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This paper deals with estimating the stator flux of interior permanent magnet synchronous machines (IPMSMs) for hybrid electric vehicles (EHV) applications. The magnetic uncertainties due to the magnetic saturation are considered as new terms on the current-flux model of the machine. Considering the new model, an appropriate observer based on extended Kalman like algorithm is proposed to observe those terms. The observed terms are then used on the flux estimator to take into account the effect of magnetic saturation. The observability and the stability of the observer for the proposed system are studied. The simulation and experimental results are presented to illustrate the capacities of the proposed method.

INTRODUCTION

The electric vehicles and hybrid electric vehicles (EV/HEV) are being more and more popular for car companies. Different types of electric motor have been investigated to be used as the motor of traction of these vehicles. The interior permanent magnet synchronous machines (IPMSMs) with specific features such as simplicity, reliability and robustness have been one of the best choices for this application. In the last two decades, it has been tried to eliminate the captures as much as possible for drive systems, particularly position and torque sensors which are bulky and expensive. Therefore, designing observers based on the model of machine and/or based on the output signals have been more and more paid attention. Adequate works have been perofrmed in sensorless drives where the rotor position is estimated. Recently, the torque estimation has been also being an interest for drive manufactures.

Regarding the model of an IPMSM, the electromagnetic torque can be properly estimated when the flux linkages are available in presence of measured currents. Based on the proposed methods in the literature, the flux of an IPMSM can be estimated based on two model known as voltage model and current model. The voltage model is the definition of Farady law when the flux is obtain by the integral of electromotive force (EMF) [START_REF] Holtz | Sensorless control of induction motor drives[END_REF]. There are some inconveniences for this type of estimation such as the lack of observability at standstill and the creation of an offset in the estimated flux due to unknown initial condition of open-loop integrator (Holtz and Juntao Quan, This work was supported by the Chair Renault-Centrale Nantes dedicated to the propulsion performance of electric vehicles. 1 Mohamad Koteich was with Renault Group, Guyancourt, France. He is now with Schneider Electric, STIE, Pacy-sur-Eure, France.
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. In order to solve the latter problem, some filters have been proposed to be accompanied with the integrator [START_REF] Koteich | Flux estimation algorithms for electric drives: A comparative study[END_REF][START_REF] Feng | Online pmsm magnet flux-linkage estimation for rotor magnet condition monitoring using measured speed harmonics[END_REF]. However, the observability problem is still the main challenge of this type of estimation. The current model has been identified as the relation between flux and currents of the machine. This relationship is really nonlinear but can be simplified as a linear model based on the magnetic parameters known as inductances and permanent magnet flux. Any nonlinearity in the model and also the variation of inductances due to magnetic saturation even in the linear models induces an error between the real flux and the estimated one. It has been proposed in the literature to estimate the permanent magnet flux by an extended Kalman filter [START_REF] Xiao | Dynamic permanent magnet flux estimation of permanent magnet synchronous machines[END_REF] and the inductances [START_REF] Hamida | An adaptive interconnected observer for sensorless control of pm synchronous motors with online parameter identification[END_REF][START_REF] Tinazzi | Torque estimation in high-efficency ipm synchronous motor drives[END_REF][START_REF] Martinez | Pmsms torque estimation using pulsating hf current injection[END_REF][START_REF] Wang | Offline parameter self-learning method for general-purpose pmsm drives with estimation error compensation[END_REF] by different types of signal-and model-based observers to improve the performance of current model flux estimator. In [START_REF] Hamida | An adaptive interconnected observer for sensorless control of pm synchronous motors with online parameter identification[END_REF], two nonlinear interconnected observers was proposed to estimate stator resistance, linear inductance, load torque and rotor speed based on the model of a surface PMSM without considering the variation of magnetic saturation during the motor operation. A torque estimator based on currentflux model was presented in [START_REF] Tinazzi | Torque estimation in high-efficency ipm synchronous motor drives[END_REF] for high speed operation. The coupling-effect between d, and q flux were taken into account and the approach was experimentally verified at constant speed 1000 rpm. A torque estimator was also proposed by [START_REF] Martinez | Pmsms torque estimation using pulsating hf current injection[END_REF] where the inductances of IPMSM, neglecting the coupling-effect inductance, were estimated based on high frequency injection method. The coupling-effect inductance was taken into account in [START_REF] Wang | Offline parameter self-learning method for general-purpose pmsm drives with estimation error compensation[END_REF] to be estimated by high frequency injection method. However, the effect of non-linearity due to the magnetic saturation in the model of estimation is not taken into account.

In this paper, a flux/torque estimator based on current model is proposed. The effect of magnetic saturation on flux estimator including the coupling-effect is investigated and taken into account to propose a new model for IPMSM. Regarding the model which includes some terms related to the magnetic uncertainties, an adaptive observer known as extended Kalman like observer is designed for the proposed model. The observer estimates the uncertainty terms on the model by using measured currents. The observability and stability analysis of the observer for the proposed model are investigated and the results are shown for a range of rotor speed including zero speed crossing and zero speed standing.

MODEL OF IPMSM

Saturated Model of IPMSM

Model of an IPMSM in rotating synchronous reference frame (dq) can be represented in (1)-( 3) by taking into account the saturation functions. It is supposed that the magnet flux is constant and sufficiently aligned in d-axis.

     dϕ d dt = v d -R s i d + ω e ϕ q dϕ q dt = v q -R s i q -ω e ϕ d -ω e φ f (1) 
           i d = ϕ d L d0 + 3k 1 ϕ 2 d + k 2 ϕ 2 q + 4k 3 ϕ 3 d + 2k 4 ϕ d ϕ 2 q f sat-d i q = ϕ q L q 0 + 2k 2 ϕ d ϕ q + 2k 4 ϕ 2 d ϕ q + 4k 5 ϕ 3 q fsat-q
(2)

T e = 1.5p(φ f i q ) Tpm + 1.5p(ϕ d i q -ϕ q i d ) T rel (3) 
where R s , L d0 , L q0 , ω e , φ f and p are stator resistance, linear d-axis stator inductance, linear q-axis stator inductance, angular synchronous speed, permanent magnet flux and number of pole pair, respectively. The terms f sat represent an example of magnetic saturation functions that can be determined in the rotating synchronous reference frame. The variables v, i, ϕ and T represent stator voltage, stator current, stator flux generated by stator currents, and electromagnetic torque, respectively. Electromagnetic torque in (3) is divided into two terms known as permanent magnet torque (T pm ) and reluctance torque (T rel ). Furthermore, the total flux linkage of an IPMSM in the dq frame can be determined by (4).

λ d = φ f + ϕ d λ q = ϕ q . ( 4 
)
For an IPMSM, the stator fluxes generated by stator currents, the electromagnetic torque and the total flux vectors can be estimated by ( 2), ( 3) and (4), respectively, in presence of measured currents. For a precise estimation, the right values of the magnetic parameters in the model including the permanent magnet flux (φ f ), the linear inductances (L d0 , L q0 ) and the saturation coefficients ( k 1 to k 5 ) are mandatory. Any uncertainties in these parameters make an error between the real flux/torque and the estimated ones. Furthermore, the proposed saturation functions in (2) may change for different motors.

Proposed Model of IPMSM Considering Magnetic Saturation Uncertainties

The aim of this model is to consider the uncertainties on the linear inductances and the magnetic saturations functions. For this, a set of new variables known as g d and g q are introduced as (5).

g d = f sat-d + (∆L -1 d0 )ϕ d + ∆f sat-d g q = f sat-q + (∆L -1 q0 )ϕ q + ∆f sat-q (5) with:    ∆L -1 d0 = 1 L d0m - 1 L d0 , ∆L -1 q0 = 1 L q0m - 1 L q0 ∆f sat-dq = f sat-(dq)m -f sat-(dq) (6)
where, L d0m , L q0m , and f sat-(dq)m are the exact values of the linear coefficients between fluxes and currents and the real saturation function for the machine, respectively, while ∆L -1 d0 , ∆L -1 q0 and ∆f sat-dq represent the deviations between real and first analytical evaluation of those parameters.

By taking into account the proposed variables g d and g q in (1)-( 2), and rewriting the equations based on current stators as state variables, a new model which represents the uncertainties due to magnetic saturation is obtained as (7). Then, the stator fluxes generated by stator currents and total flux vectors are obtained as ( 8) and ( 9), respectively. The unknown variables g d and g q can be estimated by an observer based on the model (7).

   di d dt = - Rs L d0 i d + ωeL q0 L d0 iq - ωeL q0 L d0 gq + v d L d0 + dg d dt diq dt = - Rs L q0 iq - ωeL d0 L q0 i d + ωeL d0 L q0 g d + vq -ωeφ f L q0 + dgq dt .
(7)

ϕ d = L d0 (i d -g d ) ϕ q = L q0 (i q -g q ). ( 8 
)
λ d = φ f + L d0 (i d -g d ) λ q = L q0 (i q -g q ). (9) 
It should be noted that, the model can be also used for reluctance synchronous reluctance motor (SynRM) by considering permanent magnet flux (φ f ) equal to zero.

STATOR FLUX OBSERVER

A new state variable system considering i d , i q , g d and g q as state variables and stator currents as output variables are introduced in (10)-( 12). The rotor speed is considered as an input for the system. For an IPMSM drive for EHV applications which is commanded by a reference torque demanded by driver, the reference current in q-axis is not sharply changed and the d-axis reference current is constant. Any slowly changes in stator currents amplitude (dq rerefrece currents), makes the slowly changes for magnetic saturation functions in dq frame which are a function of those currents. Thus, it is assumed that the variables g dq vary slowly and their first derivative can be set to zero. Then the following system can be established.

ẋ(t) = f (x(t), u(t)) y(t) = h(x(t)) (10) with: x = (i d , i q , g d , g q ) T , u = (v d , v q , ω e ) T , y = (i d , i q ) T . (11) f (x, u) =              - R s L d0 i d + ω e L q0 L d0 i q - ω e L q0 L d0 g q + v d L d0 - R s L q0 i q - ω e L d0 L q0 i d + ω e L d0 L q0 g d + v q -ω e φ f L q0 0 0 (12)

Observability study

The locally weakly observability of the proposed system ( 10)-( 12), based on the rank criterion are investigated in this part [START_REF] Hermann | Nonlinear controllability and observability[END_REF]. The local observability of the system is satisfied if the regularly observability matrix O y (x) is full rank at x 0 . For a 4thorder system, O y (x) is given in (13).

O y (x) = ∂ ∂x     £ 0 f h(x) £ 1 f h(x) £ 2 f h(x) £ 3 f h(x)     = ∂ ∂x          h(x) ∂h(x) ∂x f (x) ∂£ 1 f h(x) ∂x f (x) ∂£ 2 f h(x) ∂x f (x)          (13) 
where £ k f h(x) is the k th -order Lie derivative of the function h with respect to the vector field f . After the computation of O y for the proposed system (10)-( 12), it is found that there are no linear combination between the rows and the columns of the matrix for ω e = 0. Let us set ω e = 0, then, the observability matrix is obtained as:

O y (x) =        1 0 - R s L d0 0 R 2 s L 2 d 0 0 -R 3 s L 3 d 0 0 0 1 0 - R s L q 0 0 R 2 s L 2 q 0 0 -R 3 s L 3 q 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0        T ( 14 
) Thus, obviously the observability of the proposed system cannot be established at null speed operation even if the higher derivatives of measures (currents) are used. As a conclusion of the observability analysis, the locally weakly observability of the system is guaranteed for nonzero speeds.

Observer Design

Extended Kalman like observer for the proposed model: Regarding the system presented in (10)-( 12), an observer is designed for the system based on Extended Kalman Like algorithm with the rotor speed as an input for the matrix A. The observer system is describes in (15

). ẋ = A(ω e )x + v(ω e , v dq ) -K(C x -y) ŷ = C x ( 15 
)
with:

A(ω e ) =        - R s L d0 ω e L q 0 L d0 0 - ω e L q 0 L d0 - ω e L d0 L q 0 - R s L q 0 ω e L d0 L q 0 0 0 0 0 0 0 0 0 0        (16) v = v d L d0 v q -ω e φ f L d 0 0 0 T , C = 1 0 0 0 0 1 0 0 . ( 17 
)
For the observer system (15), the gain of the observer, is defined as K = P -1 C T R -1 where P is definite positive solution of the Riccati equation described in (18) [START_REF] Ghanes | A robust sensorless output feedback controller of the induction motor drives: new design and experimental validation[END_REF].

dP dt = -A T P -P A -P QP + C T R -1 C (18)
where the matrices R and Q are symmetric definite positive matrices that are weighting matrices to tune. They can be defined as Q = diag(q i , q i , q g , q g ) and R = diag(r, r), respectively .

Stability Analysis

In order to prove the stability of the observer proposed in ( 15)-( 17), the practical stability (V. [START_REF] Lakshmikantham | Practical Stability of Nonlinear Systems[END_REF]) is employed in this part. The observer stability is analyzed under parameter uncertainties linked to the deviation of stator resistance due to the temperature variation. Therefore, the system (10)-(??) is rewritten in the following form:

ẋ = A(ω e )x + v(ω e , v dq ) + ∆Ax ŷ = C x ( 19 
)
where ∆A is uncertain terms of the matrix A(ω e ) depending only on the stator resistance variation. It is given by: Then, the following theorem about the observer convergence can be rewritten. Theorem 2. Consider the nonzero input ω e for the system matrix A(ω e ) in ( 16) such that the local observability is fulfilled with respect to (14). Then, the system (15) is an adaptive observer for the machine model (10) with strongly practical stability of the estimation error dynamics (22).

∆A =        - ∆R s L d0 0 0 0 -0 - ∆R s L q 0 0 0 0 0 0 0 0 0 0 0        ( 
Proof. in order to prove the stability of the estimation error, let us define the following Lyapunov function candidate:

V = e T P e. According to Lemma1 and the physical operation domain of the IPMSM, there is positive l 1 and l 2 such that the following inequalities hold:

P ≤ l 1 , x ≤ l 2 .
(25) Substituting ( 25) into ( 24), the time derivative of V satisfies the condition.

V ≤ -e T P QP e -e T CR -1 C T e + l 1 l 2 ρe + e T l 1 l 2 ρ. ( 26)

By taking into account µ = l 1 l 2 ρ and since V > e T P QP e+ e T CR -1 C T e, (26) can be rewritten as:

V ≤ -e T P QP e -e T CR -1 C T e + µ √ V (27) where µ = µ η m p in . (28) 
By using the same procedure such as the strongly practical stability proof (V. [START_REF] Lakshmikantham | Practical Stability of Nonlinear Systems[END_REF], the strongly practical stability of the proposed observer is proved. Remark 1. As the gain of the observer K is proportional to P -1 , it is interesting to see the determinant of the matrix P for a range of rotor speed. For the proposed system, a numerically calculation of the determinant by numerically solving of ( 18) is illustrated in Fig. 1 for an ω e range from -314 rad/s to 314 rad/s.

It can be seen from the curve in Fig. 1 that the determinant of matrix P goes to infinity for the very low and null speeds which means that the gain of the observer K is null on that time. In the other word, for null speeds, the term K(y -Cx) in ( 15) goes to zero and the observer will be the copy of the system. Thus the observer gain cannot effect on the stability of the system and the estimated variables g d and g q are obtained as:

ġd = 0 → ĝd = ĝd (t0) ġq = 0 → ĝq = ĝq (t0) ( 29 
)
where t 0 is the initial time for a discrete-time integrator with sampling time T s and in an interval [t 0 , t 0 + T s ]. From ( 29), it can be remarked that if the observer is already converged before standing in null speed, it keeps the estimated variables g dq . For sure, any new magnetic uncertainties in these moments creates a difference between estimated and real variables because of the observability problem in null speed. Nevertheless, there are no explosions for the estimated variables during zero speed as proven in following. Lemma 3. In the observer ( 15) and for ω e = 0 , the dynamic of error for i dq state variables and for g dq state variables are practically and Lyapunov stable, respectively.

Proof.

for ω e = 0 , ( 22) becomes as:

ė(1,2) = A 0 e (1,2) + ∆A 0 x (1,2) ė(3,4) = 0 (30) with: A 0 =    - R s L d0 0 0 - R s L q 0   , ∆A 0 =    - ∆R s L d0 0 0 - ∆R s L q 0   
then, a new Lyapunov candidate function is defined for ω e = 0, as following:

V 0 = e T e.
(31) By taking the time derivative of 31, it is obtained:

V0 = ėT e + e T ė = 2e T (1,2) A 0 e (1,2) + 2e T (1,2) ∆A 0 x (1,2) 0 .
(32) In ( 32), as the term 2e T

(1,2) A 0 e (1,2) < 0, then V0 ≤ 2e T

(1,2) ∆A 0 x (1,2) which proves the practical stability of i dq estimation error dynamics. Furthermore, the estimation error dynamics of g dq are Lyapunov stable as their corresponding derivative Lyapunov functions are equal to zero.

It should be remarked that the matrix Q in the observer system has to be tuned in such a way to have zero gains for the observer at very low speeds. 

RESULTS

Simulation Results

An IPMSM based on the parameters shown in table 1 is simulated in Matlab/Simulink R environment. The magnetic saturation functions (f sat-dq ) are considered for the model based on (2). The observer is also simulated in the same environment with sampling time 10 -4 regarding ( 15)-( 17). The value of L d0 in the observer model is considered 3 times bigger than that of the machine model while the magnetic saturation functions are only considered for the simulated machine. The simulation results are illustrated in Figs. 23. By using the observed variables g dq on the modified flux estimators (8)-( 9), the correct fluxes and consequently the correct torque is obtained as shown in Fig. 2 where Fig. 2 show the effect of the magnetic saturation uncertainties of the motor, the reluctance torque of the machine is shown in Fig. 3, without (Fig. 3(a)) and with (Fig. 3(b)) the observed correction terms g dq . It should be noted that it is assumed that the permanent magnet flux is constant or estimated by an observer. Thus, the differences between the real torque and the estimated one is concerned with the reluctance torque. The estimated reluctance torque is not the same as the real one if the terms g dq are not applied to the model (Fig. 3(a)) while they are the same with the proposed observed terms (Fig. 3(b)).

Experimental Results

An experimental setup composed of an IPMSM rated at 3 kW supplied by a three-phase voltage source inverter is arranged for the experimental tests. A photograph of the test bench is shown in Fig. 4. A similar experimental test as simulation one is considered. The measured currents and torque are considered to be compared with those of estimated since there are no possibility of measuring the real magnetic saturation functions and fluxes. Obviously, there are no saturation functions f sat-dq on the machine model considered in the observer while it is expected to have them in real machine. Fig. 5 shows the measured and estimated currents (Fig. 5(a)) and torque (Fig. 5(b)) where their estimations are converged to the measured ones. It should be noted that the permanent magnet is precisely calculated and does not change during the test to do not effect on the estimation process. Thus, any deviation between the measured torque and the real one is concerned with the inductance changes due to the magnetic saturation.One more time the test is repeated by considering the terms g dq equal to zero for (8)-( 9). In this condition, it is assumed that the nominal inductances are precisely calculated and the classical current-flux model (without g dq terms) is used for the flux estimation. The torque results are shown in Fig. 6. It can be seen that there is a difference between the measured torque and the estimated one especially for higher currents despite the precisely determination of linear inductances. By comparing the results shown in Fig. 5(b) and Fig. 6, it is concluded that the observer is well estimating the terms g dq which are concerned with the wrong calculation of linear inductance and/or the magnetic saturation functions. These terms can be considered in ( 8)-( 9) to correct the errors due to magnetic uncertainties in flux and torque estimators. From 0 s to 10 s, the terms g dq are observing but are not considering for the flux and torque estimators (3),( 8)-( 9). As expected, a gap is observed between the measured and estimated torque for the interval. At time 10 s, the the observed terms are added to the estimators while the speed profile is repeated. It can be seen that the gap is disappeared because of the correction terms g dq . It means that the proposed observer is well estimating the fluxes even in variable speed conditions. In point of view of stability, it should be remarked that there are no explosion for the estimated fluxes and consequently the estimated torque at zero speed crossing and even during zero speed standing. As theoretically proved, the observer goes to be the copy of the system for zero speeds. It is also remarked that if the observer has already captured the correct values of g dq corresponding the magnetic uncertainties, they are kept as the system during zero speed standing or at zero speed crossing. As illustrated in Fig. 7(b), the correction terms g dq are added at time 10 s but there are no changes for the estimated torque because of the null speed condition. It means that there are no dynamic for the terms g dq at zero speed as proved in Remark1. At the second interval (10 to 20 s) and by the same reason, the terms g dq , that have already collected the uncertainties, are kept during zero crossing at time 16 s. Thus, the estimated torque is the same as the measured one even during the zero speed crossing without any explosion on that time.

CONCLUSION

A flux/torque estimator considering the magnetic saturation uncertainties is proposed based on a modified currentflux model of an IPMSM applied in EHV systems. It is proposed to consider two new terms on the model of an IPMSM which defines the influence of wrong determination of linear inductances and the variation of magnetic saturation on flux estimation. An adaptive extended Kalman like observer is designed to observe those terms to be used in flux/torque estimator. It is shown that the gain of the observer regarding the proposed model goes to zero at zero speed which cannot effect on the stability of the system at zero speed crossing as well as zero speed standing. Furthermore, as the uncertainties are considered in the proposed model, they are well observed at zero speed if the observer has already kept them and also if there are no new uncertainties during zero speed operation. The simulation and experimental results are proved the effectiveness of the proposed method.
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 23 Fig. 2. Simulation results: (a) real and estimated flux linkages, (b) real and estimated electromagnetic torque
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 56 Fig. 4. Test bench
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 7 Fig. 7. Experimental results: (a) speed profile, (b) measured and estimated electromagnetic torque In order to see the stability of the observer at zero speed crossing or at zero speed standing, a variable speed experimental test is prepared. A variable speed profile shown in Fig. 7(a) is considered for the motor during the observation process. The results for estimated torque are shown in Fig. 7(b) where they are compared with the measured ones.From 0 s to 10 s, the terms g dq are observing but are not considering for the flux and torque estimators (3),(8)-(9). As expected, a gap is observed between the measured and estimated torque for the interval. At time 10 s, the the observed terms are added to the estimators while the speed profile is repeated. It can be seen that the gap is disappeared because of the correction terms g dq . It means that the proposed observer is well estimating the fluxes even in variable speed conditions. In point of view of stability, it should be remarked that there are no explosion for the estimated fluxes and consequently the estimated torque at zero speed crossing and even during zero speed standing. As theoretically proved, the observer goes to be the copy of the system for zero speeds. It is also remarked that if the observer has already captured the correct values of g dq corresponding the magnetic uncertainties, they are kept as the system during zero speed standing or at zero speed crossing. As illustrated in Fig.7(b), the correction terms g dq are added at time 10 s but there are no changes for the estimated torque because of the null speed condition. It means that there are no dynamic for the terms g dq at zero speed as proved in Remark1. At the second interval (10 to 20 s) and by the same reason, the terms g dq , that have already collected the uncertainties, are kept during zero crossing at time 16 s. Thus, the estimated torque is the same as the measured one even during the zero speed crossing without any explosion on that time.

Table 1 .

 1 IPMSM parameters

	Symbol	Quantity	Values
	L d0	d-axis linear inductance	3.5 mH
	Lq 0	q-axis linear inductance	5 mH
	φ f	permanent magnet flux	0.144 Wb
	p	number of pair poles	3
	T l	nominal torque	9 Nm
	Rs	stator resistance	0.5 Ω