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Abstract. This paper examines the validity of the two raster sequences
distance transform algorithm, originally given by Rosenfeld and Pfaltz for
the distance d4, then extended to the weighted distances by Montanari
and Borgefors. We show that the convergence in two passes does not
hold for all chamfer masks, and we prove that the norm condition is a
sufficient condition of validity for the algorithm.

Keywords: discrete geometry - distance transforms - weighted distances.

1 Introduction

Given a binary image A composed of shape points and background points, a
Distance Transform (DT) of A is a copy where each shape point is labelled to
its distance from the nearest background point. Both the computation and the
result properties depend on the considered distance function. The computation
of a DT is generally a global operation, which can be quite expensive; however
for some distance functions there are very efficient algorithms based on local
operations, using sequential or parallel approaches.

DTs have been extensively studied and have played an important role in Dis-
crete Geometry and Image Analysis since the late 1960s. In the founding paper
[1], Rosenfeld and Pfaltz introduced the notion of DT, and presented a two raster
sequences DT algorithm in 2D for the direct neighbourhood distance dy. They
also proved that for any given local transformation on an image, the sequential
and parallel approaches are mathematically equivalent. Following that, the no-
tion of weighted (or chamfer) distances has emerged in [2][3][4] together with a
rather straightforward extension of the DT algorithm.

We recall some definitions and hypotheses from [5]. A weighting (¥, w) is a
displacement ¥ # 0 associated to a weight w > 0. A chamfer mask M is a non-
empty set of weightings, such that the set of displacements contains at least a
basis of the image points, and such that V(¢,w) € M, (—v,w) € M (central-
symmetry). Two points P and @ are M-adjacent if there exists (¢,w) € M
such that Pz) = ¥. Two points P and @ are M-connected if there exists a
path of M-adjacent points joining them, that is, a sequence of distinct points
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FPy=P, P, ..., P, =Q with P, a M-neighbour of P,_1, 1 <14 < k. The cost of
the path is the sum of the weights of the displacements. The weighted distance
dam(P, Q) is the cost of a path having minimal cost:

dM(P,Q):min{ZAiwi SN = PQ, (5, wi) € M, AieZ+}. (1)

Equivalently, we can consider the weighted geometric graph (V, &), where
the set of vertices V' corresponds to the image points, and the set of edges G is
defined as follows: each vertex P € V is connected to its M-neighbours P + ¢’ by
an edge having the weight w, V(¥, w) € M s.t. P+7 € V. The weighted distance
da is then the intrinsic distance of this weighted graph, and has always the
properties of a metric (positive definite, symmetric and triangular) since the
graph is non oriented and the weights are strictly positive by hypothesis.

Let us go back to the origins. The first weighted distances d4 and dg where
presented in [I]]; their mask correspond respectively to the 4- and 8-neighbourhood
in Z2, each displacement having the weight 1; they coincide with the norms
0(Z) = |z1] + ...+ |2n]| and £oo (Z) = max(|21], ..., |2x,|) in Z™.

In [2], Montanari has introduced a family of weighted distances in Z?, where
a mask My, is the set of the displacements ¥(z,y) in the (2k + 1) x (2k + 1)
neighbourhood (i.e. —k < z,y < k), such that (x,y) is visible (from the origin),
i.e. ged(x,y) = 1. The weight of any displacement ¥(x, y) is its Euclidean length
v/ 22 + y2. The distance values obtained d 4, are no longer integers, but can give
a good approximation of the Euclidean distance dg (depending on k). The two
raster sequences DT algorithm is extended to the masks My, and the convergence
in two passes is shown.

The weighted distances using integer weights, or chamfer distances, has then
been popularized for Z? and Z" by Borgefors in [3][4]. The merits of several
masks and weights are discussed so as to approximate dg in an efficient manner,
and some conditions are given to choose the weights in order to establish direct
distances formulas. The two raster sequences DT algorithm is presented in Z™.
But the problem is that the convergence in two passes is not actually shown;
and if we look closer, it cannot be deduced from the Rosenfeld and Pfaltz or
Montanari proofs for all chamfer masks.

For these reasons, we propose to study the validity of the DT according to the
mask, see some counter-examples, and give a sufficient condition of convergence.

The remainder of the paper is organized as follows: the section [2 first recalls
the principle of the parallel and sequential DT algorithm for d4 and dg; we then
examine in section Bl the original proof of [I], by completing it with a missing
hypothesis; the section ] presents an adaptation of the sequential DT algorithm
for chamfer masks in Z™, in order to check the number of passes necessary for
the convergence; in section [B, we study a counter-example which shows that the
convergence does not always hold in two passes; after that in section [fl we show
that the sequential DT algorithm always converges in two passes when using
chamfer norms, and conclude in section [7].
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2 Distance transformations in Z? for d, and ds

Let A = (a;,;) be an input image, where a; ; denotes the value of the point at
row ¢ (1 <4 < m) and column j (1 < j < n); the foreground points have value 1
and the background points 0. Given a chamfer mask M, the goal is to compute
the DT D = (d; ;) where d; ; is the distance da¢ to the set of 0’s (supposed
non-empty) coming from A. For any weighting (¢, w) € M we denote by (v;, v;)
the coordinates of .

Here is the naive parallel algorithm to compute DT. At step 0, let BY be a
copy of A, where the 1’s are set to oo, or a sufficient large value. We compute
for each step k > 0 the image B" = (b}';), where

(2)

itvi,j+v;

. B 1<it+v;,<m
k B k 1 . = —~ [ — )
bi; = m{b +w'(v’w>€M’1§j+vj§n }

The process is repeated until no point value changes; the number of iterations
is bounded by the maximal number of displacements in a minimal M-path, and
can be quite large.

The same method can be processed in an iterative manner on a single image
B. The order in which we compute the b; ; is arbitrary, and the convergence
rate can be greatly increased by a clever choice of the order. The sequential DT
algorithm of Rosenfeld and Pfaltz takes advantages of this idea, an converges
in only two raster sequences on the image. Here is their original algorithm,
presented in [I] for the distance dy.

The forward scan processes the image row by row in the raster sequence
11, -5 Qlmy G215 «--5A2m, -« Gm 1, ---,0m,n; the backward scan processes
the points in the reverse order. During the forward scan the function f; is applied
on A to obtain the image B, then during the backward scan the function fs is
applied on B to get the image C. These functions are defined by:

fl(bi,j) =0 ifam»:O,
= min (bifl’j +1 ;bi,jfl + 1) if Qi 5 = 1 and (’L,]) 7§ (1, 1),
=pu if a; ; =1 and (i,7) = (1,1);

fa(cij) = min (b j, cip1j +1,¢i541 +1).

The value p is chosen to be an unattainable distance value in the image, e.g. m+n
(in the paper) or co, and is set as an initialization for the top left point (1,1).
The min’s are only evaluated on the neighbours inside the image; an alternative
option is to consider the value u for neighbours who are outside the image.

The algorithm can be easily adapted to ds by adding the indirect neighbours
(t—1,7—1)and (i —1,j +1) in the min for fi, and (¢ +1,7—1), (i +1,7+1)
in the min for fs.

Figure [l shows an example with d4 and Figure 2] with dg. For simplicity, we
have considered in the min’s that pu + 2 = p, Vo > 0.
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111 11 RN TRNTRN RN 32 1 2 3
11 0 11 f—1> o 071 2 & 21 01 2
111 11 o 1123 32 1 2 3

Fig. 1. Two raster sequences DT algorithm for ds on a 3 x 5 image.

11 111 RN RN TR TR 2 1 1 1 2
1 1.0 11 f—1> o 071 2 & 21 01 2
11111 w1l 11 2 2111 2

Fig. 2. Two raster sequences DT algorithm for ds on a 3 x 5 image.

3 Original proof for the two raster sequences DT

The original proof in [I §4.2] is rather compact; we will develop it and show
that there was a missing hypothesis. The proof is constructed by induction for
d4 in Z?; the goal is to show that after applying fi and fo, the obtained image
C satisfies C = D (using the notations of section [2]).

On the base case it is noted that if a; ; = 1 and a direct neighbour inside the
image is 0, evidently ¢; ; = 1, and conversely.

The original induction hypothesis is: suppose for a given k& > 1 that
Cij = di)j V’L,] s.t. di)j <k. (3)

Hence Vi, j we have
di)j <k = Cij = di)j ; (4)

but this does not exclude the existence of cases such as
diﬁj >k and Cij < k. (5)

In fact, for the rest of the proof, we will have to exclude these cases in two places.
The (extended) induction hypothesis has thus to be: suppose for a given k > 1
that

Cij = di)j V’L,] s.t. d@j <k or Cij < k. (6)

We therefore further assumed that
Cij < k = Cij = di)j . (7)
Remark. By @) we have d; ; <k = ¢;; <k, thus

Ci,j >k = diﬁj > k; (8)
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moreover, by (7)) we have ¢; ; <k = d;j <k,sod;; >k = c¢;; > k; hence
Ci,j >k = diﬁj > k. (9)

We continue the induction by studying the case where ¢; ; = k. By (8) we
have d; ; > k. If d; ; = k then ¢; ; = d; ; and the proof is done. Let us suppose
that ¢;; = k and d; ; > k. By definition of d4, since d; ; > k, the four direct
neighbours are > k :
di1; >k
dijo1>k| dig >k |dij-1 >k - (10)
dit1,; 2k

Thanks to the extended hypothesis, we have by ()

dijy1>2k = cij >k,

dit1; =2k = cip15;>Fk, (1)
hence during the computation of ¢; ; by fo in backward sequence we have
bl,j
Cij = min Ci,j+1 +1 (Z k + 1) ) (12)

ciy1;+1 (> k+1)

thus ¢;; = k = b;; = k. However, when calculating b; ; by f1 in forward
sequence we have applied

mdzmm{@FJ+1, (13)

thus b;; =k = bi_1; =k —1 or b;;—1 = k — 1. Suppose that the former
holds, that is b;_1 ; = k — 1. During the calculation of ¢;_1 ; by f2 we have

Ci1,j = min Ci—1,j+1 + 1 (14)
Cij + 1

therefore Ci—1,5 < k—l; but difl)j > k by (DIID SO diflﬁj 75 Ci—1,5, in contradiction
with the extended hypothesis since c¢;—1 ; < k. O

This proof can be easily extended for dg by adding the four indirect neigh-
bours in the min’s. More generally, the algorithm and the proof can be extended
in Z™ for the distances d; and d, induced by the ¢; and ¢, norms.

It should be noted that the algorithm can also be adapted to chamfer masks
in Z™ (see [4]), but we will show further with a counter-example that the con-
vergence in two scans is not always guaranteed for any chamfer mask. At the
proof level, we can see that this proof cannot be extended either, because the
inequations are performed on (4, j)-neighbours only, and they use the fact that
the distance values are consecutive integers.
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4 Sequential DTs for chamfer masks in Z"

We present an adaptation of the sequential DT in Z™ which is a bit hardened to
handle counter-examples masks.

The masks need to be split in two parts for the forward and backward scans.
Using coordinates (z1, ..., 2,) € Z", let us consider the forward raster sequence
in ascending order: for z,, for ,_1, ..., for x;.

The half-space constituted by the mask points after the origin in the raster se-
quence is H" = Ui<kp<n {@n =0, ..., zr41 = 0, z; > 0 }. Given a chamfer mask
M = {(¥,w) : T € Z"}, we define the half-mask M" = { (7,w) e M : 7€ H"}.
During the sequential DT, the forward raster sequence will then use the half-
mask M \ M", whereas the backward sequence will use M".

The computation of one sequential DT scan is presented in Figure[3l, for con-
venience in Python language in Z2. To extend the function in higher dimension
it is sufficient to add coordinates and loops for the additional dimensions.

1| def compute_one_DT_scan (img, half_mask, scan_num)
2 forward = scan_num % 2 == 1
if forward :
i_start = 0 ; i_end = img.m # 0 to m-1
j_start = 0 ; j_end = img.n ; step = 1 # 0 to n-1
else :
7 i_start = img.m-1 ; i_end = -1 # m-1 to O
8 j_start = img.n-1 ; j_end = -1 ; step = -1 # n-1 to O
9 changed = False
10 for i in range (i_start, i_end, step)
11 for j in range (j_start, j_end, step)
12 if img.mat[i][j] == 0 : continue
13 min_w = -1 if scan_num == 1 else img.mat[i] [j]
14 for p_i, p_j, p_w in half_mask :
15 q_i =1 - p_i*step ; q_j = j - p_J*step
16 if not img.is_inside (q_i, gq_j) : continue
17 if img.mat[q_il[q_jl == -1 : continue
18 q_w = img.mat[q_il[q_j] + p_w
19 if min_.w == -1 or q_w < min_w : min_w = q_w
20 if img.mat[il[j] != min_w : changed = True
21 img.mat[i] [j] = min_w # can be -1
22 return changed

Fig. 3. Computation of one sequential DT scan in Z> with u = —1.

The input and output image is img. The coordinates are 0 < i < img.m for
x2 (or y) and 0 < j < img.n for x; (or x); the point values are accessed by
img.mat[i] [j]. The method img.is_inside(i,j) returns True if the coordi-
nates are inside the image. The parameter half_mask stores the M" weightings
as a list of tuples. The direction of the scan (forward or backward) is deduced
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from the scan number scan_num line 2. The loop step value is also used line 15
to compute the displacements of the half mask for the current scan direction.

The function is written with the special value y = —1 (in red). It indicates the
unattainable distance value for the min’s, as well as the non currently affected
point values in the image.

The computation of the DT in two raster sequences is done by calling twice
the function compute_one_DT_scan with the scan number, see the function
compute_sequential_DT_in_two_scans in Figure[d.

def compute_sequential DT_in_two_scans (img, half_mask)
2 compute_one_DT_scan (img, half_mask, 1)
compute_one_DT_scan (img, half_mask, 2)

-

def compute_sequential DT_multi_scans (img, half_mask)
scan_num = 1

7 while True :

8 if compute_one_DT_scan (img, half_mask, scan_num)

9 scan_num += 1

10 else : break

11 return scan_num

Fig. 4. Sequential DT algorithms in Z2.

As for the parallel DT computation, the sequential DT can be performed
scan by scan until no point value changes (all paths are propagated and con-
vergence is reached). For this purpose, the function compute_one_DT_scan re-
turns a boolean value changed, which is used to stop the loop in the function
compute_sequential DT_multi_scans in Figured.

5 Counter-example for the two raster sequences DT

We present now a simple counter-example, which shows that the convergence of
the DT in only two raster sequences does not hold for all chamfer masks.

One can imagine any kind of mask, see for instance [5], p. 42] for a gallery. In
the literature, the most common category of studied masks are grid-symmetrical
(8-symmetrical in Z?2, 48- in Z3, (2"n!)- in Z"). The weightings are chosen in the
first octant (also called generator) 0 < x,, < ... < x1, then the grid symmetries
are performed to populate the mask. For efficiency, the weightings are usually
chosen among the visible points, because each visible point will generates its
periods if the mask has the good properties (see further).

In Z2, the first visible points in the first octant are denoted by a = (0,1)
(still using coordinates in the order (z2,21)), b = (1,1), ¢ = (1,2), d = (1, 3),
e = (2,3), etc. A grid-symmetrical mask constituted by a set of weightings (v, w)
where v is a visible point is denoted by ((v,w),...). For instance, the mask for
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d4 is denoted by ((a, 1)), the mask for ds is ((a,1), (b,1)), the mask for the
chamfer distance 5,7,11 [4] is {(a,5), (b, 7), (c,11)), and so on.

To find counter-examples it is sufficient to choose some displacements, loop
on several weights, and compute the DTs on images of several sizes, where
all points have value 1, except one point which has value 0 in the centre of
the image. For each trial we can compare the results for the parallel algo-
rithm and those of compute_sequential DT_in_two_scans, or run the func-
tion compute_sequential DT_multi_scans and check if it returns a number of
scans > 3.

We have found a very simple counter-example using only knight moves, which
is the mask ((c, 1)), for any image size larger then 3 x 3. The Figure Bl shows the
full mask and the two half masks.

Fig. 5. Mask ((c, 1)) around the origin O: (a) full mask, (b) forward mask, (c¢) backward
mask.

The mask {((c,1)) is a chamfer mask because the basis vector (0,1) can be
obtained using the symmetrical displacements of ¢, by (—=1,—-2) + (—1,2) +
(2,1) = (0,1), and the same by symmetry for (1,0).

The FigureBlshows the parallel passes for a 3 x4 image; 6 passes are necessary
to reach the correct DT values. On figure [ we can see that the raster sequences
DT algorithm also needs 6 passes: 5 to converge and the sixth to detect no
changes and stop.

1 1 4 1 1
W 3 4 u 3 4 3 4 3
12 1 12 4 1 1

Fig. 6. Parallel DT for ((c,1)): (a) original image, (b) initialization, (c-h) passes 1-6.
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11 1 B 1 2 pop 1 2 pop

11 1 w0 pw w0 w wop 003
@ DRIy e LIy B2

1 2 1 1

4 pu 3 4 3 4 3

1 2 I 1 1

Fig. 7. Sequential DT for ((c,1)): (a) original image, (b—g) passes 1-6, (b,d,f) forward
passes, (c,e,g) backward passes.

Finally, we remark for the mask ((c,1)) taken as a counter-example, that

— the necessary sequential passes number depends on the image size, and may
decrease a little bit when the size grows;

— the passes number does not depend on the chosen ¢ weight;

— we can replace ¢ by any visible point (1,2k), k¥ > 1 and still get a chamfer
mask, since k(—1, —2k) + k(—1,2k) + (2k,1) = (—2k,0) + (2k,1) = (0, 1).

6 Validity holds for chamfer norms

A metric d in Z™ induces a norm g defined by g(q — p) = d(p, q) if d satisfies
the property of homogeneity over Z. A chamfer norm is a norm induced by a
chamfer mask.

For instance, the masks ((a, 1)) (for d4), ((a, 1), (b, 1)) (for ds), ((a, 3), (b,4))
and ((a,5), (b,7), (c,11)) all induce distance norms, but {(c, 1)) clearly not (no
homogeneity: let P = (0, 1), then d(O, P) = 3 and d(O,2.P) = 2 # 2.d(O, P)).

The chamfer norms have remarkable properties: they allow to completely
characterize the geometry of the distance balls, to give direct distance formulas,
and to determine the structure of minimal paths. Several conditions for being a
chamfer norm in Z™ have been established in [5, §4.3.4] and [0, §4.3.2]. Given a
chamfer mask M, we call rational ball the set

—

B%zconv(% : (ﬁ,w)EM); (15)

then M induces a norm if and only if it exists a triangulation of Bﬁa in uni-
modular cones of apex O. Now suppose that M induces a norm and let C be
such a cone, then C is bounded by a subset of n weightings of M, denoted by
M|e = {(@],w}), 1 <i<n};moreover, for each point P in C, there is a minimal
path from O to P which is a linear combination \¥{ + ...+ A\, 0, \; € Zy of
displacements from M|c, and whose intermediate points are all included in C.
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Proposition 1. Let M be a chamfer norm mask, then the two raster sequences
DT algorithm provides the correct DT values for da,.

Proof. Let P be afeature point currently evaluated during a raster sequence, and
Q@ a closest background point. Consider the unimodular cone C of apex P which
contains a minimal M-path P from P to @, and the set M|¢ of weightings which
are bounding C. Then P is a sequence of distinct points Pp = P, Py, ..., P, =Q
with P; a M|c-neighbour of P;_1, 1 <i < k.

The cone C is either (a) contained in the half-space P — H" = { P — OX :
X € H"™} (the points before P in the forward scan), see Figure B; (b) in the
half-space P + H™ (the points before P in the backward scan); or (c) intersects
both half-spaces.

In the case (a) each P; is contained in the half-space P;,_; — H", 1 < i <k,
so during the forward scan, each P; is evaluated before P;_i. As Pr_1 is an
M |c-neighbour of P, = @, the min computation will give the correct associated
weight value in the DT for Px_1, an so on from Py_; to Fp.

In the case (b), the same reasoning can be made using P;_1 +H" during the
backward scan.

In case (c), if @ € P —H", then a minimal path can be chosen such that all
the path points are included in C N (P — H™), so we can revert to case (a); the

same for Q € P+ H" and case (b). O
\
C @ /
| Vo A
\ Py /
S /d //
\\ // / PQ o fHu
\ Pé ’
,,,,,,,, o - - L ,
\ / /
\ /
Ao
. P
| P+ H"

Fig. 8. Case (a) for the proof of proposition [, here in Z.

7 Conclusion and future work

In this paper, we have improved the proof of [1] for d; and d,, and proposed a
hardened raster sequence DT algorithm for the chamfer masks. We have shown
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with a counter-example that the convergence does not always hold in two passes
for all chamfer masks, and we have proved in proposition [I] that the two raster
sequences DT algorithm provides the correct distance values for any chamfer
norm.

It can be pointed out that the norm condition is sufficient but non necessary.
For instance, the algorithm holds for the following non-norm chamfer masks:
((a,1), (b, 1), (¢, 1)), {(a,1), (b,3), (c.2)), ((a,2), (b,3), (c.4), ((a, 1), (c. 1)),
((a,2). (c,3)).

In future works, it would be interesting to investigate if necessary conditions
could be established on non-norms chamfer masks, to predict the number of
passes for their convergence, and also to study the convergence for the reverse
distance transform. This work on weighted distances might be extended on semi-
regular grids, or other families of weighted geometric graphs. One could finally
relate this work to ns-weighted distances, of which weighted distances are a

special case [6][7].
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