide power range[END_REF]). In recent years, MMCs have become one of the most appealing topologies for high-voltage industrial applications such as HVDC, medium-voltage motor drives, and energy storage systems. The modularity, flexible expandability, transformer-less architecture, and low cost of MMCs have all contributed to their widespread acceptance in the industry.

Controlling the transferred power through the MMC to the grid is the main objective. Two control structures have been proposed in the literature, which are multivariable [START_REF] Munch | Integrated current control, energy control and energy balancing of modular multilevel converters[END_REF]) and cascaded [START_REF] Bergna Diaz | An energy-based controller for hvdc modular multilevel converter in decoupled double synchronous reference frame for voltage oscillation reduction[END_REF]) approaches. The first approach allows to handle the MMC state-space equations as a nonlinear multi-variable model. It requires some advanced control strategies in order to derive the associated control law and perform stability analysis. The second approach, which is based on different time scales assumptions, treats the system in a decoupled way, such that the control algorithm is created and modified step by step [START_REF] Yijing | Control induced explicit time-scale separation to attain dc voltage stability for a vsc-hvdc terminal[END_REF]).

The cascaded approach in dealing with all the different variables of MMC MIMO plant is the most preferred approach in the industry. The control design approach to MIMO systems requires the state space representation, in which the state feedback control is used. The most commonly used strategy for state-feedback control design is the Linear Quadratic Regulation (LQR) [START_REF] Solihin | Comparison of lqr and pso-based state feedback controller for tracking control of a flexible link manipulator[END_REF]). Despite the positive results produced by this approach, control design is a difficult process due to the trial-anderror method used in the weight matrix creation where hard tuning the controller parameters could be tedious task. However, using Artificial Intelligent (AI) control design techniques can be a promising alternative. Controldesign approaches make use of this domain knowledge for the control application to come up with a control system that minimizes some weighted performance function. The genetic algorithm (GA) is heuristic search method that holds a great potential in the control system design problem [START_REF] Sivanandam | Introduction to Genetic Algorithms[END_REF]).

This paper proposes a new optimal control strategy for a MIMO state-feedback controller that controls both grid and circulating current using GA to find the controller gains. The state-feedback optimization problem is solved under the balanced-grid model, but it is tested under the unbalanced conditions. This paper is organized as follows. Section 2 introduces the balanced-grid three-phase MMC model, which is used later to design the proposed GA-optimized MIMO state-feedback controller in Section 3. Section 4 discusses the GA setup and calibration. Section 5 shows the results obtained on a comprehensive MATLAB ® /Simulink ® three-phase MMC model. The conclusion is presented in the last Section 6.

MMC CURRENT STATE EQUATIONS

A detailed diagram of a typical three-phase MMC is shown in Figure 1. Each arm consists of N sub-modules (SM), the arm resistance (adding the losses within each arm) and arm inductance. The voltage of each SM, that is composed of a two semiconductors switches and a capacitor, is defined by v k,j , where subscript k represents the converters arms (k = u, l, upper arm and lower arm respectively) and subscript j represents phase (j = a, b, c). On the ac side, the converter is assumed to be connected to the grid. The dc side of converter is grounded at its midpoint. Using Kirchhoff voltage law (KVL), the dynamic equations of MMC system in each phase can be expressed by:

v d 2 -v u -Ri u -L di u dt = v a -v d 2 + v l + Ri l + L di l dt = v a (1) 
In Figure 1, each sub-module capacitor is represented by an (A-B) Block. Different MMC parameters can be summarized as follows: dc variables (current and voltage) are represented by the subscript "d", ac variables for each phase are denoted by v a,b,c . The number of sub-modules in each arm is N , while the resistance and inductance of the arm are R and L, respectively. For each phase, the voltage for a single SM i is denoted as v i cu,l for the upper and lower arm with an insertion index defined as n i u,l = 1 if the SM is inserted and 0 otherwise. The total arm voltage can be defined as total number of inserted capacitor SMs such that v u,l = N i=1 n i u,l • v i cu,l and the sum of capacitor voltages on an arm is defined as v Σ cu,l = N i=1 v i cu,l , while the insertion index in an arm is defined as n u,l = (1/N ) N i=1 n i u,l . Assuming that all capacitor voltages are equal, and combining the above-mentioned formulas, the following conclusion holds: v u,l = n u,l • v Σ cu,l . Therefore, the output current i s and output voltage v s can be written as:

i s = i u -i l , v s = (v u -v l )/2
(2) and the circulating current i c and internal voltage v c can be defined as:

i c = (i u + i l )/2, v c = (v u + v l )/2
(3) Based again on Figure 1 andEquations (1), (2), and (3), the dynamic equations of MMC for phase j can be expressed by:

ic = -R/L • i c -1/(2L) • v u -1/(2L) • v l + 1/(2L) • v d i s = R/L • i s -1/L • v u -1/L • v l -2/L • v a (4)
Replacing v s from ( 2) and v c from (3), ( 4) is obtained.

It can be shown that the circulating current i c follows a first-order dc-dynamics and output current i s obeys a firstorder ac-circuit dynamics.

ic = -R/L • i c -v c /L + 1/(2L) • v d (5) i s = -R/L • i s + 2/L • v s -2/L • v a (6)
The two currents can be regulated individually using proportional integral (PI) or proportional-resonant (PR) linear controllers by employing v c in (2) and v s in (3) as control inputs [START_REF] Sharifabadi | Design, Control and Application of Modular Multilevel Converters for HVDC Transmission Systems[END_REF].

STATE-FEEDBACK CONTROL DESIGN

In this section, the state-feedback controller [START_REF] Bratcu | State-feedback control of grid and circulating current in modular multilevel converters[END_REF]), is introduced. Starting from the state equations ( 5) and ( 6) characterizing the dynamics of the two currents on a single phase, a new control design can be made. It is worth noting that these dynamics are intertwined at the input level: upper and lower-arm voltages intervene in both, which will now be the control inputs. On the second-order system, dc voltage v d acts as a constant disturbance, whereas voltage v a is perceived as a grid-frequency sinusoidal disturbance.

ic = -R/L • i c -1/(2L) • v u -1/(2L) • v l + 1/(2L) • v d is = R/L • i s -1/L • v u -1/L • v l -2/L • v a (7)
For the MIMO plant ( 7), a full-state feedback is developed to achieve the necessary closed-loop dynamics [START_REF] Bratcu | State-feedback control of grid and circulating current in modular multilevel converters[END_REF]). In order to place the desired closed-loop dynamics and to achieve the required control objectives: ensuring a constant-reference tracking for the dc-component of i c , a ω-sinusoidal-reference tracking for i s , as well as a 2ω-sinusoidal disturbance rejection on i c .

To this end, five extra integral states were added to achieve the desired objectives as follows:

             ẋi1 = -x i2 + i * s -i s ẋi2 = ω 2 • x i1 ẋi3 = i * c -i c ẋi4 = -x i5 + i * c -i c ẋi5 = 4ω 2 • x i4 (8)
States x i1 and x i2 correspond to a resonant integrator on the grid frequency ω, state x i3 is that of an ordinary integrator that tries to eliminate the dc steady state error and finally, states x i4 and x i5 refer to a resonant integrator on double the grid frequency, 2ω. This combination between state-feedback control and resonant integrators can be seen as alternative to the classical integrators.

The MMC model can be represented by MIMO extended plant with x e = [i c i s x i1 x i2 x i3 x i4 x i5 ] T as state variables, u e = [v u v l ] T as control input vector and u p = [v d v a ] T as disturbance input vector. Thus, the whole MIMO system can be described as ẋe = A e • x e + B e • u e + B p • u p , where the state matrix A e and input matrices B e and B p are as follows:

A e =          -R/L 0 0 0 0 0 0 0 -R/L 0 0 0 0 0 0 -1 0 -1 0 0 0 0 0 ω 2 0 0 0 0 -1 0 0 0 0 0 0 -1 0 0 0 0 0 -1 0 0 0 0 0 4ω 2 0          B e = -1/(2L) -1/L 0 0 0 0 0 -1/(2L) -1/L 0 0 0 0 0 T B p = 1/(2L) 0 0 0 0 0 0 0 -2/L 0 0 0 0 0 T
After ensuring that the extended system (A e , B e ) is controllable, a full state-feedback controller of the form u e = -K e • x e can be computed to impose the desired closed-loop dynamics [START_REF] Bratcu | State-feedback control of grid and circulating current in modular multilevel converters[END_REF]. Two of the new poles correspond to the original second-order dynamics of both currents, i c and i s , the other five poles correspond to the integral states. Vector control input is

u e = [v * u v * l ] T . Internal voltage v * c = (v * u + v * l )/2 and grid voltage v * s = (v * l -v * u )
/2 are computed, then sent as references to the modulation process, in order to obtain the desired upper and lower arm indices n * u and n * l , respectively.

The biggest challenge in this proposed state-feedback controller is how to choose the imposed closed-loop poles, because this choice will determine the control gain vector, K e . In the next section, a genetic algorithm technique is proposed to find the controller gains, which are optimal in view of a suitably defined criterion.

PROPOSED GENETIC-ALGORITHM-BASED

COMPUTATION OF GAINS Genetic Algorithms (GA) are based on Darwin's ideas of natural selection and evolutionary processes. Only the fittest individuals survive in a selection process, leaving the poor performers behind. The cost function is commonly referred to as a fitness function, and the process of 'survival of the fittest' entails a maximization approach. A GA begins by random population of initial solutions, and then applies a series of operations to generate a new population. Following that, the worst individuals are eliminated from the population, while the best ones are included in the next generation [START_REF] Sivanandam | Introduction to Genetic Algorithms[END_REF]).

Fitness Function

As stated earlier, the GA begins with a purely random initial population; in this case the initial population is a pool of the closed-loop poles to be optimized. Using some cost function each candidate solution (set of poles) is evaluated in the initial population, the top elite candidates are then transferred directly to the new generation, while the other individuals undergo different genetic algorithm operators such as crossover, in which two individuals from the initial population (parents) are reproduced to produce two new individuals (children), and mutation which yields a new intermediate generation. The next generation is formed by applying these same rules, and the process is repeated until a convergence criterion is reached.

Using GA-based techniques, a way to find the statefeedback controller gains to meet the design specifications is proposed in this work. The suggested approach is used to determine the appropriate state-feedback parameters and eliminate the time-consuming and repetitive trial-anderror procedure. As a result, no weight matrices must be chosen as in the LQR technique. The output current and circulating current tracking error are the chosen design specifications. So, it is proposed that the fitness function to take into account the circulating current and output current error as follows:

J = 1 N s Ns i=1 k 1 • |i ci -i * c | + 1 N s Ns i=1 k 2 • |i si -i * s | (9) 
where k 1 and k 2 are weights to be adjusted, i * c and i * s are the circulating current and output current references respectively, while N s is the number of samples in the finite-horizon model. As previously stated, the proposed MIMO extended MMC plant contains 7 states and 2 control inputs, the "optimal" feedback matrix K e to be found is represented by 14 variables. The optimal closed-loop poles are found first using the proposed GA and after that the state-feedback control gain K e is calculated. Algorithm 1 presents the different steps of the optimization procedure. The crossover probability P c , mentioned in line 6, is equal to 0.9, while the mutation probability P m is chosen to be equal to 0.3. The chosen population size is 120 and the number of generations is set to 50. Since it is equally important to control both currents, the weight parameters k 1 and k 2 are fixed to 1. The different steps of the proposed GA can be summarized as follows: first of all, the initial purely random and bounded population P 0 is created. After that, the evaluation of all the candidate poles is started. This evaluation process is done by running offline the complete MMC simulation model presented in Appendix A for a time of 1 s under normal grid conditions, by using the candidate poles to be evaluated. As it is run off-line, this algorithm can work for any number of submodules per arm, N . This process is then repeated for all the population.

RESULTS AND NUMERICAL SIMULATIONS

The genetic algorithm optimization effectively identified the MIMO optimum controller's feedback gains after passing through 50 generations and calculating for around two hours. The 7-variable vector of the imposed closed-loop poles results from the proposed genetic algorithm. The feedback matrix K e is then easily computed using pole placement, while K e 3phase , the three-phase extension of single phase gain K e , is used as the feedback gain matrix to the optimized state-feedback controller.

A detailed MATLAB ® /Simulink ® model of a three-phase MMC, whose parameters are presented in Appendix A, is used to validate the suggested control technique. The traditional control system, which is commonly used in practice and is based on many cascaded control levels [START_REF] Sharifabadi | Design, Control and Application of Modular Multilevel Converters for HVDC Transmission Systems[END_REF], is used as a baseline here. Indeed, the suggested state-feedback controller substitutes the two distinct control loops of i c and i s , while preserving other control levels present in the global multiple-level-based control method. As a result, the energy control level, as well as PWM modulation implementation, are preserved. The chosen scenario to test the proposed approach is set at 1.3 s, with an imbalance in grid conditions starting at time 0.7 s and ending at time 1.1 s. The balanced grid is defined by grid voltage positive sequence v g pos = 1 p.u. and a voltage negative sequence v g neg = 0 p.u., while the unbalance grid is characterized by a positive sequence v g pos = 0.8 p.u. and a negative sequence v g neg = 0.2 p.u..

GA-optimized state-feedback control results

The MIMO full-state feedback based on genetic algorithm is compared with the conventional cascaded control under the same relevant scenarios. The variables of interest are the output current i s (both positive and negative sequence) and the internal dynamics, which contains the circulating current i c , energy sum of each phase W Σ , energy difference W ∆ , and sum capacitor voltage.

Figure 2 shows internal control results when traditional control is used. It is obvious that, once the voltage is unbalanced (0.7 s), the control is no longer functional. As a result, oscillations in the three-phase circulating current (second plot) and the sum of capacitors voltages (first plot) are increasing in amplitude and this leads to instability. Control of the energy sum W Σ (third plot) is slow and has some steady-state error. Meanwhile, the control of energy difference has a lot of variance from zero reference. Results of internal control through the proposed method are shown in Figure 3 (same variables as before). It is noticed that, after the fault occurs, the closed-loop behavior is stabilized. Two of the circulating currents stabilize at about the same value, while that of the third phase stabilizes at a larger steady-state value.

Figure 4 shows the grid negative-sequence current i - s when conventional control is used. The result shows the closedloop performance of the grid current negative sequence d and q axis components, while in the case of GA-optimized state-feedback control it is obvious that in Figure 5 the proposed controller improves the negative sequence grid reference tracking in terms of accuracy and transients between faulty and normal grid circumstance, which has a good influence on power evolution. Note that, only the negative sequence current is shown, while both controllers have similar effects on the positive sequence.

In Figures 6 and7 the results for the circulating current i c and energy difference W ∆ for phase c are introduced (similar results in the other two phases). This result indicates that the proposed GA performance is comparable to that of the standard conventional control, and even better when the fault occurs, the cascaded control tending to be unstable in such condition.

Simulation-Based Robustness Checking

To perform the simulation-based robustness checking, a parameter study is performed, that is, it is supposed that some parameters may vary in some ranges. The uncertainty system parameters has also been investigated for the same test scenario. For instance, the sub-module capacitance C, the arm's inductance L, and the arm's resistance R were let to vary randomly within +/-20%, around their nominal values. The performance of the proposed GA optimized state-feedback controller being tested under these conditions Figure 8 for the circulating current i c . As can be seen, the controller's dynamics response is still pretty good. The controller obtained with a parameter inaccuracy converges to the desired reference but with some higher ripples. This result suggests that the circulating current using the proposed controller converges to a boundary layer near the specified reference. A systematic robustness study should confirm this result.

CONCLUSION

In this paper, a GA-optimized MIMO state-feedback control of both the grid and the circulating current in MMCs has been proposed. This approach can be seen as an alternative to the LQR and pole placement methods. Although the proposed approach requires some computation time to identify the "optimal" poles, this will be done just once and in an off-line way. Furthermore, there are very few parameters to tune which can save a lot of design time. Under imbalanced grid configurations, simulations reveal improved performance as compared to the traditional control. Future work should focus on developing a control method that takes explicitly account of positive, negative, and zero sequences. 
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 1 Fig. 1. Structure of a typical three-phase MMC, showingall the important variables including the dc and ac bus[START_REF] Sharifabadi | Design, Control and Application of Modular Multilevel Converters for HVDC Transmission Systems[END_REF] 
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 2 Fig. 2. Simulation results obtained for the cascaded conventional internal control of both i c and i s , under unbalanced grid conditions starting at time 0.7 s and lasting for 0.4 s
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 6 Fig. 6. Phase c circulating current i c control: comparison between conventional and GA-optimized statefeedback control under unbalanced grid conditions