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We investigate theoretically and experimentally a first-order dissipative phase transition, with diffusive
boundary conditions and the ability to tune the spatial dimension of the system. The considered physical
system is a planar semiconductor microcavity in the strong light-matter coupling regime, where polariton
excitations are injected by a quasiresonant optical driving field. The spatial dimension of the system from
1D to 2D is tuned by designing the intensity profile of the driving field. We investigate the emergence of
criticality by increasing the spatial size of the driven region. The system is nonlinear due to polariton-
polariton interactions and the boundary conditions are diffusive because the polaritons can freely diffuse
out of the driven region. We show that no phase transition occurs using a 1D driving geometry, while for a
2D geometry we do observe both in theory and experiments the emergence of a first-order phase transition.
The demonstrated technique allows all-optical and in sifu control of the system geometry, providing a
versatile platform for exploring the many-body physics of photons.

DOI: 10.1103/PhysRevLett.128.093601

Introduction.—The study of phase transitions and critical
phenomena is at the heart of condensed matter physics and
material science [1]. In classical systems, thermal phase
transitions, such as that from a liquid to a solid phase, occur
at finite temperature and are driven by thermal fluctuations.
In a closed quantum system, phase transitions can happen
at zero temperature, where the system is in its ground state,
driven by quantum fluctuations due to the competition of
noncommuting terms in the Hamiltonian [2]. On the other
hand, open quantum systems subject to driving and dis-
sipation can exhibit dissipative phase transitions for the
nonequilibrium steady state, where the physics is decided
by the rich interplay between the Hamiltonian evolution,
dissipation-induced fluctuations, and driving.

Driven-dissipative phase transitions have been theoreti-
cally studied for various systems, such as photonic reso-
nators [3—16], exciton-polariton condensates [17-20], and
spin systems [21-28]. Experimental investigations have
studied dissipative phase transitions in single-mode semi-
conductor microcavity pillars [29] and superconducting
resonators [30,31]. Recent theoretical works [11,16] pre-
dicted that in a driven-dissipative lattice of photonic
resonators with Kerr nonlinearities a first-order dissipative
phase transition emerges in two-dimensional (2D) lattices
(with periodic boundary conditions), while in 1D chains
there is no critical phenomenon. Note that in general the
emergence of a phase transition can be drastically affected
by its spatial dimensionality [2].
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In this work, we explore both theoretically and exper-
imentally the role of spatial dimension for a dissipative
phase transition using a planar semiconductor microcavity,
where polariton excitations are injected via quasiresonant
driving. We propose theoretically and implement exper-
imentally an all-optical way to enforce the dimensionality
via the spatial shape of the driving beam. In particular, we
consider a top-hat spot with constant driving intensity. The
shape of the spot can be tailored in sifu to create a 2D or 1D
geometry [32]. This scheme also features ‘“diffusive”
boundary conditions, since the polaritons can diffuse away
from the driven region. While increasing the spatial size of
the spot, which is the thermodynamic limit in the present
context, we show that a first-order phase transition occurs
using a 2D geometry, while it disappears in the 1D
configuration, providing a first experimental demonstration
of the role of dimensionality in driven-dissipative phase
transitions of photonic systems.

Theoretical model.—Consider a planar semiconductor
microcavity in the strong light-matter coupling regime,
where polariton excitations are coherently injected by a
quasiresonant optical drive. The system dynamics can be
described in terms of the lower polariton field ¥ (r, 7) [33],
where r = (x,y) are in-plane coordinates parallel to the
cavity mirrors. Within the mean-field approximation [34],
the time evolution of the mean field y/(r,7) = (y(r, 7)) in
the frame rotating at the driving frequency w, can be
described by the dynamical equation [33]:

© 2022 American Physical Society
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Sketch of the experimental setup. The laser is slaved using a proportional-integral-derivative (PID) controller, an arbitrary

function generator (AFG) and an acousto-optic modulator loop to produce a power ramp; its intensity profile is reshaped using a spatial
light modulator. Two photodiodes (PD) measure the power inside disks of diameter [, = 5 um at the center of the beams at the sample
input and output. (a) Pump intensity profile shaping method: the light (dark) beam represents the zero (first) order of the diffracted beam
from the SLM. (b) Output intensity from the sample as a function of the input intensity, plotted for a pump detuning of A = y and a 2D
top-hat drive of diameter / = 30 um. (c) SLM phase pattern (upper) for obtaining 2D (left) and 1D (right) flat-top beam profiles (middle)

of different sizes and intensities (bottom).
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where 7 is the Planck constant, A = @, — »f3° is the
detuning of the drive with respect to the X = 0 mode of the
lower polariton branch, m is the lower polariton effective
mass, g is the polariton-polariton interaction constant, y is
the lower polariton loss rate, and F(r) encodes the
amplitude and spatial shape of the coherent drive.

In the following, we adopt a top-hat driving scheme [see
Fig. 1(c)], where the amplitude F(r) is defined by

F(r) = Fly(r), (2)

where 1, is the indicator function of a compact region A of
the plane, such that the drive is constant within the region A
and zero elsewhere. To force a 1D geometry, the driving
region will be chosen as an elliptical spot with fixed minor
axis b and variable major axis [ > b. To induce a 2D
geometry, instead, the driving region will be chosen as a
circular disk of variable diameter /. Note that the only
difference between the 1D and 2D configurations is the
spatial shape of the top-hat drive [38], while the planar
microcavity sample is the same. The boundary conditions
in terms of the driven region are therefore of diffusive

nature, which means that the polaritons can freely diffuse
and decay out of the driving spot.

In order to probe a dissipative phase transition with
respect to the driving intensity I = |F|?, we will be
interested in the steady-state polariton density averaged
over a disk D of diameter [, at the center of the driven
region:

1
ny = —/ drlyss(r)
D

P u(D)

g 3)

where (D) denotes the area of the disk D and g is the
steady-state field such that 9w = 0. In the thermody-
namic limit of / — oo, a transition between two phases is
characterized by the nonanalytical behavior of n3y when I
tends to some critical value /.. Formally, a transition of
order M can be described as [39]

M

lim | — limn$S
6IM [0 D

Jim = +o0. (4)

In this Letter we will present a first order (M = 1) phase
transition, that is a discontinuity of steady-state polariton
density n3y with respect to the drive intensity 7, which are
the two quantities that we measure in our experiments.

Experimental setup.—The sample used in our experi-
ments is a 21 GaAs high-finesse semiconductor
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microcavity cooled to the temperature of 4 K in an
open-flow helium cryostat. The cavity embeds three
Ing 04Gay gsAs quantum wells (QWs) between a pair of
distributed Bragg mirrors made of 21 (top) and 24 (bottom)
alternated layers of GaAs/AlAs. Each QW is located on an
antinode of the cavity electromagnetic field to have a strong
coupling of QW excitons to the cavity photons, giving rise
to the exciton-polariton modes. The cavity spacer has a
small wedge (Aw ~0.7 ueV/um) whereby the photon-
exciton detuning can be finely adjusted to around
0 meV by changing the excitation position. At this detuning
the lower polariton branch has an effective mass m =
5.7 x 10~°m,, where m, is the bare electron mass. The
Rabi frequency, the lower-polariton decay rate, and the
polariton-polariton interaction constant are, respectively,
measured to be 7Qr = 5.1 meV, Ay = 0.08 meV, and
hg =0.01 meV - um? [40].

The polaritons are excited by a circularly polarized
continuous-wave  Ti:sapphire laser whose output
Gaussian mode is reshaped with a spatial light modulator
(SLM) (Fig. 1). The SLM liquid crystal matrix plane is
imaged on that of the cavity and contains a blazed grating
of tunable contrast, which diffracts in the first order a
fraction of the driving field intensity. The first order
component is sent at normal incidence through the cavity,
while the non-diffracted part (zero order) is blocked in the
Fourier plane with a slit [Fig. 1(a)].

By locally adjusting the grating contrast, we modify the
intensity distribution between the zero and the first orders.
In this way, with a well-calibrated anti-Gaussian contrast
gradient—minimum at the center and maximum at the edge
of the spot—we produce in the first order a flat top-hat
intensity profile. Then, by adding a non-diffracting mask
over the grating, one can select which area of the beam
profile is reflected into the first order. Thus, the shape of the
driving spot in the cavity reproduces the one defined by the
contours of the mask [Fig. 1(c)]. With this reshaping
method, we can go from a 2D circular driving spot to a
1D elliptical one, by configuring the SLM respectively with
a blazed grating masked by a circular aperture or by a
narrow slit (see Fig. 1). In the following, the spot sizes in
the cavity plane are tuned by changing the mask dimension.
For the 1D geometry, the minor axis of the intensity profile
is set at b = 6.4 ym [41].

In order to probe the phase transition, an acousto-optic
modulator (AOM) modulates the driving field power with a
low-frequency ramp (200 Hz) of sufficient amplitude to be
able to scan a wide range of polariton density. The input
and output intensities of the cavity are measured using two
photodiodes which detect through pinholes (of diameter
[p =5 pm [42]) at the center of the driving spot. Thus,
the polariton density is directly observed as a function of
the driving intensity by plotting, one with respect to the
other, the powers detected by the two photodiodes [see
Fig. 1(b)].

Results and discussion.—To investigate the steady-state
behavior of the system and probe the phase transition, we
solved Eq. (1) numerically with the experimental para-
meters introduced in the previous section [43] and the
detuning is set to A = y in the simulation (same value as in
the experiments), which is in the regime where a driven-
dissipative Kerr cavity exhibits mean-field bistability
[29,44]. This can be equivalently viewed as the approxi-
mation of considering only the X = 0 mode under uniform
drive F [9], since the steady-state mean-field equation can
be written as

2
4
lwss|? | (A — glwss|?)? +Z = |FJ*. (5)

Note that the nonlinear relation between [ygg|> and I =

|F|? predicts a bistable regime if A/y > \/3/2, as shown by
the dashed line in Fig. 2(d), that we will compare with our
numerical results. In all the simulations, the diameter of the
probing disk D is set to I =5 um and in the 1D
configuration the minor-axis of the driving spot is
b = 6.4 uym, which are also the values adopted in our
experiments.

In Figs. 2(a)-2(c) [2(d)-2(f)] we present our theoretical
and experimental results for the 1D [2D] driving geometry.
In both configurations, the steady-state polariton density
nyy averaged over the probing disk increases as a function
of the driving intensity / and the maximum slope S(I) =
max; {[On3 (1,1)]/OI} of the crossover from low density to
high density (obtained with a noise-robust numerical
differentiation method [45]) is monitored as a function
of the top-hat size [, which allows us to probe the
emergence of phase transitions defined by Eq. (4). In the
1D configuration, where the top-hat drive takes the shape of
an elliptical spot with fixed minor axis, the slope S(I)
saturates to a finite value with low enhancement
[S()/S(ly) <2 with [y =15 um for all values of I
measured] as the major axis [ increases, signifying a
smooth crossover with no phase transition in the thermo-
dynamic limit.

In sharp contrast to the 1D configuration, with a 2D
driving geometry, the slope presents a significant enhance-
ment (by a factor of around 40 in theory, and a comparable
value in the experimental results) as the top-hat diameter /
increases, suggesting the emergence of a first-order phase
transition in the thermodynamic limit of [ — co. We would
like to also point out that, while in the 1D configuration we
observed no bistability, in the experiments with 2D
geometry we observed slight bistability for top-hat diam-
eters / = 35 pm [in this case we consistently took the lower
branch when computing the slope (the higher one would
give similar results)], which is consistent with the critical
slowing down [34] of the dynamics as the system
approaches criticality in two dimensions. Note that for
S(1)/S(ly) Z 10 [corresponding to a top-hat size of [ = 30

093601-3



PHYSICAL REVIEW LETTERS 128, 093601 (2022)

1 10 (a) 1D Th L.O{ m)yDE - 10 (¢) 1D Max sl
a eory * XP. > C lax s ope
“n / 8_ —8— Theory
[N E = & Exp.
40 ‘g E = 4 ’
—_ i . (0
&5 205 2
35 2
01 ' 0.01 . . .
g 30 0 10 0.0 0.5 1.0 15 25 35 45
=
1.0 (f) 2D Max slope
— 40 1
= 9] —e— Theory
25 “é = $  Exp.
= =
£ 0.5 220
20 = = 201
IS “
S
15 0.01¢ . . () | em——GETTTT
0.0 0.5 1.0 15 25 35 45

I/(v*um™?)

I (arb. units)

FIG. 2. (a) [(b)] Theoretical (experimental) results for the steady-state polariton density nSDS averaged over the probing disk as a
function of the drive intensity / for different top-hat spot sizes [ (see color bar) in the 1D configuration with detuning A = y. (c) The
maximum derivative S(/) for each top-hat size / normalized by the maximum derivative at [, = 15 pum, for both theoretical and
experimental results (see legend). (d)—(f) The same quantities as in (a)—(c) for the 2D configuration. The dashed line in (d) is the
prediction of the mean-field theory in Eq. (5). Note that as the top hat increases in size, the slope in the 1D configuration quickly
saturates for increasing size /, while in the 2D configuration the slope sharply increases in both theory and experiment, as expected for a

first order phase transition.

in the experimental results in Fig. 2(e)], the curve becomes
almost vertical [tan~! (10) ~ 84°], which makes the numeri-
cally computed derivatives more sensitive to small errors in
the measurements, resulting in the relatively larger error
bars on the experimental curve in Fig. 2(f) in this
regime [46].

Conclusion and outlook.—In this work, we have dem-
onstrated both experimentally and theoretically the emer-
gence of a first-order dissipative phase transition of
polaritons in a planar microcavity subjected to a top-hat
driving scheme with naturally diffusive boundary condi-
tions. We have shown that the emergence of criticality in
such photonic system with Kerr nonlinearity is determined
by the spatial dimension via the geometry imposed by the
top-hat driving spot: a 1D geometry leads to a crossover
behavior with no phase transition, while a 2D geometry
shows a behavior consistent with a first-order transition
between two phases with different densities, which, to the
best of our knowledge, is the first experimental demon-
stration of the role of dimensionality in determining
criticality in driven-dissipative photonic systems.

The approach presented in this work allows the study of
both 1D and 2D problems using the same planar cavity. The
ability to control the criticality of the system via the spatial
profile of the drive can also bring new insights to the design

of polaritonic devices such as all-optical polariton tran-
sistors [47]. This scheme can be potentially generalized to
more complicated geometries imprinted by the shape of the
driving field, such as fractal patterns or quasiperiodic
lattices, which could open the possibilities for studying
effects of gradual changes of the dimensionality on phase
transitions, paving the way to a novel approach to exploring
the many-body physics of photons and critical phenomena.
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