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We report on the formation of a dispersive shock wave in a nonlinear optical medium. We monitor the
evolution of the shock by tuning the incoming beam power. The experimental observations for the position
and intensity of the solitonic edge of the shock, as well as the location of the nonlinear oscillations are well
described by recent developments of Whitham modulation theory. Our work constitutes a detailed and
accurate benchmark for this approach. It opens exciting possibilities to engineer specific configurations of
optical shock wave for studying wave-mean flow interaction.
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In many different fields such as acoustics [1], plasma
physics [2], hydrodynamics [3–5], nonlinear optics [6],
ultracold quantum gases [7–10], the short time propagation
of slowly varying nonlinear pulses can be described
discarding the effects of dispersion and dissipation. The
prototype of such an approach is given by the system of
equations governing compressible gas dynamics [11]. This
type of treatment typically predicts that, due to nonlinearity,
an initially smooth pulse steepens during its time evolution,
eventually reaching a point of gradient catastrophe. This is
the wave-breaking phenomenon, which results in the
formation of a shock wave [12,13]. If, after wave breaking,
dispersive effects dominate over viscosity, the shock
eventually acquires a stationary nonlinear oscillating struc-
ture for which the width increases with diminishing
dissipation [14]. In the case of weak dissipation the time
for reaching a stationary regime can be quite long.
Gurevich and Pitaevskii [15] made a major contribution
to the field when they first realized the interest of studying
the evolution of the associated dynamical structure, now
called a dispersive shock wave (DSW). Besides, they
understood that a DSW can be described as a modulated
nonlinear traveling wave and studied in the framework of
the Whitham theory of modulations [16].
In the present work we study the propagation of an

optical beam in a nonlinear defocusing medium. Wave-
breaking and (spatial or temporal) dispersive shocks have
already been observed in such a setting [17–30]. However,
all previous theoretical descriptions of experimental optical
shocks either remained only qualitative or resorted to
numerical simulations for reaching accurate descriptions.
Indeed, a realistic quantitative characterization of the
experimental situation requires to take into account a
number of nontrivial effects which sum up to a quite

difficult task. For instance, saturation effects, such as
occurring in semiconductor doped glasses [31] and in
photorefractive media [32], can only be taken into account
by using a nonintegrable nonlinear equation, even for a
medium with a local nonlinearity. Besides, both “Riemann
invariants” typically vary during the prebreaking period and
this complicates the description of the nondispersive stage
of the pulse spreading, even in a quasi unidimensional (1D)
geometry. Moreover, for realistic initial intensity pulse
profiles, the post-breaking evolution corresponds, at best,
to a so-called “quasisimple” dispersive shock [33], the
characterization of which requires an elaborate extension of
the Gurevich-Pitaevskii scheme. Finally, the nonintegrabil-
ity of the wave equation significantly complicates the post-
breaking description of the nonlinear oscillations within the
shock. Despite these difficulties, it has recently become
possible to combine several theoretical advances [34–45] to
obtain a comprehensive treatment of the nonlinear pulse
spreading and the subsequent formation of a dispersive
shock in a realistic setting [46,47]. In this Letter, we
provide a nonambiguous experimental evidence for the
accuracy of this theory with a precise description of the
main features of the shock. This universal and quantitative
benchmark is a major advance for manipulation and
engineering of optical shockwaves.
We study the propagation of a laser field in a L ¼ 7.5

cm-long cell filled with an isotopically pure 85Rb vapor
(99% purity) warmed up to a controlled temperature of
120 °C to adjust the atomic vapor density. We use a Ti:
sapphire laser detuned by −3.9 GHz with respect to the
F ¼ 3 → F0 transition of the D2-line of 85Rb at
λ0 ¼ 2π=k0 ¼ 780 nm. For such a large detuning, the
natural Lorentzian shape of the line dominates and the
Doppler broadening k0v ≃ 240 MHz can be safely
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neglected. In these experimental conditions, the system is
self defocusing (repulsive photon-photon interaction) and
the transmission through the cell is 60%. We find that this
medium is well described by local photon-photon inter-
actions, but contrary to previous works [48–52] we find it
important to take into account the saturation of the non-
linearity to quantitatively describe the dynamics of the
shock waves.
The input intensity profile is a cross-beam configuration

of two vertically polarized laser beams, both propagating
along the axis of the cell (denoted as Oz), with their
respective phase precisely adjusted such that the two beams
interfere constructively, see Fig. 1. One of the beams
(which is denoted the hump) is extended along the y
direction and significantly more intense than the other one
(the background) which is extended along the x direction.
At the entrance of the cell (z ¼ 0) both beams have an
elliptic Gaussian profile. The background beam has a
power P0 and waists wx;0 > wy;0, whereas the hump has
power P1 and waists wx;1 < wy;1; see Supplemental
Material [53]. During the initial nondiffractive stage of
evolution, nonlinearity acts as an effective pressure which
favors spreading of the hump in the x direction along which
is initially tighter collimated. Conversely, the low intensity
background experiences almost no spreading and behaves
as a pedestal which triggers wave breaking of the hump
during its spreading. Each beam has a maximum entrance
intensity Iα ¼ 2Pα=ðπwx;αwy;αÞ (α ¼ 0 or 1), and we
explore the DSW dynamics for a fixed ratio I1=I0. We
work in the deep nonlinear regime, with I1 ¼ 20I0. This
large value corresponds to a wave breaking distance
typically shorter than the cell length, and makes it possible,
by changing the total power Ptot of the beams, to observe
several stages of evolution of the DSW. The total power can
be increased up to 700 mW and is limited by the laser
maximum output power.
We image the total field intensity Ioutðx; yÞ at the output

of the cell on a camera. In order to minimize the effect of

absorption and increase the visibility of the DSW, we
determine the normalized output intensity

Ĩoutðx; yÞ≡ Ioutðx; yÞ − I0outðx; yÞ
I0
out

; ð1Þ

where I0outðx; yÞ is the intensity profile at the cell output
when only the background beam propagates through the
medium (the hump beam is blocked). I0

out is the maximal
value of I0outðx; yÞ. Ĩoutðx; yÞ is represented in Fig. 2(a). Our
theoretical description relies on only two parameters which
characterize the photon-photon interaction, namely, the
Kerr coefficient, n2, and the saturation intensity Isat
[cf. Eq. (2)]. Their values n2 ¼ 1.5 × 10−4 mm2=W, and
Isat ¼ 0.6 W=mm2 have been determined by comparing the
experimental results with large-scale 2D numerical simu-
lations [53]. The excellent agreement reached in Fig. 2
indicates that two effects—saturable nonlinearity and linear
absorption—are the relevant physical ingredients for a
theoretical description of our experiment.
In the regime w1;x ≪ w0;x and I1 ≫ I0 we consider, the

normalized output density Ĩout becomes independent on the
precise shape of the background beam. As a result, Ĩoutðx; 0Þ
can be described by using a simplified 1D theoretical
description, where a hump propagates over a background
of uniform intensity I0. Within the cell, the complex field
amplitude at y ¼ 0, denoted as Aðx; 0; zÞ≡ aðx; zÞ, then
obeys a 1D nonlinear Schrödinger equation where the
position z along the axis of the beam plays the role of an
effective “time” [61]. The equation, once included the
nonlinearity saturation and the linear absorption [32], reads

i∂za ¼ −
1

2n0k0
∂2
xaþ k0n2jaj2

1þ jaj2=Isat
a −

i
Λabs

a; ð2Þ

where n0 ≃ 1 is the linear index of refraction and
Λabs ¼ 30 cm, which corresponds to a 60% transmission
for a cell of length L ¼ 7.5 cm. The value of the effective
amplitude at the entrance of the cell is taken as

FIG. 1. Sketch of the experimental setup. To create the initial state we overlap the background and the hump beams on a beam splitter
with their relative phase precisely adjusted such that they interfere constructively. This state then propagates inside the nonlinear
medium consisting of a hot 85Rb vapor cell of length L. The insets represent cuts of the relevant intensity profiles in the plane
perpendicular to the direction z of propagation. The output intensity is recorded on a camera by direct imaging through two lenses in 4f
configuration.
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aðx; 0Þ ¼
ffiffiffiffiffi

I0

p

þ
ffiffiffiffiffi

I1

p

exp

�

−
x2

w2
x;1

�

: ð3Þ

In order to evaluate the accuracy of the mapping to the 1D
model of Eq. (2), we compare in the upper panel of Fig. 2(b)
the corresponding value of jaðx; LÞj2 expð2L=ΛabsÞ=I0 − 1

with the experimental Ĩoutðx; 0Þ and with the result of
2D simulations. The excellent agreement is confirmed in
Fig. 2(c) for the whole range of beam powers Ptot.
The mapping to a 1D problem enables us to compare our

measurements with recent analytical predictions. In par-
ticular, if one neglects the linear absorption within the cell,
for the initial intensity profile (3), wave breaking occurs at a
propagation distance [45]

zWB ¼ 4

ffiffiffiffiffiffiffiffiffi

n0I�

n2

s

ð1þ I�=IsatÞ2
3þ I�=Isat

·
1

max j dIðx;0Þdx j
; ð4Þ

where Iðx; 0Þ ¼ jaðx; 0Þj2 is the entrance intensity and I� is
the value Iðx�; 0Þ at point x�, where jdIðx; 0Þ=dxj reaches
its maximum. For low entrance power, no DSW is observed

because zWB is larger than the cell length. Wave breaking
first occurs within the cell for a total power PWB such that
zWB ¼ L. For our experimental parameters we obtain
PWB ¼ 48 mW. Numerical tests show that taking absorp-
tion into account does not modify notably this value.
For a total power larger than PWB, the DSW is formed

and develops within the cell. The physical phenomenon at
the origin of the DSW is the following: large intensity
perturbations propagate faster than small ones, so there
exist values of x reached at the same “time” by different
intensities. When this occurs first, the density gradient is
infinite. This corresponds to the onset of a cusp catastrophe
[54,62], the nonlinear diffractive dressing of which is a
dispersive shock wave. This takes the form of a modulated
oscillating pattern consisting asymptotically (i.e., at large z,
or equivalently large Ptot) in a train of solitons which, away
from the center of the beam, gradually evolves into a linear
perturbation. The position of its “solitonic edge” on the
y ¼ 0 axis at the cell output (z ¼ L) is denoted as xs. It is
located in Figs. 2(c) by a vertical red bar whose thickness
represents the uncertainty on the estimation of xs from
the experimental Ĩoutðx; 0Þ. This uncertainty limits the

(a) (b)

(c)

FIG. 2. (a) Left: experimental profile Ĩout taken for Ptot ¼ 680 mW. Right: Two-dimensional numerical simulations at the same total
entrance power. (b) x and y profiles along the cuts represented by the two white lines on the two-dimensional profiles (a). The solid blue
line represents the experimental data, the dashed green line the two-dimensional numerical simulation. On the x profile, the orange line
is a one-dimensional numerical simulation, from Eqs. (2) and (3). (c) Ĩoutðx; 0Þ for various total beam powers. The color code is the same
as in (b). The vertical pink and gray bars on the right part of each intensity profile indicate the positions of the solitonic edge of the DSW
and of the first maxima of oscillations within the DSW. The thickness of each bar represents the experimental uncertainty.

PHYSICAL REVIEW LETTERS 126, 183901 (2021)

183901-3



experimental determination of xs to powers larger than
120 mW. The following maxima of oscillations, represented
by vertical gray lines, are more precisely determined exper-
imentally. The technique devised in Ref. [47] makes it
possible to theoretically determine xs and the corresponding
intensity Ĩoutðxs; 0Þ. As illustrated in Fig. 3 the results of this
analytical approach (green solid lines) comparewell with the
experimental data, although it does not take absorption into
account. Importantly, omission of the nonlinearity saturation
leads to incorrect results (brown solid line).
One may study the DSW in an even more detailed way

by locating the position of the maxima of the nonlinear
oscillations. While the theoretical results for xs essentially
rely on an approach due to El [34,40,43] which is valid for
any type of nonlinearity, the precise intensity profile within
the DSW can be computed only for exactly integrable
systems, i.e., by neglecting saturation effects. The position-
dependent oscillation period Lðx; zÞ was computed in this
framework in Ref. [46] for a parabolic initial intensity
distribution. Fitting the center of the intensity profile (3) by
an inverted parabola, the positions x1, x2, and x3 of the first
maxima of oscillation of the DSW at the output of the cell
are determined by

x1 − xs ¼ L
�

xs þ x1
2

; L

�

; ð5Þ

and by similar formulas obtained by replacing x1 by x2
(then x3) and xs by x1 (then x2). The results are compared
with the experimental ones in the upper half (x > 0) of
Fig. 4. The small offset in the position of the theoretical
maxima with respect to the experimental ones observed in
the figure is due to an initial small overshoot in the
theoretical position of xs (cf. the green solid line in
Fig. 3) which is itself due to the absence of absorption
in the model. Indeed, the 1D numerical simulations—
which do take absorption into account—are in slightly
better agreement with the experimental results for xs (cf. the
orange stars in Fig. 3). Using the numerical xs in Eq. (5)
instead of the analytical one yields, for the maxima of
oscillations, an excellent agreement with experiment, cf. the
lower half of Fig. 4. Such a good agreement despite the fact
that Eq. (5) does not take saturation into account is not
surprising: the rapid decrease of intensity away from the
solitonic edge (cf. Fig. 2) significantly reduces the impor-
tance of saturation within the DSW.
It thus appears possible to give a detailed description of

precise experimental recordings of the intensity pattern of
an optical shock wave, not only thanks to numerical
simulations, but on the basis of Whitham’s modulation
theory. This is an important validation of recent advances in
this approach, which is no longer restricted to integrable
systems or idealized initial configurations. We are reaching
a point where these progresses make it possible not only to
study DSWs per se, but also as tools for prospecting new
physical phenomena, such as the type of wave-mean flow
interaction recently identified in Ref. [55]: our platform is
ideally designed to investigate scattering of elementary

FIG. 4. Color plot of the experimental intensity profiles
Ĩoutðx; 0Þ as a function of Ptot. The purple dot-dashed line
represents the edge xs of the DSW extracted from Whitham
theory (upper part of the figure: x > 0) and from 1D numerical
simulations (lower part, x < 0). In each half of the figure (x ≶ 0)
the white dashed lines are the corresponding analytic predictions
(5) for the maxima of oscillation.

FIG. 3. Characterization of the solitonic edge of the DSW as a
function of the beam’s power. The upper panel represents the
position xs of the shock, and the lower one the corresponding
intensity Ĩoutðxs; 0Þ. In each panel, the red points with error bars
are experimental results, from Fig. 2(c) and, in the upper one, the
orange stars are the results of 1D numerical simulations of
Eq. (2). The green solid line is the theoretical result, from
Ref. [47]. The brown solid line is the theoretical result in the
absence of saturation.
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excitations by a DSW, a study which is also relevant to the
domain of analogue gravity. Indeed, as discussed in the
Supplemental Material [53], a dispersive shock can be
considered as an exotic model of acoustic white hole, and
the good experimental control and theoretical understand-
ing of this structure demonstrated in the present work opens
the prospect of a detailed investigation of the corresponding
induced background fluctuations.
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