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We implement Bragg-like spectroscopy in a paraxial fluid of light by imprinting analogues of short
Bragg pulses on the photon fluid using wavefront shaping with a spatial light modulator. We report a
measurement of the static structure factor, SðkÞ, and we find a quantitative agreement with the prediction of
the Feynman relation revealing indirectly the presence of pair-correlated particles in the fluid. Finally, we
improve the resolution over previous methods and obtain the dispersion relation including a linear
phononic regime for weakly interacting photons and low sound velocity.
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Fluids of light in the paraxial configuration have
emerged as an original approach to study degenerate
Bose gases [1]. Several important results have recently
established this platform as a potential analogue quantum
simulator, including the demonstrations of superfluidity of
light [2–4], the observation of the Berezinskii-Kosterlitz-
Thouless transition [5], shockwaves [6–8] and preconden-
sation [9], the evidence of photon droplets [10], and the
creation of analogue rotating black hole geometries [11,12].
Paraxial fluids of light rely on the direct mathematical
analogy that can be drawn between the Gross-Pitaevskii
equation describing the mean field evolution of a Bose-
Einstein condensate (BEC) and the nonlinear Schrödinger
equation describing the propagation of light within a χð3Þ
nonlinear medium [1,13,14]. The growing interest about
this platform comes from the various advantages that make
paraxial fluids of light a complementary system to an
atomic BEC. First, optical detection techniques are highly
sensitive (single-photon counting, homodyne detection)
and allow for measuring with high precision the density
distribution in position and momentum space as well as the
phase. Second, since there is no gravity force acting on a
photon fluid, there is no need for a trapping potential and
homogeneous density can be easily achieved. Moreover, an
external control potential can be applied either during the
entire evolution [3,15], or only for a short period of time as
in this work.
An essential characterization tool for an atomic BEC

is coherent Bragg spectroscopy [16]. The original imple-
mentation was based on two-photon Bragg scattering and
allowed for an accurate measurement of the momentum
distribution, which was significantly narrower than that
observed by time of flight [17]. For an atomic BEC, it was
realized very early that this technique would also allow
for measuring both the dispersion relation [18], which

describes how each frequency component of a wave
packet evolves, and the dynamic structure factor, which
is the Fourier transform of the density correlation func-
tion [19] and is essential to the description of many-body
systems [20,21].
Several variants of this method have been developed

for exciton polaritons [22] and for atomic BECs, including
momentum-resolved spectroscopy [23], multibranch spec-
troscopy [24], and tomographic imaging [25]. Most of these
techniques rely on measuring the energy of the condensate’s
linear excitations known as the Bogoliubov quasiparticles.
While, the dispersion relation has been recently obtained by
measuring the group velocity of two counterpropagating
wave packets [2], ameasurement of the static structure factor,
that characterizes the density-density correlations of the
elementary excitations, has not yet been reported for a fluid
of light.
In this Letter, we implement an optical analogue of

Bragg spectroscopy to measure the static structure factor in
a paraxial fluid of light. We show that short Bragg pulses
used for the phase imprinting technique in an atomic BEC
[26] can be achieved in a photon fluid by using wave front
shaping with a spatial light modulator. We found that the
static structure factor is significantly reduced at long
wavelength, compared to that of free particles, revealing
indirectly the presence of nontrivial pair correlations in a
paraxial fluid of light [18]. In addition, we show that our
method allows for an improvement of the resolution for
dispersion measurements.
This Letter is organized as follows. We first introduce the

formalism of a paraxial fluid of light and the short Bragg
pulse technique which inspired our approach. We describe
numerically and experimentally the optical implementation
of Bragg spectroscopy. We then present a measurement of
the static structure factor in agreement with the Feynman
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relation for a homogeneous Bose gas [20,27]. Finally, we
measure the dispersion relation and evaluate the maximum
resolution of our technique.
In a third-order nonlinear Kerr medium, the evolution of

the electric field is given by the nonlinear Schrödinger
equation (NLSE), written within the paraxial and slowly-
varying-envelope approximation as

i
∂E
∂z ¼

�
−

1

2k0
∇2⊥ − k0n2jEj2 þ i

α

2

�
E; ð1Þ

where k0 is the wave vector, α is the linear absorption
coefficient, and n2 is the nonlinear index. The subscript ⊥
refers to the transverse ðx; yÞ plane. We defineΔn ¼ n2jEj2
as the nonlinear refractive index.
What is remarkable about this equation is that it is similar

to the Gross-Pitaevskii equation (GPE), which describes
the evolution of the wave function Ψ of a weakly interact-
ing Bose-Einstein condensate:

iℏ
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�
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∇2 þ VðrÞ þ gjΨðr; tÞj2

�
Ψðr; tÞ;

ð2Þ
where V is the trapping potential, m is the bosonic mass,
and g is the interaction parameter, which is positive for a
stable condensate.
To map the NLSE onto the GPE, we define an effective

time τ ¼ z=c. This space-time mapping means that each
transverse plane inside the nonlinear medium is formally
analogous to a 2D Bose gas of photons after the correspond-
ing effective time of evolution τ. Since the z dimension acts
as an effective time dimension, this configuration is referred
as 2Dþ 1 geometry.
The comparison between the NLSE and the GPE yields

expressions for the effective photon mass m̄ ¼ ℏk0=c and
for the interaction term ḡ ¼ −ℏck0n2. In our case, the
stability condition ḡ > 0 corresponds to Δn < 0 (i.e., self-
defocusing regime). One can notice that there is no trapping
potential term in Eq. (1), as fluids of light do not need to be
held in a trap. The term iðα=2ÞE in Eq. (1) corresponds
to absorption and is therefore not present in Eq. (2). For
α ≤ 13 cm−1 (transmission larger than 60%), we verified
numerically that absorption can be neglected since it does
not modify significantly the behavior of our system.
In a weakly interacting BEC the excitation spectrum is

given by the Bogoliubov dispersion relation ΩBðkxÞ [28],
which can be rewritten for a photon fluid as [1]

ΩBðkxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
k2x
2k0

�
2

þ k2xΔn

s
; ð3Þ

where kx is the wave number in the transverse direction.
Within space-time mapping, ΩB has units of an inverse
length. Equation (3) shows two regimes of dispersion, with

a transition that occurs around kx ¼ k0
ffiffiffiffiffiffiffiffiffijΔnjp ¼ 1=ξ with ξ

as the healing length. For kxξ < 1, the dispersion is linear
and Bogoliubov excitations present a phononlike behavior:
ΩB ≈ kx

ffiffiffiffiffiffiffi
Δn

p
. For kxξ > 1, the dispersion becomes quad-

ratic: ΩB ≈ k2x=2k0. In this regime, excitations have the
same dispersion as free massive particles.
Bragg spectroscopy in an atomic BEC relies on counting

the number of scattered atoms as a function of the fre-
quency difference between two Bragg beams. A variant of
this configuration has been presented in [26] and relies on
short Bragg pulses at two symmetrically tilted angles to
imprint a phase pattern on a BEC at time t ¼ 0. The short
pulse results in a broad frequency perturbation, which
ensures the creation of counterpropagating phonons at
wave vectors þkx and −kx, corresponding to a standing
wave in the BEC density. The density perturbation after
a time t, defined as δnðtÞ ¼ jψðtÞj2 − jψðt ¼ 0Þj2, has a
spectrum given by the Bogoliubov dispersion relation.
In [26], the authors measured the spatial Fourier transform
ρkðtÞ of δnðtÞ, and they extracted the Bogoliubov pulsation
from the zero-crossings (in time) of ρkðtÞ.
To design an analogue technique for paraxial fluids of

light, we made two major modifications. First, we only
have access to one value of t which is given, in our analogy,
by the length of the nonlinear medium. Therefore, instead
of probing the density perturbation as a function of time, we
probe it as a function of kx at fixed effective time τ ¼ L=c.
Using only a measurement at the fixed effective time, we
show in the following that we can obtain the dispersion
relation from the minima of δn, and the zero temperature
static structure factor from the maxima of δn.
The second important change concerns the creation of

the phase modulation. Rather than applying a sinusoidal
potential, we can directly imprint a phase on the laser beam
with a spatial light modulator (SLM) and image it on the
input plane of the medium. By imposing a sinusoidal phase
pattern on the SLM with a given wavelength and a given
depth, we create two left and right propagating phonons
(see Fig. 1) with the exact same characteristics as in short
Bragg pulse spectroscopy. This is in fact a general strength
of paraxial fluids of light, since any phase modulation
(analogous to any short external potential) can be applied
on the initial state of our system.
The propagation of the density perturbation δnðzÞ, is

then calculated for a 1Dþ 1 fluid of light with sinusoidal
phase modulation at kx. Using the Bogoliubov approach,
this configuration can be understood as a linear super-
position of plane waves counterpropagating in the trans-
verse plane with opposite wave vectors þkx and −kx and
oscillating in z at the angular frequency ΩBðkxÞ as repre-
sented in Figs. 2(a) and 2(b). Since the incoming phase
pattern is periodic, Fig. 2(b) is an example of the nonlinear
Talbot effect [29,30]. However, no fractal structures are
observed as the modulation used here is a smooth sinus-
oidal grating [31].
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Interference fringes along the transverse axis x with
wave vector kx and fringes along the propagation axis z
(i.e., effective time τ) with frequency ΩBðkxÞ can be
observed. Figure 2(a) presents the simulated pattern in
the noninteracting case while Fig. 2(b) includes repulsive
interactions given by jΔnj ¼ 2.1 × 10−5. The reduction of
the fringe period along z reflects the difference between the
free-particle dispersion (a) and the Bogoliubov dispersion
(b) due to the interaction energy. As mentioned earlier, we
cannot directly observe the time evolution in our paraxial
fluid of light, since we can only see it at the effective times
τ ¼ 0 and τ ¼ L=c. However, we can measure the density
contrast at the end of the medium (z ¼ L) as a func-
tion of kx, defined by C ¼ ðnmax − nminÞ=ðnmax þ nminÞ

and extract the static structure factor SðkxÞ from this
measurement.
The structure factor is the spatial noise spectrum (nor-

malized to 1 for a coherent state). It is defined by

SðkxÞ ¼
hρ2kxi − hρkxi2

N
; ð4Þ

where ρkx is the spatial Fourier transform of δn and N the
total number of photons. It can be shown [26] that the
interference of counterpropagating phonons of wave vector
�kx produces a density modulation

δnðzÞ ¼ USðkxÞ cosðk:rÞ sinðΩBzÞ; ð5Þ

where U is a constant quantifying the excitation strength.
Using the definition of the contrast C in the transverse plan
(r) given above, we obtain

CðkxÞ ¼ jUSðkxÞ sinðΩBzÞj: ð6Þ

In Eq. (6), we can isolate USðkxÞ using the contrast
maximum values. In order to remove the U dependence,
we measure USðkxÞ for the noninteracting case. In this
regime it is known that SðkxÞ is equal to 1 at all kx since the
beam here is a spatially coherent state [28] and therefore U
is equal to the contrast maxima.
To implement this procedure experimentally, we use a

780 nm diode laser for which we can finely adjust the
frequency detuning Δ with respect to the F ¼ 2 to F0 ¼ 2
D2 line of 87Rb. The beam is elongated with two cylindrical
lenses to cover the entire surface of the SLM along the x
direction. A sinusoidal phase modulation along x is imprin-
ted using a SLM and is limited to 0.1 radian so that the
resulting intensity modulation does not locally modify the
nonlinear index Δn. For a given kx, the phase applied on
the SLM is ϕðxÞ ¼ 0.1 cosðkx:xÞ. In order to eliminate
the unmodulated reflection on the SLM, we superpose a
vertical grating to the horizontal sinusoidal one and select
only the first vertical order in the Fourier plane. The SLM is
imaged at the entrance of the nonlinear medium with a
demagnification factor of 3, to increase its resolution. The
beam waists at the medium entrance are wx ¼ 0.15 mm and
wy ¼ 1.5 mm. We consider a local density approximation
in order to compare the experimental data with the one-
dimensional simulations. We verify that the fringe wave-
lengths are in agreement within 1% with the kx imposed on
the SLM.
As a nonlinear medium we used a 6.7 cm rubidium cell

containing a natural mixture of 28% of 87Rb and 72% of
85Rb. The interaction parameter Δn is tuned by adjusting
the cell temperature, hence the atomic density in the cell
[32] and the laser detuning.
One should be careful that the linear absorption α

increases when we tune the laser closer to resonance and

(c)

(d)

(e)

(a) (b)

FIG. 2. (a),(b) The simulated density modulation for medium of
7.5 cm and a transverse wave vector of kx ¼ 36.0 mm−1, with
Δn ¼ 0 (a) and Δn ¼ 2.1 × 10−5 (b). (c),(d) Experimental im-
ages of the density obtained respectively for kx ¼ 27.8 mm−1

(minimum of contrast) and kx ¼ 43.2 mm−1 (maximum of
contrast) in the noninteracting case (Δn ¼ 0). These images
are taken with a large modulation depth for illustration. (e) An
inset of (d).

FIG. 1. Principle of the experiment and simplified setup.
A 780 nm laser beam is elongated in the x direction and
impinges on a spatial light modulator (SLM). The SLM
displays a vertical grating, which imprints a sinusoidal phase
modulation of wave vector kx. The SLM plane is imaged at the
input of the 6.7 cm rubidium vapor cell. This phase modulation
creates two counterpropagating left (L) and right (R) phonons at
þkx and −kx represented in green and orange. Initially in phase
opposition (constant input density), the phonons constructively
interfere after some effective time τ ¼ z=c, giving a maximum
of density contrast. The output plane of the nonlinear medium
(a rubidium vapor cell) is imaged on a camera to study
the fringe contrast at z ¼ L.
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we maintain α ≤ 13 cm−1. The output plane of the cell is
then imaged on a camera. Typical beam images obtained for
the noninteracting case (Δn ¼ 0) are shown in Figs. 2(c) and
2(d) for kx ¼ 27.8 mm−1 (contrast minimum) and kx ¼
43.2 mm−1 (contrast maximum). This noninteracting case is
obtained experimentally by setting a large detuning (Δ ¼
−6 GHz) from the 87Rb F ¼ 2 to F0 ¼ 2 transition.
We then took 475 images of the cell output with modu-

lations ranging from kx ¼ 5 mm−1 to kx ¼ 100 mm−1with a
stepdkx ¼ 0.2 mm−1.Tomeasure thedensitymodulationδn,
we normalize the images by a reference taken without phase
modulation and then select a central window of the fluid [see
Fig. 2(e)]. After integration of the intensity along the y
(vertical) axis, we calculate the contrast which is directly
proportional toδnðτ ¼ L=cÞ. InFig.3,weplot thenormalized
contrast as a function ofkx andhighlight theminima positions
for a noninteracting (Δ ¼ −6 GHz) and a weakly interacting
(Δ ¼ −2.5 GHz) fluid of light. For the latter case, we see a
clear shift of the contrast minima toward smaller values of kx,
which indicates the presence of interactions.
We extract the structure factor from this contrast meas-

urement using the methodology described previously. We
first calibrate experimentally the phase imprinting effi-
ciency of the SLM, the modulation transfer function of the
optical system, and the depth of phase modulation by
measuring the response function U for the noninteracting
case. Since U is not modified while changing Δn, the
structure factor for the interacting case is obtained by
dividing the contrast maxima values for Δn ≠ 0 by this
calibrated value of U in order to obtain a normalization
to 1 at large kx. Experimentally, it corresponds to the ratio
between the red and black maxima for the same p in Fig. 3.
The results are presented in Fig. 4 for a weakly interacting
fluid (Δ ¼ −2.5 GHz). The structure factor is a normal-
ized, unitless quantity, that characterizes the spatial density-
density correlations [19]. Figure 4 clearly shows that SðkxÞ
is highly reduced at low kx (long wavelength). This can be
explained by the creation of correlated pairs atþkx and −kx

which minimize the total energy of the system, known as
quantum depletion [18].
In our experimental configuration the number of points

where this effect is highly visible (when kx < 1=ξ) is limited
by the cell length L. Indeed, if we require that the first
contrast maximum occurs at kx ¼ 1=ξ ¼ k0

ffiffiffiffiffiffiffiffiffijΔnjp
, then the

minimum cell length is given by L ¼ ð2π= ffiffiffi
5

p
k0jΔnjÞ.

To complement our measurement of the structure factor,
we provide a quantitative comparison with the Feynman
relation [20,21,27]:

SðkxÞ ¼
k2x=2k0
ΩBðkxÞ

: ð7Þ

The solid red line shown in Fig. 4 presents this relation
with no adjustable parameters, since the dispersion relation
ΩBðkxÞ at the denominator is measured independently as
explained in the following.
To obtain the dispersion relation, we use the contrast

measured as a function of kx and record the successive
minimum locations in kx shown in Fig 3. Since, we have
created two counterpropagating excitations in the fluid
by imposing a phase modulation, minima occur when
ωðkxÞ ¼ pðπ=LÞ, where p is an integer. In the inset of
Fig. 4, we plot the dispersion relation (in red) by reporting
the kx positions of the contrast minima and assigning
them a frequency pπ=L. We compare it to the parabolic
dispersion (in black) obtained with the same method in
the noninteracting case by setting the fluid laser far-off
resonance.
Fits using Eq. (3) are given in solid lines and they

provide the value of Δn, which quantify the interactions.
The dots are the experimental points and the full lines are

FIG. 3. Contrast for the off-resonance case (grey) with Δn ¼ 0
and for a close-to-resonance set (red) with an input power of
90 mW, a cell temperature of 106 °C, and an absorption of 40%.
For the weakly interacting case, the maximum contrast in the
density standing wave is 0.25, which is within the Bogoliubov
approximation. The shift of the minima of contrast toward the
smaller kx for the −2.5 GHz set, indicated by the black arrow, is
evidence of the nonlinear effect taking place.

FIG. 4. Static structure factor measurement. The experimental
conditions are the same as the red curve of Fig. 3. The dashed
line at SðkxÞ ¼ 1 is the structure factor of a noninteracting gas
(coherent state). The solid red line is the Feynman model given by
Eq. (7) with the parameter Δn ¼ 4.6 × 10−6 extracted from the
measurement of the dispersion relation shown in the inset. Inset:
dispersion relation for the noninteracting case (black) and for the
weakly interacting case (red). Solid lines are fits using Eq. (3).
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fits to the Bogoliubov relation. For the noninteracting case,
we obtain the fit parameter Δn ¼ 0 with an uncertainty
of 2 × 10−7. This value agrees, within the resolution of
our experiment, with the expected quadratic dispersion
ωlin ¼ k2x=2k0 in the absence of interaction. For the
interacting case, the fit of the Bogoliubov dispersion
relation gives a value Δn ¼ 4.6 × 10−6 � 3 × 10−7. This
is the value we used to plot the Feynman relation in order to
compare it with our data without extra adjustable param-
eters in Fig. 4. Using the relation cs ¼ c

ffiffiffiffiffiffiffiffiffijΔnjp
, we can

extract the sound velocity cs from these fits [2,33] and we
obtain cs ¼ 2.1 × 10−3c.
Finally, we evaluate the sensitivity of this method for

resolving weak interaction (small jΔnj). The energy offset
accumulated in the linear part of the dispersion translates
into an energy shift at large kx. The dispersion curve with
Δn ≠ 0 is vertically shifted relative to the noninteracting
one (Δn ¼ 0). We calculate this shift at large kx as

ΩBðkxÞ − ωlinðkxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2xjΔnj þ

�
k2x
2k0

�
2

s
−

k2x
2k0

≈ k0jΔnj:

ð8Þ

The value of Δn is then directly obtained by the difference
with the noninteracting reference at high kx. Knowing
the uncertainty on kx to be dkx ¼ 0.2 mm−1, it is possible
to estimate the smallest nonlinear index value achievable
with this technique to beΔn¼2×10−7 (cs¼0.45×10−3c).
This is more than an order of magnitude better than
previous techniques using a group velocity measure-
ment [2].
Conclusion.—In this work, we present a measurement

of the static structure factor in a paraxial fluid of light
revealing a reduction of the small wave vector fluctuations,
caused by the presence of pair-correlated particles. This
measurement is based on an optical analogue of Bragg
spectroscopy which has proved to be an essential tool to
study ultracold atomic BECs and was missing in fluid
of light platforms. Our results are robust to experimental
noise and in quantitative agreement with the prediction of
the Feynman relation, obtained by extracting the interaction
strength from the experimental dispersion measurement.
This work opens the way to the measurement of Tan’s
contact [34] and the observation of beyond mean field
effects in photon fluids.
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