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Abstract- The estimated parameters accuracy of poly-phase induction motors is crucial for 

effective performance prediction and/or control in various manufacturing applications. This study 

investigates hybrid algorithm between particle swarm optimization and Jaya optimization algorithms 

for finding the optimal parameters estimation of poly-phase induction motors. It is carried out using the 

manufacturer’s operation characteristics on two poly-phase induction motors. Numerical results show 

the capability of the proposed hybrid optimization algorithm. The proposed algorithm has competitive 

performance compared with conventional algorithms as well as with differential evolution and genetic 

algorithms. Experimental verifications are carried out on three-phase and six-phase induction motors. 

Also, it emulates the closeness between experimental and estimated parameters with fast convergence 

compared to other algorithms. Also, the results reflect the high robustness of the proposed algorithm 

compared with other algorithms for varied iteration numbers, population size and convergence. 

Keywords: HPJOA, Poly-phase induction motors, Parameter estimation, Statistical analysis, Robustness, 

Experimental tests. 

 

Nomenclature 

�� Per phase stator resistance, Ω. ��� Estimated developed torques 

�� Per phase rotor resistance, Ω. ���	
 Measured maximum developed 

torques 

�� Per phase stator reactance, Ω. ���	
 Estimated maximum developed 

torques 

�� Per phase rotor reactance, Ω. ���� Measured starting developed 
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torques 

�� Per phase magnetizing reactance, Ω. ���� Estimated starting developed 

torques 

�� Per phase stator voltage, V. smT Slip at maximum torque 

p number of pole pairs ∆F objective function 

Td electromagnetic torque of the motor, 

N.m 

∆pf Normalized power factor 

� Induction motor slip ∆Tst Normalized power factor 

�� Per phase rotor current, A. ∆Tmax Normalized power factor 

�� Per phase stator current, A. pf Rated power factor 

��� starting current, A. m Number of phases 

Tst starting torque of the motor, N.m ��� Estimated power factors 

Tmax maximum torque of the motor, N.m ��� Measured power factors 

TFL rated torque of the motor, N.m ��� Measured developed torques 

∆Td Normalized power factor k Iteration number 

v velocity of the control variables c1 , c2 ,c3 The learning coefficients  

��
���� personal best of control variables r1, r2, r3 random numbers 

���
���� global best of control variables maxIter maximum number of iterations. 

���
����� worst suggested of possible solution   

1. Introduction 

The Poly-phase Induction Motors (PIMs) are the most used electrical machines[1]. They contribute 

around 60% of electric power converted to mechanical energy [2]. PIM are favored due to their 

ruggedness and simplicity in the industry section as 90% of industrial motors are IMs [3]. Examples of 

induction motors applications involve motor tools equipped with induction motors, adjustable speed 

motors and pumps[4]. To achieve the target performance of induction machines, the accurate 

modelling is considered as crucial issue for PIMs [5]. These issues involve the transient and steady-

state behavior. The model expresses the stator and rotor windings voltage balance, flux linkages and 

currents, the air-gap power, and the electromagnetic torques. Therefore, finding the unknown 

parameters of these machines is a complicated nonlinear non-smooth optimization problem [6]. It aims 

at achieving the highest closeness degree between the estimated parameters and those of the actual 

ones. Therefore, the objective function of the considered parameter estimation problem is the 

minimum deviation between estimated and actual parameters with preserving these parameters within 
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their permissible operating boundaries. To satisfy the parameter identification process, several 

optimization algorithms have been developed to guarantee the accurate PIM models. In this regard, this 

paper proposes the hybrid algorithm between particle swarm optimization and Jaya optimization 

algorithms HPJOA form finding the optimal unknown PIM parameters. 

The modelling of induction motors is considered as vital issue in ac drive systems. Accurate parameters 

identification of induction motor is an urgent work in the viewpoint of control drives and operation 

aspects [7], [8]. It is necessary to find the IMs’ parameters at low implementation costs at high degree of 

accuracy. The traditional methods applied for finding the equivalent circuit parameters are dependent on 

no-load and locked rotor tests as in IEEE Std 112-1991 and its modifications IEEE Std 112-2004 [9]. 

Added to that, the high cost of hardware that is needed to implement. So, Due to these restrictions, many 

optimization methods developers provide number of advanced methods to meet the target of finding 

satisfactory level of the estimated parameters [10]. For achieving this target, several optimization 

methods are exploited to optimally estimating the parameter of PIMs equivalent circuits[11]–[13]. In the 

literature, several methods have been carried out for finding the unknown parameters of PIMs. 

References[14] and[10] review the various methods that were developed for estimating the unknown 

parameters of PIMs. In this line, the previous efforts are summarised as follows: 

• Reference [15] developed the artificial immune system for extracting the IM parameters to 

optimize the parameters of IMs from experimental tests and manufacturer data. 

• Reference[16] presented the neural network as training mechanism for finding the solution of 

parameter estimation problem. 

• Reference[17], [18] presented the shuffled frog-leaping for extract the equivalent circuit 

parameters of IMs from the manufacturer data. 

• Reference[19] presented a simplified model for parameter estimation of the PIMs. 

• Reference[20] estimated the 6-phase IM parameters using modified standard tests. This zero-

sequence test is proceed using an improved equivalent circuit to enhance the estimated 

parameter accuracy. 

• Reference [21] developed multi-objective PSO algorithm to minimize the deviation between the 

manufacturer and estimated data. 

• Reference[22] developed differential evolution for finding the parameter estimation of three 

phase IMs. 

The previous survey shows the application of various optimization techniques for solving the 

parameter estimation problem. The field of optimization is continuous and worth of interest. Many 

optimization algorithms were developed for many real engineering problems as: moth-flame [23], fruit fly  

[24], cat swarm [25], sunflower [26], wind driven [27], and water cycle [28] optimization algorithms. 

Among the optimization algorithm, PSO algorithm that mimics the main idea of fish or birds looking for 
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food was introduced in by Eberhart and Kennedy [29] . Several real-world works are reported based on 

PSO algorithm and its variants in the literature. Reference[30] presented an intelligent diagnosis method 

using, design of synchronous motor [31], optimization of PID controller parameters adjustment [32], 

optimal costs of generation production [33]. The main drawback of PSO is the need to adjust learning and 

inertia coefficients. 

An efficient metaheuristic technique called PSO it was started by Kennedy and Eberhart was 

presented in Ref.[34]. This algorithm was taken from swarm attitude such as bird flow and education in 

nature[31]. Particles that move inside the problem are used at high speeds [35]. In every repetition, the 

velocities of the self-particles are randomly preset related to the best position of the same particle and the 

best position of the near particle. The best particles and the best close ones are selected according to the 

conditions set by the user. The transition of all particles occurs normally to the best solution. The word 

"swarm" originates from the unequal movement of particles in the problem area, and now very much 

resembles a group of fish or birds [36]. The Jaya algorithm [37] is one of the recent metaheuristic 

techniques which is quickly finding many applications in different fields of engineering and science. The 

JOA directed the solution towards the best value with the progress of the optimization algorithm[38]. The 

main merits of JOA are its simplicity and the benefits of no need for adopting and selecting the specific 

control parameters that avoid the demerits of PSO algorithm. JOA is very promising optimizer which is 

developed for many real-world applications as: optimal sizing of capacitor-bank types in the low voltage 

distribution networks[39], control of online load frequency in wind power systems [40], solving 

economic/emission unit commitment[41]. Added to the previous applications, JOAs is applied for 

harmonic mitigation and employing reactive power compensation of three phase induction motor that 

drives by photo-voltaic-based DSTATCOM [42], automatic generation control of multi-area 

interconnected power system [43], for optimal power flow [44], environment based allocation of 

distributed energy resources in a micro-grid [45] for optimizing the thermal performance of the 

underground power cable system[46], for reactive power dispatch problem [47], and for design the 

digital FIR filters in [48].  

As mentioned, the problem is formulated as non-linear optimization problem because the 

conventional optimization techniques fail to deal exactly with the need of linearization that reduces the 

solution quality and high dependency on the initial point of linearization. So, it must seek other methods 

to solve the non-linear optimization problem avoiding the previous drawbacks. The features of this paper 

are concluded as follows: 

• The steady state model of multi-phase induction motor is derived. 

• The Hybrid PSO-Jaya optimization algorithm is proposed to extract the optimal unknown 

parameters of PIM from the nameplate data. 
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• The performance of HPJOA is assessed compared with Jaya, GA, DE and PSO optimization 

algorithms for three and six-phase induction motors. 

• The assessment study proves that the HPJOA has the fast response compared with other 

competitive algorithms with actual parameters.  

• Also, the results reflect the high robustness of the proposed HPJOA compared with others. 

 

The rest sections are organized as follows: In section 2, the steady state characteristics of poly-phase 

IM is presented based on equivalent circuit. In Section 3, the parameter estimation problem is 

formulated as an optimization problem that defines the objective and constraints. The previous 

optimization algorithms are added to section 4. The design procedure of HPJOA is presented in 

Section 5. In Section 6, the parameter estimation problem and its operation characteristic are applied 

on two poly-phase IMs. Section 7 concludes the paper findings. 

2. Steady state characteristics ofpoly-phase induction motor 

The steady state operating characteristics are identified based on the steady state equivalent circuit 

shown in Figure 1. The equivalent circuit shows the per phase steady state equivalent circuit of poly-

phase induction motor without separate mutual leakage inductance of stator winding [20]. The stator 

and magnetizing impedance in poly-phase induction motor can be reduced to the Thevenin equivalent 

circuit as shown in Figure 2.The Thevenin voltage is computed through: 

Fig. 1: multi-phase induction motor equivalent circuit  Fig. 2: Thevenin equivalent circuit 
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The current flow in the IM rotor circuit of induction motor can be calculated as: 
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The developed torque can be determined by Eq. (4) as: 
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From the above equation the slip at maximum torque smT can be calculate from 
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Substituting the slip at maximum torque from Eq.(5) into the electromagnetic torque in Eq.(4)the 

maximum torque can be calculated from: 

( ) ( )




 +++

=
2

2
2

2

max
2 XXRR

V

ω

m
T

ththth

th

s

   (6) 

The Starting torque can be calculated from 
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The input current power factor can be obtained from 
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3. Problem formulation 

The fitness function aims at finding the lowest deviation level for the starting, operating , maximum 

torques and the power factor. This fitness function assures the capability of estimated parameters at 

different operating conditions. Equation (9) presents the combined fitness function for finding the 

optimal parameter estimation of the tested induction motors. It aims at minimizing the deviation 

between the estimated and experimental data. The combined objective function, in Eq. 9, has four 

normalized deviation components for the starting, rated and maximum torques, and the full load power 

factor as: 

222
max

2
pfTTTF std ∆+∆+∆+∆=∆         (9) 

Computing the normalized components is carried out using Eqs. (10)-(13) as:  
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where F∆ is assumed as the required objective square error function of full load, starting, and 

maximum torque, and rated power factor which is to be minimized.  

Equation 9 is solved subject to the minimum and maximum limitations of the stator and rotor sides' 

motor parameters. 

4. The developed optimization algorithms 

In the following section, the GA, DE, PSO, and JAYA are described in details as: 

 

A) Differential evolution DE  

Differential evolution DE is algorithm based on stochastic and population. The population is 

composed of pop individuals and every individual in the population represents a solution that possible 

to minimize the fitness function. DE operates in three sequential steps in all iteration[22]:  

1. Mutation: pop mutated individuals are generated using some individuals of the population. A 

vector for the mutated solution is called mutant vector. There are different strategies to create a mutant 

vector. Here only the three most common mutation methods are explained  [49]. Other mutation 

strategies and their performance have been discussed in. 

i.  Mutation strategy is random mutation strategy, in which three randomly selected individuals from 

the population are used to generate the mutant vector. 

ii.  Mutation strategy uses the best individual from the population to create the mutant vectors.  

iii. The mutation strategy moves the current individual towards the best individual in the population 

before being disturbed with a scaled difference of two randomly selected individuals.  

2. Crossover: we recombine the set of mutant vectors created in mutation with the original 

population members to generate progeny solutions.   
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Selection: In this last step, the progeny is compared with its origin, and the best one will but the population for the next 

generation 

B) Genetic algorithm GA 

GA is an evolutionary optimizer that takes a sample of possible solutions and employs mutation, 

crossover, and selection as the primary operators for optimization. For the case of multi-phase 

induction motor parameters estimation, there are five parameters being optimized for the multi-phase 

induction motor parameters estimation [35]. 

The workability of GAs is based on Darwinian’s theory of survival of the fittest. Genetic algorithms 

may contain a chromosome, a gene, and set of population, fitness, fitness function, breeding, mutation 

and selection. Genetic algorithms begin with a set of solutions represented by chromosomes, called 

population [50]. Solutions from one population are taken and used to form a new population, which is 

motivated by the possibility that the new population will be better than the old one. Further, solutions 

are selected according to their fitness to form new solutions, that is, offspring's.  

The solution procedure of the parameters estimation problem can be carried out using the proposed 

GA optimization algorithm as follows:  

1. Start: Generate random population of chromosomes, that is, suitable solutions for the problem.  

2. Fitness: Evaluate the fitness of each chromosome in the population.  

3. New population: Create a new population by repeating following steps until the new population is 

complete. 

i. Selection: Select two parent chromosomes from a population according to their fitness. Better the 

fitness, the bigger chance to be selected to be the parent.  

ii. Crossover: With a crossover probability, cross over the parents to form new offspring, that is, 

children. If no crossover was performed, offspring is the exact copy of parents.  

iii. Mutation: With a mutation probability, mutate new offspring at each locus.  

iv. Apply: Place new offspring in the new population.  

4. Update: Use new generated population for a further run of the algorithm.  

5. Check: If the end condition is satisfied, stop, and return the best solution in current population. 

C) PSO algorithm 

The Particle Swarm Optimization is configured with a set of random results and seeks to improve 

by updating generations. In PSO, the possible solutions, called particles, flythrough the problem space 

by following the current optimum particles [31]. In PSO, a set of randomly initial swarm propagates in 

the design space towards the optimal solution over a number of iterations based on large amount of 

information about the design space that is assimilated and shared by all members of the swarm. 
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Modification of the swarm agent positions is realized by the position and transition information. Each 

agent transition can be simulated by two dimensional referred to the available information's about self 

and group experiences. The basic PSO version is based on the collected information of self and group 

experiences according to the positions of agents.  

The basic PSO is presented as in [34] as: 

����� = !� . ��� + $1 × '1 × (��
���� − ��* + $2 × '2 × (���

���� − ��* (14) 

���� = �� + �����  

where, ��, ��
����is the vector of control variables and personal best of control variables at iteration k. 

���
����is the vector of global best of control variables at iteration k, ����is the vector of control 

variables at iteration k+1. 

The velocity of the control variables updated at iteration k is: 

maxminmaxmax /)( Iterkvvvv kkkk ×−−=  (15) 

Where vk
max and vk

min is a function of search space length in each dimension, Itermax is the maximum 

number of iterations. The learning coefficients c1 and c2 are the factors which PSO technique optimizes 

different objective functions on the basis of personal and group experiences and each agent tries to 

modify its position the updating formula (14).   

The minimum and maximum transition of the updating formula in (14) for agent position as:  

maxmin
x

k
xx ∆≤∆≤∆   (16) 

where: 








−−=∆

−=∆

)(

)(

minmaxmin

minmaxmax

kk

kk

xx
m

kx

xx
m

kx

  (17) 

D) JAYA optimization algorithm  

The Jaya optimization algorithm (JOA) replaces the updating formula in PSO algorithm by the 

following equation as[51], [52]. The main advantage of JOA is characterized with the high ability of 

movement in the direction of the best solution and avoiding the possibility of trapping into worst 

solutions. The combination of these two terms concentrates on the best solution region [53]. Two global 

solutions, reflected in the updating equation terms, the best and worst solution for the overall particles. 

But, JOA is not dependent on the self-experience of particle as in PSO algorithm[54]. Then, the 

updating equation has two terms the first enhances the closeness between the best solutions while the 

second terms avoid the closeness to worst solution.  



 

 
 

10 
 

The updating equation is expressed as: 

���� = �� + '1 × (��
���� − ���* − '2 × ,��

����� − ��-   (18) 

where, ��
����, ��

�����are the value of the variable k for the best and worst suggested member of a set of 

possible solution. r1 and r2 are two random numbers in the range (0,1). 

 

5. The proposed hybrid PSO -JAYA optimization algorithm 

The proposed hybrid optimization algorithm combines the merits of PSO and Jaya algorithms. It 

enhances the search space, forces the solution to the global best solution and away from the worst 

solutions. Equation (19) presents the updating formula for the proposed HPJOA. It is dependent on the 

global best, worst solution and taken into consideration the impact of self-experience of the associated 

particles.  

The proposed updating equation can be expressed as: 

���� = !��� + $� × '� × (��
���� − ��* − $� × '� × ,��

����� − ��- + $. × '. × (��
/���� − ��*  (19) 

where, �1
�2��3 is the value of the variable k for the global member of a set of possible solution. For the kth 

iteration in the range of (0, 1), r1, r2 and r3 are the three random numbers for the kth variable. c1, c2 and 

c3 are learning coefficients, the first term shows the affinity of solution to move nearer to the personal 

best solution, The second term shows the affinity of solution to move nearer to the global best solution 

and the last term is the tendency of the solution to avoid the worst solution.  

5.1 Proposed procedure steps  

The proposed procedure of HPJOA can be carried out as follows: 

1. Defining the motor manufacture data, parameters limits, constraints and the HPJOA coefficients. 

2. Initialize the control variables (estimation variables) within the predefined boundaries. 

3. Evaluate each particle of the initialized matrix by determining the fitness function through solving 

the steady state equivalent circuit. 

4. Identify the global, personal and worst solutions. 

5. Update the control variables using equation (19). 

6. Check the upper and lower boundaries and transition constraints given in equations (16) and (17). 

7. The reduction strategy to concentrate the search space and there for enhance the solution quality. 

The factor α refers to the coefficient applied for reduction strategy. In this strategy, the search 

space is managed through adaptive variation of the upper and lower limits according to the 

following two equations: 
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)min(maxminmin vvvv −×+= α  (20) 

)min(maxmaxmax vvvv −×−= α (21) 

In this paper the factor α  equals 0.08. 

8. Repeat steps 3 to 4 until the maximum iteration as stopping criteria are achieved. Figure 3 shows 

the flow chart of HPJOA. 

 

Fig. 3: Flowchart for Hybrid PSO-Jaya Based Optimization Process 
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6 Applications 

6.1. Experimental Setup 

The experimental tests- open, short circuit and DC tests- are carried out on two poly-phase IM to 

obtain the equivalent circuit parameters. Photograph of the experimental implementation located at 

Faculty of Engineering; Kafrelshiekh University is provided in Figure 4. The tests are carried out 

according to the specifications of the IEEE Std 112TM-2004 for tests procedure for PIM [6]. Table 1 

represents the recorded measurements for three-phase and six-phase IMs. By using the data recorded 

for voltage, current, input power and the dc resistances from no load, short circuit and short circuit 

tests in Table 1. These records are used to determine the three and six phase induction motor 

parameters by using the proposed hybrid HPJOA and the competitive algorithms..  

 

Table 1: Experimental tests of 1/3 HP three-phase and 3 HP six-phase IMs.  

Variables 

Three phase IM (1/3 HP) Six  phase IM (3 HP) 

No load test Short-circuit test No load test 
Short-circuit 

test 

Voltage,    V 220 89.7 220 96.9 

Current,   A 0.22 0.65 0.95 2.67 

Input power, W 9.5 25.6 104 159.37 

Rdc   Ω 21.25 12 

 

 

Figure 4: Experimental setup at Faculty of Engineering, Kafrelsheikh University. 
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6.2. Settings of competitive optimization algorithms' parameters 

The parameters setting for the competitive algorithms are described as follows: 

1. Maximum iteration number is 100 and the population size is 60. 

2. For GA [35], the parameters were set crossover length = 0.5, resolution = 3, and mutation 

probability = 0.12. For DE[22] [49], the parameters were set crossover probability = 0.7 and 

scaling factor =0.5, mutation probability = 0.5. Finally, for HPJOA, the parameters are c1= 1, 

c2= 2, c3 = 1.5 and search space length were set 
max
kv = 0.8, and 

min
kv = 0.3. 

Case 1: three phase induction motor parameter estimation 

The competitive algorithms are integrated to obtain the parameter estimations of 1/3 HP three-phase 

induction motor. The experimental parameters of the steady state equivalent circuit of the 3 phase 

induction motor are shown in the second column of Table 2. The estimated parameters of steady-state 

equivalent circuit of three phase induction motor using PSO, JOA, GA, DE and HPJOA methods are 

reported in the rest of columns of the Table 2. The obtained results show that the parameters by using 

the proposed HPJOA are closer to actual value of motor than PSO and JOA, GA and DE. In the 

viewpoint of operational indices, a comparison is carried out between the estimated and the 

experimental values of the starting, maximum, full load torques, and full load power factor. The 

HPJOA has the lower fitness function (1.71×10-6) compared with Jaya method which equals (2.9×10-

5), with PSO method which equals (9.25×10-5), with GA method which equals (4.84×10-5) and with DE 

method which equals (1.98×10-4). It is cleared that, the proposed HPJOA achieves the hoiesht 

reduction of 91.36% improvement is occurred with the largest fitness function obtained with DE. 

Table 2: Assessment of competitive algorithms for 3-phase induction motor 

Parameters Experimental DE PSO GA Jaya HPJOA 

Rs 21.25 19.46 21.53 20.21 21.33 21.177 

Xs 61.95 63.42 60.40 60.62 61.87 61.01 

Rr 39.32 40.08 39.379 39.93 39.42 39.352 

Xr 61.95 62.74 63.78 64.99 62.03 63.07 

Xm 999.52 1049.5 1012.1 1045 1005.3 1000.1 

Tst 0.89 0.889 0.89 0.889 0.89 0.89 

TFL 0.987 0.981 0.988 0.985 0.992 0.988 

Tmax 1.435 1.44 1.433 1.43 1.439 1.436 

Pf 0.807 0.810 0.808 0.811 0.807 0.806 

ΔF  ×10-4 1.98 0.924 0.484 0.29 0.0171 
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% reduction  - 53.33% 25.56% 85.35% 91.36% 

 

Case 2: Six phase induction motor parameter estimation 

Table 3 shows the experimental tests are recorded for the 3 HP modified six-phase induction motor. 

To confirm the proposed HP JOA algorithm is performed for parameter estimation. While the 

estimated parameters of steady-state equivalent circuit of six phase induction motor using PSO, Jaya 

and Hybrid PSO-Jaya methods are recorded in Table 4, receptively. The comparison between the 

experimental and estimated parameters concludes that the investigated estimation algorithms can 

accurately estimate the equivalent circuit parameter at acceptable levels of closeness. The estimated 

parameters obtained by using HPJOA are closer to actual value of motor and it has smaller error than 

Jaya, and PSO. The Hybrid PSO-Jaya optimization algorithm has lower fitness function (2.08×10-6) 

compared with Jaya method which equals (7.88×10-5), with PSO method which equals (9.63×10-5), 

with GA method which equals (3.29×10-5)and with DE method which equals (7.91 ×10-5). It is cleared 

that, the proposed HPJOA achieves the highest reduction of 97.84%  improvement is occurred with the 

largest fitness function obtained with PSO. 

 

Table 3: Assessment of competitive algorithms for six-phase induction motor 

Parameters Experimental PSO DE Jaya GA HPJOA 

Rs 12 11.63 11.38 11.65 12.4 11.898 

Xs 12.8426 13.86 12.74 13.78 12.65 13.095 

Rr 8.0978 8.12 8.26 8.105 8.04 8.092 

Xr 12.8426 12.14 13.69 12.13 12.65 12.66 

Xm 266.68 273.55 268.41 274.29 268.27 263.66 

Tst 3.34 3.348 3.35 3.36 3.348 3.34 

TFL 3.1785 3.17 3.16 3.18 3.183 3.18 

Tmax 5.36 5.377 5.38 5.386 5.339 5.36 

Pf 0.844 0.846 0.84 0.847 0.847 0.842 

ΔF  ×10-4 0.963 0.791 0.788 0.329 0.0208 

% reduction  - 17.86% 18.18% 65.84% 97.84% 

 

6.3 Performance of operating characteristic with estimated parameters 

Figure 5 shows the three-phase induction motor torque-slip characteristic using parameters that was 

recorded from the measurements clearly, that the parameters estimated from optimization PSO, that the 
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parameters estimated from optimization Jaya, that the parameters estimated from optimization GA, that 

the parameters estimated from optimization DE,  and that the parameters estimated from the proposed 

HPJOA. Estimated torque-slip characteristic, using parameters calculated by DE, has a little difference 

compared to the measured torque-slip characteristic, while estimated curve using parameters obtained 

by the HPJOA is very close to real characteristic. 

The stator-slip and rotor current-slip characteristics using parameters estimated by the five 

algorithms are shown in Figures 6a, b. Estimated stator and rotor current characteristics using 

parameters calculated by PSO has large difference compared to the measured characteristics, while 

estimated characteristics using parameters calculated by the HPJOA is very close to the real 

characteristics. The magnetizing current-slip and power factor-slip characteristics of three-phase 

induction motor using parameters calculated by the PSO, Jaya, GA, DE and HPJOA are shown in 

Figure 6 c, d. Estimated magnetizing current and power factor characteristics using parameters 

calculated by PSO, Jaya, GA and DE have big difference compared to the measured characteristics, 

while estimated characteristics using parameters calculated by the HPJOA is very close to the real 

characteristics. 

Figure 7 shows the six-phase induction motor parameters estimated from the measurements clearly, 

that the parameters estimated from optimization PSO, that the parameters estimated from optimization 

Jaya, GA, DE and that the parameters estimated from the proposed hybrid algorithm. Estimated 

torque-speed characteristic using parameters calculated by PSO, Jaya, GA and DE have little 

differences compared to the measured torque speed characteristic, while estimated curve using 

parameters obtained by the proposed algorithm is very close to real characteristic. 
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Fig. 5: Electromagnetic torque - slip characteristics of three phase IM (-measurement,* PSO, × 

Jaya, o GA, DE, +HPJOA). 

 

a Stator current - slip 
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b Rotor current - slip  

 

c Power factor - slip 

 

d Magnetizing current - slip 
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Fig. 6: Performance characteristics of three phase IM  

(-measurement,* PSO, × Jaya, o GA, Δ DE, +HPJOA). 

 

Fig. 7: Torque - slip characteristics of six phase (-measurement,* PSO, × Jaya, o GA, Δ DE, +HPJOA). 

The stator and rotor current -slip characteristics of six-phase induction motor that are based on the 

parameters calculated by the PSO, Jaya and Hybrid PSO-Jaya are shown in Figures 8a and 8b. 

Estimated stator and rotor current characteristics using parameters, which are calculated by PSO and 

Jaya are compared to the measured characteristics, while estimated characteristics using parameters 

calculated by the Hybrid PSO-Jaya is very close to the real characteristics. The magnetizing current 

and power factor-slip characteristics of six-phase induction motor using parameters calculated by the 

PSO, Jaya and HPJOA algorithm are shown in Figure 8 c, d. Estimated magnetizing current and power 

factor characteristics using parameters calculated by PSO and Jaya has difference compared to the 

measured characteristics, while estimated characteristics using parameters calculated by the HPJOA is 

very close to the real characteristics. 
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a Stator current - slip 

 

b Rotor current - slip  
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c Power factor - slip 

 

d Magnetizing current - slip 

Fig. 8: Performance characteristics of six phase IM 

 (-measurement,* PSO, × Jaya, o GA, Δ DE, +HPJOA). 

6.1 Competitive tools assessment 

6.1.1 statistical analysis 

Tables 4 and 5 present the statistical indices, mean, median, best, worst, standard deviation and 

variance, of the competitive algorithms that are carried for 100 iterations and 60 populations, 

respectively. It is concluded that the proposed HPJOA leads to the best values of the indices compared 

with PSO, GA, DE and JOA. 

6.1.2 Convergence rates  

The convergence rate of the fitness function of the competitive optimization algorithms are shown in 

Figure 9 a and b, respectively. It can be seen that from this figure that the proposed HPJOA has better 

converges rates as the early reaching to final solution provides a proof for fast response compared with 

other optimization algorithms 

Table 4: Statistical analysis of the competitive methods for the three-phase IM 

index Competitive algorithms 

GA DE PSO Jaya HPJOA 

Mean 3.77×10-5 6.33×10-5 3.2×10-5 4.23×10-5 3.09×10-6 

Median 3.43×10-5 4.92×10-5 2.82×10-5 3.74×10-5 2.20×10-6 

Best 4.34×10-6 6.86×10-6 1.47×10-6 2.07×10-6 3.59×10-7 

Standard deviation 2.27×10-5 4.49×10-5 2.28×10-5 2.85×10-5 2.43×10-6 

Variance 5.13×10-10 2.01×10-9 5.19×10-10 8.15×10-10 5.91×10-12 
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worst 1.26×10-4 2.43×10-4 1.22×10-4 1.73×10-4 1.16×10-5 

 

Table 5: Statistical analysis of the competitive methods for the six-phase IM 

index Competitive algorithms 

GA DE PSO Jaya HPJOA 

Mean 3.44×10-5 7.57×10-6 1.87×10-5 1.52×10-4 5.21×10-6 

Median 3.04×10-5 6.49×10-9 8.93×10-6 1.22×10-4 2.57×10-6 

Best 5.82×10-6 4.07×10-7 4.89×10-7 9.74×10-6 2.30×10-7 

Standard deviation 1.96×10-5 5.78×10-6 3.73×10-5 1.19×10-4 8.18×10-6 

Variance 3.84×10-10 3.34×10-11 1.39×10-9 1.42×10-8 6.69×10-11 

worst 9.47×10-5 2.79×10-5 2.89×10-4 5.77×10-4 4.88×10-5 

 

 

(a)3 phase motor  
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(b)6-phase motor  

Fig. 9: Convergence rates of competitive algorithms (PSO, Jaya, GA, DE and HPJOA) 

6.1.3 Robustness 

To verify the robustness of the competitive algorithms, 100 separate runs are applied on the tested 

motors. Figure 10 a and b illustrate the robustness of the five algorithms. It is clear that, the proposed 

HPJOA has the highest robustness compared with PSO, GA,DE and Jaya algorithms. To confirm the 

fair comparison between the competitive algorithms, we consider the effects of population and 

maximum iteration variation. Figures 11 and 12 clear that, the proposed HPJOA has the highest 

robustness, compared with PSO, GA, DE and Jaya algorithm. 

 

a3 phase motor 
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b6 phase motor 

Fig. 10: Robustness of competitive algorithms (PSO, Jaya, DE, GA and HPJOA). 

  

a. variable population at max. iteration =100         b. variable max. iteration at population =60 

Fig. 11: Fitting of competitive algorithms of three phase induction motor 
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a. variable population at max. iteration =100b. variable max. iteration at population =60 

Fig. 12: Fitting of competitive algorithms of six phase induction motor 

7 Conclusions 

This study has presented the parameters estimations of poly-phase induction motors. The HPJOA, 

Jaya, and PSO algorithm have been used to estimate the parameters of the electrical model of the poly-

phase induction motors. The benefits of the proposed HPJOA algorithm have been compared with 

PSO, JOA, GA and DE for two poly-phase induction motors. The parameters estimation of the 

competitive algorithms is assessed together the performance of the poly-phase induction motors. Also, 

the estimated parameters have been compared with the experimental tests. The results indicate the 

validation and reliability of the suggested hybrid optimization algorithm for efficient extraction of the 

optimal parameters of three- and six poly phase induction machines. Statistical analyses are provided 

to assess the competitive algorithms. The robustness of the proposed HPJOA is proved against other 

competitive algorithms and for varied iteration numbers and population sizes. In addition, the proposed 

HPJOA realizes fast, stable, and smooth operation characteristic at acceptable convergence rates 

compared with PSO and Jaya. The proposed HPJOA achieves the highest reduction of 91.38% and 

97.84% that are occurred with the largest fitness function obtained with the competitive algorithms, 

DE and PSO, for three and six phase motors, respectively. The statistical indices involve best 

agreements between the estimated and experimental values for the three optimization algorithms. It can 

be concluded that the HPJOA is most simple, stable, and global out performance optimization 

algorithm. The use of HPJOA leads to decrease the deviation of estimated parameters compared to 

PSO and Jaya. Also, the use of HPJOA also enhances the operating performances of the tested PIMs. 
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