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Abstra
t. This paper examines the validity of the two raster sequen
es

distan
e transform algorithm, originally given by Rosenfeld and Pfaltz for

the distan
e d4, then extended to the weighted distan
es by Montanari

and Borgefors. We show that the 
onvergen
e in two passes does not

hold for all 
hamfer masks, and we prove that the norm 
ondition is a

su�
ient 
ondition of validity for the algorithm.

Keywords: dis
rete geometry · distan
e transforms · weighted distan
es.

1 Introdu
tion

Given a binary image A 
omposed of shape points and ba
kground points, a

Distan
e Transform (DT) of A is a 
opy where ea
h shape point is labelled to

its distan
e from the nearest ba
kground point. Both the 
omputation and the

result properties depend on the 
onsidered distan
e fun
tion. The 
omputation

of a DT is generally a global operation, whi
h 
an be quite expensive; however

for some distan
e fun
tions there are very e�
ient algorithms based on lo
al

operations, using sequential or parallel approa
hes.

DTs have been extensively studied and have played an important role in Dis-


rete Geometry and Image Analysis sin
e the late 1960s. In the founding paper

[1℄, Rosenfeld and Pfaltz introdu
ed the notion of DT, and presented a two raster

sequen
es DT algorithm in 2D for the dire
t neighbourhood distan
e d4. They

also proved that for any given lo
al transformation on an image, the sequential

and parallel approa
hes are mathemati
ally equivalent. Following that, the no-

tion of weighted (or 
hamfer) distan
es has emerged in [2℄[3℄[4℄ together with a

rather straightforward extension of the DT algorithm.

We re
all some de�nitions and hypotheses from [5℄. A weighting (~v, w) is a
displa
ement ~v 6= ~0 asso
iated to a weight w > 0. A 
hamfer mask M is a non-

empty set of weightings, su
h that the set of displa
ements 
ontains at least a

basis of the image points, and su
h that ∀(~v, w) ∈ M, (−~v, w) ∈ M (
entral-

symmetry). Two points P and Q are M-adja
ent if there exists (~v, w) ∈ M

su
h that

~PQ = ~v. Two points P and Q are M-
onne
ted if there exists a

path of M-adja
ent points joining them, that is, a sequen
e of distin
t points

⋆
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2 E. Thiel

P0 = P, P1, . . . , Pk = Q with Pi a M-neighbour of Pi−1, 1 ≤ i ≤ k. The 
ost of

the path is the sum of the weights of the displa
ements. The weighted distan
e

dM(P,Q) is the 
ost of a path having minimal 
ost:

dM(P,Q) = min
{

∑

λiwi :
∑

λi~vi = ~PQ, (~vi, wi) ∈ M, λi ∈ Z+

}

. (1)

Equivalently, we 
an 
onsider the weighted geometri
 graph (V,G), where
the set of verti
es V 
orresponds to the image points, and the set of edges G is

de�ned as follows: ea
h vertex P ∈ V is 
onne
ted to its M-neighbours P +~v by

an edge having the weight w, ∀(~v, w) ∈ M s.t. P +~v ∈ V . The weighted distan
e

dM is then the intrinsi
 distan
e of this weighted graph, and has always the

properties of a metri
 (positive de�nite, symmetri
 and triangular) sin
e the

graph is non oriented and the weights are stri
tly positive by hypothesis.

Let us go ba
k to the origins. The �rst weighted distan
es d4 and d8 where

presented in [1℄; their mask 
orrespond respe
tively to the 4- and 8-neighbourhood

in Z
2
, ea
h displa
ement having the weight 1; they 
oin
ide with the norms

ℓ1(~x) = |x1|+ . . .+ |xn| and ℓ∞(~x) = max(|x1|, . . . , |xn|) in Z
n
.

In [2℄, Montanari has introdu
ed a family of weighted distan
es in Z
2
, where

a mask Mk is the set of the displa
ements ~v(x, y) in the (2k + 1) × (2k + 1)
neighbourhood (i.e. −k ≤ x, y ≤ k), su
h that (x, y) is visible (from the origin),

i.e. gcd(x, y) = 1. The weight of any displa
ement ~v(x, y) is its Eu
lidean length

√

x2 + y2. The distan
e values obtained dMk
are no longer integers, but 
an give

a good approximation of the Eu
lidean distan
e dE (depending on k). The two

raster sequen
es DT algorithm is extended to the masksMk and the 
onvergen
e

in two passes is shown.

The weighted distan
es using integer weights, or 
hamfer distan
es, has then

been popularized for Z
2
and Z

n
by Borgefors in [3℄[4℄. The merits of several

masks and weights are dis
ussed so as to approximate dE in an e�
ient manner,

and some 
onditions are given to 
hoose the weights in order to establish dire
t

distan
es formulas. The two raster sequen
es DT algorithm is presented in Z
n
.

But the problem is that the 
onvergen
e in two passes is not a
tually shown;

and if we look 
loser, it 
annot be dedu
ed from the Rosenfeld and Pfaltz or

Montanari proofs for all 
hamfer masks.

For these reasons, we propose to study the validity of the DT a

ording to the

mask, see some 
ounter-examples, and give a su�
ient 
ondition of 
onvergen
e.

The remainder of the paper is organized as follows: the se
tion 2 �rst re
alls

the prin
iple of the parallel and sequential DT algorithm for d4 and d8; we then

examine in se
tion 3 the original proof of [1℄, by 
ompleting it with a missing

hypothesis; the se
tion 4 presents an adaptation of the sequential DT algorithm

for 
hamfer masks in Z
n
, in order to 
he
k the number of passes ne
essary for

the 
onvergen
e; in se
tion 5, we study a 
ounter-example whi
h shows that the


onvergen
e does not always hold in two passes; after that in se
tion 6 we show

that the sequential DT algorithm always 
onverges in two passes when using


hamfer norms, and 
on
lude in se
tion 7 .
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2 Distan
e transformations in Z
2
for d4 and d8

Let A = (ai,j) be an input image, where ai,j denotes the value of the point at

row i (1 ≤ i ≤ m) and 
olumn j (1 ≤ j ≤ n); the foreground points have value 1

and the ba
kground points 0. Given a 
hamfer mask M, the goal is to 
ompute

the DT D = (di,j) where di,j is the distan
e dM to the set of 0's (supposed

non-empty) 
oming from A. For any weighting (~v, w) ∈ M we denote by (vi, vj)
the 
oordinates of ~v.

Here is the naive parallel algorithm to 
ompute DT. At step 0, let B0
be a


opy of A, where the 1's are set to ∞, or a su�
ient large value. We 
ompute

for ea
h step k > 0 the image Bk = (bki,j), where

bki,j = min

{

bk−1

i+vi,j+vj
+ w : (~v, w) ∈ M,

1 ≤ i+ vi ≤ m,

1 ≤ j + vj ≤ n

}

. (2)

The pro
ess is repeated until no point value 
hanges; the number of iterations

is bounded by the maximal number of displa
ements in a minimal M-path, and


an be quite large.

The same method 
an be pro
essed in an iterative manner on a single image

B. The order in whi
h we 
ompute the bi,j is arbitrary, and the 
onvergen
e

rate 
an be greatly in
reased by a 
lever 
hoi
e of the order. The sequential DT

algorithm of Rosenfeld and Pfaltz takes advantages of this idea, an 
onverges

in only two raster sequen
es on the image. Here is their original algorithm,

presented in [1℄ for the distan
e d4.

The forward s
an pro
esses the image row by row in the raster sequen
e

a1,1, . . . , a1,n, a2,1, . . . , a2,n, . . ., am,1, . . . , am,n; the ba
kward s
an pro
esses

the points in the reverse order. During the forward s
an the fun
tion f1 is applied

on A to obtain the image B, then during the ba
kward s
an the fun
tion f2 is

applied on B to get the image C. These fun
tions are de�ned by:

f1(bi,j) = 0 if ai,j = 0 ,
= min (bi−1,j + 1 , bi,j−1 + 1) if ai,j = 1 and (i, j) 6= (1, 1) ,
= µ if ai,j = 1 and (i, j) = (1, 1) ;

f2(ci,j) = min (bi,j , ci+1,j + 1 , ci,j+1 + 1) .

The value µ is 
hosen to be an unattainable distan
e value in the image, e.g.m+n

(in the paper) or ∞, and is set as an initialization for the top left point (1, 1).
The min's are only evaluated on the neighbours inside the image; an alternative

option is to 
onsider the value µ for neighbours who are outside the image.

The algorithm 
an be easily adapted to d8 by adding the indire
t neighbours

(i− 1, j − 1) and (i− 1, j + 1) in the min for f1, and (i+ 1, j − 1), (i+ 1, j + 1)
in the min for f2.

Figure 1 shows an example with d4 and Figure 2 with d8. For simpli
ity, we

have 
onsidered in the min's that µ+ x = µ, ∀x ≥ 0.
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1 1 1 1 1

1 1 0 1 1

1 1 1 1 1

f1
−−→

µ µ µ µ µ

µ µ 0 1 2

µ µ 1 2 3

f2
−−→

3 2 1 2 3

2 1 0 1 2

3 2 1 2 3

Fig. 1. Two raster sequen
es DT algorithm for d4 on a 3× 5 image.

1 1 1 1 1

1 1 0 1 1

1 1 1 1 1

f1
−−→

µ µ µ µ µ

µ µ 0 1 2

µ 1 1 1 2

f2
−−→

2 1 1 1 2

2 1 0 1 2

2 1 1 1 2

Fig. 2. Two raster sequen
es DT algorithm for d8 on a 3× 5 image.

3 Original proof for the two raster sequen
es DT

The original proof in [1, �4.2℄ is rather 
ompa
t; we will develop it and show

that there was a missing hypothesis. The proof is 
onstru
ted by indu
tion for

d4 in Z
2
; the goal is to show that after applying f1 and f2, the obtained image

C satis�es C = D (using the notations of se
tion 2).

On the base 
ase it is noted that if ai,j = 1 and a dire
t neighbour inside the

image is 0, evidently ci,j = 1, and 
onversely.

The original indu
tion hypothesis is: suppose for a given k > 1 that

ci,j = di,j ∀i, j s.t. di,j < k . (3)

Hen
e ∀i, j we have

di,j < k ⇒ ci,j = di,j ; (4)

but this does not ex
lude the existen
e of 
ases su
h as

di,j ≥ k and ci,j < k . (5)

In fa
t, for the rest of the proof, we will have to ex
lude these 
ases in two pla
es.

The (extended) indu
tion hypothesis has thus to be: suppose for a given k > 1
that

ci,j = di,j ∀i, j s.t. di,j < k or ci,j < k . (6)

We therefore further assumed that

ci,j < k ⇒ ci,j = di,j . (7)

Remark. By (4) we have di,j < k ⇒ ci,j < k , thus

ci,j ≥ k ⇒ di,j ≥ k ; (8)



On the Validity of the 2 Raster Sequen
es DT 5

moreover, by (7) we have ci,j < k ⇒ di,j < k , so di,j ≥ k ⇒ ci,j ≥ k ; hen
e

ci,j ≥ k ⇔ di,j ≥ k . (9)

We 
ontinue the indu
tion by studying the 
ase where ci,j = k. By (8) we

have di,j ≥ k. If di,j = k then ci,j = di,j and the proof is done. Let us suppose

that ci,j = k and di,j > k. By de�nition of d4, sin
e di,j > k, the four dire
t

neighbours are ≥ k :

di−1,j ≥ k

di,j−1 ≥ k di,j > k di,j+1 ≥ k

di+1,j ≥ k

. (10)

Thanks to the extended hypothesis, we have by (9)

di,j+1 ≥ k ⇒ ci,j+1 ≥ k ,

di+1,j ≥ k ⇒ ci+1,j ≥ k ,
(11)

hen
e during the 
omputation of ci,j by f2 in ba
kward sequen
e we have

ci,j = min







bi,j
ci,j+1 + 1 (≥ k + 1)
ci+1,j + 1 (≥ k + 1)

, (12)

thus ci,j = k ⇒ bi,j = k. However, when 
al
ulating bi,j by f1 in forward

sequen
e we have applied

bi,j = min

{

bi−1,j + 1
bi,j−1 + 1

, (13)

thus bi,j = k ⇒ bi−1,j = k − 1 or bi,j−1 = k − 1. Suppose that the former

holds, that is bi−1,j = k − 1. During the 
al
ulation of ci−1,j by f2 we have

ci−1,j = min







bi−1,j (= k − 1)
ci−1,j+1 + 1
ci,j + 1

(14)

therefore ci−1,j ≤ k−1; but di−1,j ≥ k by (10) so di−1,j 6= ci−1,j , in 
ontradi
tion

with the extended hypothesis sin
e ci−1,j < k. ⊓⊔

This proof 
an be easily extended for d8 by adding the four indire
t neigh-

bours in the min's. More generally, the algorithm and the proof 
an be extended

in Z
n
for the distan
es d1 and d∞ indu
ed by the ℓ1 and ℓ∞ norms.

It should be noted that the algorithm 
an also be adapted to 
hamfer masks

in Z
n
(see [4℄), but we will show further with a 
ounter-example that the 
on-

vergen
e in two s
ans is not always guaranteed for any 
hamfer mask. At the

proof level, we 
an see that this proof 
annot be extended either, be
ause the

inequations are performed on (i, j)-neighbours only, and they use the fa
t that

the distan
e values are 
onse
utive integers.
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4 Sequential DTs for 
hamfer masks in Z
n

We present an adaptation of the sequential DT in Z
n
whi
h is a bit hardened to

handle 
ounter-examples masks.

The masks need to be split in two parts for the forward and ba
kward s
ans.

Using 
oordinates (x1, . . . , xn) ∈ Z
n
, let us 
onsider the forward raster sequen
e

in as
ending order: for xn, for xn−1, . . . , for x1 .

The half-spa
e 
onstituted by the mask points after the origin in the raster se-

quen
e is Hn = ∪1≤k≤n {xn = 0, . . . , xk+1 = 0, xk > 0 }. Given a 
hamfer mask

M = { (~v, w) : ~v ∈ Z
n }, we de�ne the half-maskMh = { (~v, w) ∈ M : ~v ∈ Hn }.

During the sequential DT, the forward raster sequen
e will then use the half-

mask M\Mh
, whereas the ba
kward sequen
e will use Mh

.

The 
omputation of one sequential DT s
an is presented in Figure 3 , for 
on-

venien
e in Python language in Z
2
. To extend the fun
tion in higher dimension

it is su�
ient to add 
oordinates and loops for the additional dimensions.

1 def 
ompute_one_DT_s
an (img, half_mask, s
an_num) :

2 forward = s
an_num % 2 == 1

3 if forward :

4 i_start = 0 ; i_end = img.m # 0 to m-1

5 j_start = 0 ; j_end = img.n ; step = 1 # 0 to n-1

6 else :

7 i_start = img.m-1 ; i_end = -1 # m-1 to 0

8 j_start = img.n-1 ; j_end = -1 ; step = -1 # n-1 to 0

9 
hanged = False

10 for i in range (i_start, i_end, step) :

11 for j in range (j_start, j_end, step) :

12 if img.mat[i℄[j℄ == 0 : 
ontinue

13 min_w = -1 if s
an_num == 1 else img.mat[i℄[j℄

14 for p_i, p_j, p_w in half_mask :

15 q_i = i - p_i*step ; q_j = j - p_j*step

16 if not img.is_inside (q_i, q_j) : 
ontinue

17 if img.mat[q_i℄[q_j℄ == -1 : 
ontinue

18 q_w = img.mat[q_i℄[q_j℄ + p_w

19 if min_w == -1 or q_w < min_w : min_w = q_w

20 if img.mat[i℄[j℄ != min_w : 
hanged = True

21 img.mat[i℄[j℄ = min_w # 
an be -1

22 return 
hanged

Fig. 3. Computation of one sequential DT s
an in Z
2
with µ = −1.

The input and output image is img. The 
oordinates are 0 ≤ i < img.m for

x2 (or y) and 0 ≤ j < img.n for x1 (or x); the point values are a

essed by

img.mat[i℄[j℄. The method img.is_inside(i,j) returns True if the 
oordi-

nates are inside the image. The parameter half_mask stores the Mh
weightings

as a list of tuples. The dire
tion of the s
an (forward or ba
kward) is dedu
ed
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from the s
an number s
an_num line 2. The loop step value is also used line 15

to 
ompute the displa
ements of the half mask for the 
urrent s
an dire
tion.

The fun
tion is written with the spe
ial value µ = −1 (in red). It indi
ates the

unattainable distan
e value for the min's, as well as the non 
urrently a�e
ted

point values in the image.

The 
omputation of the DT in two raster sequen
es is done by 
alling twi
e

the fun
tion 
ompute_one_DT_s
an with the s
an number, see the fun
tion


ompute_sequential_DT_in_two_s
ans in Figure 4 .

1 def 
ompute_sequential_DT_in_two_s
ans (img, half_mask) :

2 
ompute_one_DT_s
an (img, half_mask, 1)

3 
ompute_one_DT_s
an (img, half_mask, 2)

4

5 def 
ompute_sequential_DT_multi_s
ans (img, half_mask) :

6 s
an_num = 1

7 while True :

8 if 
ompute_one_DT_s
an (img, half_mask, s
an_num) :

9 s
an_num += 1

10 else : break

11 return s
an_num

Fig. 4. Sequential DT algorithms in Z
2
.

As for the parallel DT 
omputation, the sequential DT 
an be performed

s
an by s
an until no point value 
hanges (all paths are propagated and 
on-

vergen
e is rea
hed). For this purpose, the fun
tion 
ompute_one_DT_s
an re-

turns a boolean value 
hanged, whi
h is used to stop the loop in the fun
tion


ompute_sequential_DT_multi_s
ans in Figure 4 .

5 Counter-example for the two raster sequen
es DT

We present now a simple 
ounter-example, whi
h shows that the 
onvergen
e of

the DT in only two raster sequen
es does not hold for all 
hamfer masks.

One 
an imagine any kind of mask, see for instan
e [5, p. 42℄ for a gallery. In

the literature, the most 
ommon 
ategory of studied masks are grid-symmetri
al

(8-symmetri
al in Z
2
, 48- in Z

3
, (2nn!)- in Z

n
). The weightings are 
hosen in the

�rst o
tant (also 
alled generator) 0 ≤ xn ≤ . . . ≤ x1, then the grid symmetries

are performed to populate the mask. For e�
ien
y, the weightings are usually


hosen among the visible points, be
ause ea
h visible point will generates its

periods if the mask has the good properties (see further).

In Z
2
, the �rst visible points in the �rst o
tant are denoted by a = (0, 1)

(still using 
oordinates in the order (x2, x1)), b = (1, 1), 
 = (1, 2), d = (1, 3),
e = (2, 3), et
. A grid-symmetri
al mask 
onstituted by a set of weightings (v, w)
where v is a visible point is denoted by 〈(v, w), . . .〉. For instan
e, the mask for
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d4 is denoted by 〈(a, 1)〉, the mask for d8 is 〈(a, 1), (b, 1)〉, the mask for the


hamfer distan
e 5,7,11 [4℄ is 〈(a, 5), (b, 7), (
, 11)〉, and so on.

To �nd 
ounter-examples it is su�
ient to 
hoose some displa
ements, loop

on several weights, and 
ompute the DTs on images of several sizes, where

all points have value 1, ex
ept one point whi
h has value 0 in the 
entre of

the image. For ea
h trial we 
an 
ompare the results for the parallel algo-

rithm and those of 
ompute_sequential_DT_in_two_s
ans, or run the fun
-

tion 
ompute_sequential_DT_multi_s
ans and 
he
k if it returns a number of

s
ans > 3.
We have found a very simple 
ounter-example using only knight moves, whi
h

is the mask 〈(
, 1)〉, for any image size larger then 3× 3. The Figure 5 shows the
full mask and the two half masks.

(a)

· 1 · 1 ·

1 · · · 1

· · O · ·

1 · · · 1

· 1 · 1 ·
(b)

· 1 · 1 ·

1 · · · 1

· · O

(
)

O · ·

1 · · · 1

· 1 · 1 ·

Fig. 5.Mask 〈(
, 1)〉 around the origin O: (a) full mask, (b) forward mask, (
) ba
kward

mask.

The mask 〈(
, 1)〉 is a 
hamfer mask be
ause the basis ve
tor (0, 1) 
an be

obtained using the symmetri
al displa
ements of 
, by (−1,−2) + (−1, 2) +
(2, 1) = (0, 1), and the same by symmetry for (1, 0).

The Figure 6 shows the parallel passes for a 3×4 image; 6 passes are ne
essary

to rea
h the 
orre
t DT values. On �gure 7 we 
an see that the raster sequen
es

DT algorithm also needs 6 passes: 5 to 
onverge and the sixth to dete
t no


hanges and stop.

(a)

1 1 1 1

1 1 0 1

1 1 1 1

(b)

µ µ µ µ

µ µ 0 µ

µ µ µ µ
(
)

1 µ µ µ

µ µ 0 µ

1 µ µ µ
(d)

1 2 µ µ

µ µ 0 µ

1 2 µ µ

(e)

1 2 3 µ

µ µ 0 3

1 2 3 µ
(f)

1 2 3 4

4 µ 0 3

1 2 3 4

(g)

1 2 3 4

4 5 0 3

1 2 3 4

(h)

1 2 3 4

4 5 0 3

1 2 3 4

Fig. 6. Parallel DT for 〈(
, 1)〉: (a) original image, (b) initialization, (
�h) passes 1�6.



On the Validity of the 2 Raster Sequen
es DT 9

(a)

1 1 1 1

1 1 0 1

1 1 1 1

(b)

µ µ µ µ

µ µ 0 µ

1 µ µ µ
(
)

1 2 µ µ

µ µ 0 µ

1 µ µ µ
(d)

1 2 µ µ

µ µ 0 3

1 2 3 µ

(e)

1 2 3 4

4 µ 0 3

1 2 3 µ
(f)

1 2 3 4

4 5 0 3

1 2 3 4

(g)

1 2 3 4

4 5 0 3

1 2 3 4

Fig. 7. Sequential DT for 〈(
, 1)〉: (a) original image, (b�g) passes 1�6, (b,d,f) forward

passes, (
,e,g) ba
kward passes.

Finally, we remark for the mask 〈(
, 1)〉 taken as a 
ounter-example, that

� the ne
essary sequential passes number depends on the image size, and may

de
rease a little bit when the size grows;

� the passes number does not depend on the 
hosen 
 weight;

� we 
an repla
e 
 by any visible point (1, 2k), k ≥ 1 and still get a 
hamfer

mask, sin
e k(−1,−2k) + k(−1, 2k) + (2k, 1) = (−2k, 0) + (2k, 1) = (0, 1).

6 Validity holds for 
hamfer norms

A metri
 d in Z
n
indu
es a norm g de�ned by g(q − p) = d(p, q) if d satis�es

the property of homogeneity over Z. A 
hamfer norm is a norm indu
ed by a


hamfer mask.

For instan
e, the masks 〈(a, 1)〉 (for d4), 〈(a, 1), (b, 1)〉 (for d8), 〈(a, 3), (b, 4)〉
and 〈(a, 5), (b, 7), (
, 11)〉 all indu
e distan
e norms, but 〈(
, 1)〉 
learly not (no

homogeneity: let P = (0, 1), then d(O,P ) = 3 and d(O, 2.P ) = 2 6= 2.d(O,P )).
The 
hamfer norms have remarkable properties: they allow to 
ompletely


hara
terize the geometry of the distan
e balls, to give dire
t distan
e formulas,

and to determine the stru
ture of minimal paths. Several 
onditions for being a


hamfer norm in Z
n
have been established in [5, �4.3.4℄ and [6, �4.3.2℄. Given a


hamfer mask M, we 
all rational ball the set

BQ
M = 
onv

(

~v

w
: (~v, w) ∈ M

)

; (15)

then M indu
es a norm if and only if it exists a triangulation of BQ
M in uni-

modular 
ones of apex O. Now suppose that M indu
es a norm and let C be

su
h a 
one, then C is bounded by a subset of n weightings of M, denoted by

M|C = { (~v ′
i , w

′
i), 1 ≤ i ≤ n }; moreover, for ea
h point P in C, there is a minimal

path from O to P whi
h is a linear 
ombination λ1~v
′
1 + . . . + λn~v

′
n, λi ∈ Z+ of

displa
ements from M|C , and whose intermediate points are all in
luded in C.



10 E. Thiel

Proposition 1. Let M be a 
hamfer norm mask, then the two raster sequen
es

DT algorithm provides the 
orre
t DT values for dM.

Proof. Let P be a feature point 
urrently evaluated during a raster sequen
e, and

Q a 
losest ba
kground point. Consider the unimodular 
one C of apex P whi
h


ontains a minimal M-path P from P to Q, and the set M|C of weightings whi
h

are bounding C. Then P is a sequen
e of distin
t points P0 = P, P1, . . . , Pk = Q

with Pi a M|C-neighbour of Pi−1, 1 ≤ i ≤ k.

The 
one C is either (a) 
ontained in the half-spa
e P − Hn = {P −
−−→
OX :

X ∈ Hn } (the points before P in the forward s
an), see Figure 8 ; (b) in the

half-spa
e P +Hn
(the points before P in the ba
kward s
an); or (
) interse
ts

both half-spa
es.

In the 
ase (a) ea
h Pi is 
ontained in the half-spa
e Pi−1 −Hn, 1 ≤ i ≤ k,

so during the forward s
an, ea
h Pi is evaluated before Pi−1. As Pk−1 is an

M|C-neighbour of Pk = Q, the min 
omputation will give the 
orre
t asso
iated

weight value in the DT for Pk−1, an so on from Pk−1 to P0.

In the 
ase (b), the same reasoning 
an be made using Pi−1 +Hn
during the

ba
kward s
an.

In 
ase (
), if Q ∈ P −Hn
, then a minimal path 
an be 
hosen su
h that all

the path points are in
luded in C ∩ (P −Hn), so we 
an revert to 
ase (a); the

same for Q ∈ P +Hn
and 
ase (b). ⊓⊔

Pk−1 −Hn

P −Hn

P2 −Hn

P +HnP

~v ′
2

~v ′
1

Pk−1

P1

P2

QC

Fig. 8. Case (a) for the proof of proposition 1 , here in Z
2
.

7 Con
lusion and future work

In this paper, we have improved the proof of [1℄ for d1 and d∞, and proposed a

hardened raster sequen
e DT algorithm for the 
hamfer masks. We have shown
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with a 
ounter-example that the 
onvergen
e does not always hold in two passes

for all 
hamfer masks, and we have proved in proposition 1 that the two raster

sequen
es DT algorithm provides the 
orre
t distan
e values for any 
hamfer

norm.

It 
an be pointed out that the norm 
ondition is su�
ient but non ne
essary.

For instan
e, the algorithm holds for the following non-norm 
hamfer masks:

〈(a, 1), (b, 1), (
, 1)〉, 〈(a, 1), (b, 3), (
, 2)〉, 〈(a, 2), (b, 3), (
, 4)〉, 〈(a, 1), (
, 1)〉,
〈(a, 2), (
, 3)〉.

In future works, it would be interesting to investigate if ne
essary 
onditions


ould be established on non-norms 
hamfer masks, to predi
t the number of

passes for their 
onvergen
e, and also to study the 
onvergen
e for the reverse

distan
e transform. This work on weighted distan
es might be extended on semi-

regular grids, or other families of weighted geometri
 graphs. One 
ould �nally

relate this work to ns-weighted distan
es, of whi
h weighted distan
es are a

spe
ial 
ase [6℄[7℄.
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