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The estimated parameters accuracy of poly-phase induction motors is crucial for effective performance prediction and/or control in various manufacturing applications. This study investigates hybrid algorithm between particle swarm optimization and Jaya optimization algorithms for finding the optimal parameters estimation of poly-phase induction motors. It is carried out using the manufacturer's operation characteristics on two poly-phase induction motors. Numerical results show the capability of the proposed hybrid optimization algorithm. The proposed algorithm has competitive performance compared with conventional algorithms as well as with differential evolution and genetic algorithms. Experimental verifications are carried out on three-phase and six-phase induction motors. Also, it emulates the closeness between experimental and estimated parameters with fast convergence compared to other algorithms. Also, the results reflect the high robustness of the proposed algorithm compared with other algorithms for varied iteration numbers, population size and convergence.

worst suggested of possible solution

Introduction

The Poly-phase Induction Motors (PIMs) are the most used electrical machines [START_REF] Hamida | A High-Performance Line-Start Permanent Magnet Synchronous Motor Amended From a Small Industrial Three-Phase Induction Motor[END_REF]. They contribute around 60% of electric power converted to mechanical energy [START_REF] Ayeleso | Plasma energy conversion system for electric power generation[END_REF]. PIM are favored due to their ruggedness and simplicity in the industry section as 90% of industrial motors are IMs [START_REF] Tillner | Operation and application of polyphase induction motors[END_REF]. Examples of induction motors applications involve motor tools equipped with induction motors, adjustable speed motors and pumps [START_REF] Mirzaeva | The effect of flux optimization on energy efficiency of induction motors in fan and pump applications[END_REF]. To achieve the target performance of induction machines, the accurate modelling is considered as crucial issue for PIMs [START_REF] Vukosavic | Modeling of Induction Machines[END_REF]. These issues involve the transient and steadystate behavior. The model expresses the stator and rotor windings voltage balance, flux linkages and currents, the air-gap power, and the electromagnetic torques. Therefore, finding the unknown parameters of these machines is a complicated nonlinear non-smooth optimization problem [START_REF] Al-Jufout | Optimization of induction motor equivalent circuit parameter estimation based on manufacturer's data[END_REF]. It aims at achieving the highest closeness degree between the estimated parameters and those of the actual ones. Therefore, the objective function of the considered parameter estimation problem is the minimum deviation between estimated and actual parameters with preserving these parameters within their permissible operating boundaries. To satisfy the parameter identification process, several optimization algorithms have been developed to guarantee the accurate PIM models. In this regard, this paper proposes the hybrid algorithm between particle swarm optimization and Jaya optimization algorithms HPJOA form finding the optimal unknown PIM parameters.

The modelling of induction motors is considered as vital issue in ac drive systems. Accurate parameters identification of induction motor is an urgent work in the viewpoint of control drives and operation aspects [START_REF] Bhowmick | Estimation of Equivalent Circuit Parameters of Transformer and Induction Motor from Load Data[END_REF], [START_REF] Abdelwanis | A Fuzzy-Based Controller of a Modified Six-Phase Induction Motor Driving a Pumping System[END_REF]. It is necessary to find the IMs' parameters at low implementation costs at high degree of accuracy. The traditional methods applied for finding the equivalent circuit parameters are dependent on no-load and locked rotor tests as in IEEE Std 112-1991 and its modifications IEEE Std 112-2004 [START_REF] Committee | IEEE Standard Test Procedure for Polyphase Induction Motors Having Liquid in the Magnetic Gap[END_REF].

Added to that, the high cost of hardware that is needed to implement. So, Due to these restrictions, many optimization methods developers provide number of advanced methods to meet the target of finding satisfactory level of the estimated parameters [START_REF] Singh | Multi-phase induction machine drive research -A survey[END_REF]. For achieving this target, several optimization methods are exploited to optimally estimating the parameter of PIMs equivalent circuits [START_REF] Hannan | Optimization techniques to enhance the performance of induction motor drives: A review[END_REF]- [START_REF] Lindenmeyer | An induction motor parameter estimation method[END_REF]. In the literature, several methods have been carried out for finding the unknown parameters of PIMs.

References [START_REF] Toliyat | A Review of RFO Induction Motor Parameter Estimation Techniques[END_REF] and [START_REF] Singh | Multi-phase induction machine drive research -A survey[END_REF] review the various methods that were developed for estimating the unknown parameters of PIMs. In this line, the previous efforts are summarised as follows:

• Reference [START_REF] Sakthivel | Artificial immune system for parameter estimation of induction motor[END_REF] developed the artificial immune system for extracting the IM parameters to optimize the parameters of IMs from experimental tests and manufacturer data. • Reference [START_REF] Wlas | Neural-Network-Based Parameter Estimations of Induction Motors[END_REF] presented the neural network as training mechanism for finding the solution of parameter estimation problem.

• Reference [START_REF] Perez | Estimation of induction motor parameters using shuffled frog-leaping algorithm[END_REF], [START_REF] Gomez-Gonzalez | Shuffled frog-leaping algorithm for parameter estimation of a double-cage asynchronous machine[END_REF] presented the shuffled frog-leaping for extract the equivalent circuit parameters of IMs from the manufacturer data.

• Reference [START_REF] Bucci | A Simplified Indirect Technique for the Measurement of Mechanical Power in Three-Phase Asynchronous Motors[END_REF] presented a simplified model for parameter estimation of the PIMs.

• Reference [START_REF] Che | Parameter Estimation of Asymmetrical Six-Phase Induction Machines Using Modified Standard Tests[END_REF] estimated the 6-phase IM parameters using modified standard tests. This zerosequence test is proceed using an improved equivalent circuit to enhance the estimated parameter accuracy.

• Reference [START_REF] Sakthivel | Engineering Applications of Artificial Intelligence Multi-objective parameter estimation of induction motor using particle swarm optimization[END_REF] developed multi-objective PSO algorithm to minimize the deviation between the manufacturer and estimated data.

• Reference [START_REF] Guedes | Parameters estimation of three-phase induction motors using differential evolution[END_REF] developed differential evolution for finding the parameter estimation of three phase IMs.

The previous survey shows the application of various optimization techniques for solving the parameter estimation problem. The field of optimization is continuous and worth of interest. Many optimization algorithms were developed for many real engineering problems as: moth-flame [START_REF] Elsakaan | An enhanced moth-fl ame optimizer for solving non-smooth economic dispatch problems with emissions[END_REF], fruit fly [START_REF] Abou El-Ela | Solving Multiobjective Economical Power Dispatch Problem Using MO-FOA[END_REF], cat swarm [START_REF] Abou El-Ela | Minimisation of voltage fluctuation resulted from renewable energy sources uncertainty in distribution systems[END_REF], sunflower [START_REF] Gomes | A sunflower optimization (SFO) algorithm applied to damage identification on laminated composite plates[END_REF], wind driven [START_REF] Shaheen | A novel framework for power loss minimization by modified wind driven optimization algorithm[END_REF], and water cycle [START_REF] El-Ela | Optimal Placement and Sizing of Distributed Generation and Capacitor Banks in Distribution Systems Using Water Cycle Algorithm[END_REF] optimization algorithms.

Among the optimization algorithm, PSO algorithm that mimics the main idea of fish or birds looking for food was introduced in by Eberhart and Kennedy [START_REF] Eberhart | A new optimizer using particle swarm theory[END_REF] . Several real-world works are reported based on PSO algorithm and its variants in the literature. Reference [START_REF] Deng | A novel intelligent diagnosis method using optimal LS-SVM with improved PSO algorithm[END_REF] presented an intelligent diagnosis method using, design of synchronous motor [START_REF] El-Sehiemy | Synchronous Motor Design using Particle Swarm Optimization Technique[END_REF], optimization of PID controller parameters adjustment [START_REF] Jia | An Improved Particle Swarm Optimization (PSO) Optimized Integral Separation PID and its Application on Central Position Control System[END_REF], optimal costs of generation production [START_REF] Abou-El-Ela | Optimized generation costs using a modified particle swarm optimization version[END_REF]. The main drawback of PSO is the need to adjust learning and inertia coefficients.

An efficient metaheuristic technique called PSO it was started by Kennedy and Eberhart was presented in Ref. [START_REF] Bijan | Efficiency estimation of the induction machine by particle swarm optimization using rapid test data with range constraints[END_REF]. This algorithm was taken from swarm attitude such as bird flow and education in nature [START_REF] El-Sehiemy | Synchronous Motor Design using Particle Swarm Optimization Technique[END_REF]. Particles that move inside the problem are used at high speeds [START_REF] Hasanova | A Comparative Study of Particle Swarm Optimization and Genetic Algorithm[END_REF]. In every repetition, the velocities of the self-particles are randomly preset related to the best position of the same particle and the best position of the near particle. The best particles and the best close ones are selected according to the conditions set by the user. The transition of all particles occurs normally to the best solution. The word "swarm" originates from the unequal movement of particles in the problem area, and now very much resembles a group of fish or birds [START_REF] Del Valle | Particle Swarm Optimization: Basic Concepts, Variants and Applications in Power Systems[END_REF]. The Jaya algorithm [START_REF] Rao | Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems[END_REF] is one of the recent metaheuristic techniques which is quickly finding many applications in different fields of engineering and science. The JOA directed the solution towards the best value with the progress of the optimization algorithm [START_REF] Raut | An improved Elitist-Jaya algorithm for simultaneous network reconfiguration and DG allocation in power distribution systems[END_REF]. The main merits of JOA are its simplicity and the benefits of no need for adopting and selecting the specific control parameters that avoid the demerits of PSO algorithm. JOA is very promising optimizer which is developed for many real-world applications as: optimal sizing of capacitor-bank types in the low voltage distribution networks [START_REF] Abbas | Optimal sizing of capacitor-bank types in the low voltage distribution networks using JAYA optimization[END_REF], control of online load frequency in wind power systems [START_REF] Pradhan | Online load frequency control in wind integrated power systems using modified Jaya optimization[END_REF], solving economic/emission unit commitment [START_REF] Yang | A Novel Binary Jaya Optimization for Economic/Emission Unit Commitment[END_REF]. Added to the previous applications, JOAs is applied for harmonic mitigation and employing reactive power compensation of three phase induction motor that drives by photo-voltaic-based DSTATCOM [START_REF] Mishra | Power Quality Improvement Using Photovoltaic Fed DSTATCOM Based on JAYA Optimization[END_REF], automatic generation control of multi-area interconnected power system [START_REF] Singh | Analytic hierarchy process based automatic generation control of multi-area interconnected power system using Jaya algorithm[END_REF], for optimal power flow [START_REF] Warid | Optimal power flow using the Jaya algorithm[END_REF], environment based allocation of distributed energy resources in a micro-grid [START_REF] Trivedi | Environment Dispatch of Distributed Energy Resources in a microgrid using JAYA Algorithm[END_REF] for optimizing the thermal performance of the underground power cable system [START_REF] Ocłoń | Thermal performance optimization of the underground power cable system by using a modified Jaya algorithm[END_REF], for reactive power dispatch problem [START_REF] Barakat | Solving reactive power dispatch problem by using JAYA optimization algorithm[END_REF], and for design the digital FIR filters in [START_REF] Chilamkurthi | Design of optimal digital FIR filters using TLBO and Jaya algorithms[END_REF].

As mentioned, the problem is formulated as non-linear optimization problem because the conventional optimization techniques fail to deal exactly with the need of linearization that reduces the solution quality and high dependency on the initial point of linearization. So, it must seek other methods to solve the non-linear optimization problem avoiding the previous drawbacks. The features of this paper are concluded as follows:

• The steady state model of multi-phase induction motor is derived.

• The Hybrid PSO-Jaya optimization algorithm is proposed to extract the optimal unknown parameters of PIM from the nameplate data.

• The performance of HPJOA is assessed compared with Jaya, GA, DE and PSO optimization algorithms for three and six-phase induction motors.

• The assessment study proves that the HPJOA has the fast response compared with other competitive algorithms with actual parameters.

• Also, the results reflect the high robustness of the proposed HPJOA compared with others.

The rest sections are organized as follows: In section 2, the steady state characteristics of poly-phase IM is presented based on equivalent circuit. In Section 3, the parameter estimation problem is formulated as an optimization problem that defines the objective and constraints. The previous optimization algorithms are added to section 4. The design procedure of HPJOA is presented in Section 5. In Section 6, the parameter estimation problem and its operation characteristic are applied on two poly-phase IMs. Section 7 concludes the paper findings.

Steady state characteristics ofpoly-phase induction motor

The steady state operating characteristics are identified based on the steady state equivalent circuit shown in Figure 1. The equivalent circuit shows the per phase steady state equivalent circuit of polyphase induction motor without separate mutual leakage inductance of stator winding [START_REF] Che | Parameter Estimation of Asymmetrical Six-Phase Induction Machines Using Modified Standard Tests[END_REF]. The stator and magnetizing impedance in poly-phase induction motor can be reduced to the Thevenin equivalent circuit as shown in Figure 2.The Thevenin voltage is computed through: 

m th ph s s m jX V V R jX jX = + + (1) 
The Thevenin equivalent circuit of poly phase induction motor(PIM)is shown in Fig. 2 as:
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The current flow in the IM rotor circuit of induction motor can be calculated as:
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The developed torque can be determined by Eq. ( 4) as:
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From the above equation the slip at maximum torque smT can be calculate from

( ) ( ) 2 2 2 2 X X R R s th th mT + + = (5)
Substituting the slip at maximum torque from Eq.( 5) into the electromagnetic torque in Eq.( 4)the maximum torque can be calculated from:
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The Starting torque can be calculated from
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The input current power factor can be obtained from
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Problem formulation

The fitness function aims at finding the lowest deviation level for the starting, operating , maximum torques and the power factor. This fitness function assures the capability of estimated parameters at different operating conditions. Equation ( 9) presents the combined fitness function for finding the optimal parameter estimation of the tested induction motors. It aims at minimizing the deviation between the estimated and experimental data. The combined objective function, in Eq. 9, has four normalized deviation components for the starting, rated and maximum torques, and the full load power factor as:

2 2 2 max 2 pf T T T F st d ∆ + ∆ + ∆ + ∆ = ∆ (9)
Computing the normalized components is carried out using Eqs. ( 10 where F ∆ is assumed as the required objective square error function of full load, starting, and maximum torque, and rated power factor which is to be minimized.

Equation 9 is solved subject to the minimum and maximum limitations of the stator and rotor sides' motor parameters.

The developed optimization algorithms

In the following section, the GA, DE, PSO, and JAYA are described in details as: 1. Mutation: pop mutated individuals are generated using some individuals of the population. A vector for the mutated solution is called mutant vector. There are different strategies to create a mutant vector. Here only the three most common mutation methods are explained [START_REF] Wang | Self-adaptive differential evolution algorithm with hybrid mutation operator for parameters identification of PMSM[END_REF]. Other mutation strategies and their performance have been discussed in.

i. Mutation strategy is random mutation strategy, in which three randomly selected individuals from the population are used to generate the mutant vector.

ii. Mutation strategy uses the best individual from the population to create the mutant vectors.

iii. The mutation strategy moves the current individual towards the best individual in the population before being disturbed with a scaled difference of two randomly selected individuals.

2. Crossover: we recombine the set of mutant vectors created in mutation with the original population members to generate progeny solutions.

Selection: In this last step, the progeny is compared with its origin, and the best one will but the population for the next generation

B) Genetic algorithm GA

GA is an evolutionary optimizer that takes a sample of possible solutions and employs mutation, crossover, and selection as the primary operators for optimization. For the case of multi-phase induction motor parameters estimation, there are five parameters being optimized for the multi-phase induction motor parameters estimation [START_REF] Hasanova | A Comparative Study of Particle Swarm Optimization and Genetic Algorithm[END_REF].

The workability of GAs is based on Darwinian's theory of survival of the fittest. Genetic algorithms may contain a chromosome, a gene, and set of population, fitness, fitness function, breeding, mutation and selection. Genetic algorithms begin with a set of solutions represented by chromosomes, called population [START_REF] Bijan | Induction Machine Parameter Range Constraints in Genetic Algorithm Based Efficiency Estimation Techniques[END_REF]. Solutions from one population are taken and used to form a new population, which is motivated by the possibility that the new population will be better than the old one. Further, solutions are selected according to their fitness to form new solutions, that is, offspring's.

The solution procedure of the parameters estimation problem can be carried out using the proposed GA optimization algorithm as follows:

1. Start: Generate random population of chromosomes, that is, suitable solutions for the problem.

2. Fitness: Evaluate the fitness of each chromosome in the population.

3. New population: Create a new population by repeating following steps until the new population is complete.

i.

Selection: Select two parent chromosomes from a population according to their fitness. Better the fitness, the bigger chance to be selected to be the parent.

ii.

Crossover: With a crossover probability, cross over the parents to form new offspring, that is, children. If no crossover was performed, offspring is the exact copy of parents.

iii. Mutation: With a mutation probability, mutate new offspring at each locus.

iv.

Apply: Place new offspring in the new population.

4. Update: Use new generated population for a further run of the algorithm.

5. Check: If the end condition is satisfied, stop, and return the best solution in current population.

C) PSO algorithm

The Particle Swarm Optimization is configured with a set of random results and seeks to improve by updating generations. In PSO, the possible solutions, called particles, flythrough the problem space by following the current optimum particles [START_REF] El-Sehiemy | Synchronous Motor Design using Particle Swarm Optimization Technique[END_REF]. In PSO, a set of randomly initial swarm propagates in the design space towards the optimal solution over a number of iterations based on large amount of information about the design space that is assimilated and shared by all members of the swarm.

Modification of the swarm agent positions is realized by the position and transition information. Each agent transition can be simulated by two dimensional referred to the available information's about self and group experiences. The basic PSO version is based on the collected information of self and group experiences according to the positions of agents.

The basic PSO is presented as in [START_REF] Bijan | Efficiency estimation of the induction machine by particle swarm optimization using rapid test data with range constraints[END_REF] as:
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where, , is the vector of control variables and personal best of control variables at iteration k.

is the vector of global best of control variables at iteration k, is the vector of control variables at iteration k+1.

The velocity of the control variables updated at iteration k is:
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Where vk max and vk min is a function of search space length in each dimension, Iter max is the maximum number of iterations. The learning coefficients c1 and c2 are the factors which PSO technique optimizes different objective functions on the basis of personal and group experiences and each agent tries to modify its position the updating formula [START_REF] Toliyat | A Review of RFO Induction Motor Parameter Estimation Techniques[END_REF].

The minimum and maximum transition of the updating formula in [START_REF] Toliyat | A Review of RFO Induction Motor Parameter Estimation Techniques[END_REF] for agent position as: [START_REF] Wlas | Neural-Network-Based Parameter Estimations of Induction Motors[END_REF] where:
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D) JAYA optimization algorithm

The Jaya optimization algorithm (JOA) replaces the updating formula in PSO algorithm by the following equation as [START_REF] Azizipanah-Abarghooee | Practical multi-area bi-objective environmental economic dispatch equipped with a hybrid gradient search method and improved Jaya algorithm[END_REF], [START_REF] Huang | A prediction model-guided jaya algorithm for the PV system maximum power point tracking[END_REF]. The main advantage of JOA is characterized with the high ability of movement in the direction of the best solution and avoiding the possibility of trapping into worst solutions. The combination of these two terms concentrates on the best solution region [START_REF] Rao | Design optimization and analysis of selected thermal devices using self-adaptive Jaya algorithm[END_REF]. Two global solutions, reflected in the updating equation terms, the best and worst solution for the overall particles.

But, JOA is not dependent on the self-experience of particle as in PSO algorithm [START_REF] El-Sattar | Single-and multi-objective optimal power flow frameworks using Jaya optimization technique[END_REF]. Then, the updating equation has two terms the first enhances the closeness between the best solutions while the second terms avoid the closeness to worst solution.

The updating equation is expressed as:

= + ' 1 × ( - * -' 2 × , -- (18) 
where, , are the value of the variable k for the best and worst suggested member of a set of possible solution. r1 and r2 are two random numbers in the range (0,1).

The proposed hybrid PSO -JAYA optimization algorithm

The proposed hybrid optimization algorithm combines the merits of PSO and Jaya algorithms. It enhances the search space, forces the solution to the global best solution and away from the worst solutions. Equation ( 19) presents the updating formula for the proposed HPJOA. It is dependent on the global best, worst solution and taken into consideration the impact of self-experience of the associated particles.

The proposed updating equation can be expressed as:
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where, 1 2 3 is the value of the variable k for the global member of a set of possible solution. For the k th iteration in the range of (0, 1), r1, r2 and r3 are the three random numbers for the k th variable. c1, c2 and c3 are learning coefficients, the first term shows the affinity of solution to move nearer to the personal best solution, The second term shows the affinity of solution to move nearer to the global best solution and the last term is the tendency of the solution to avoid the worst solution.

Proposed procedure steps

The proposed procedure of HPJOA can be carried out as follows:

1. Defining the motor manufacture data, parameters limits, constraints and the HPJOA coefficients.

2. Initialize the control variables (estimation variables) within the predefined boundaries.

Evaluate each particle of the initialized matrix by determining the fitness function through solving

the steady state equivalent circuit.

4. Identify the global, personal and worst solutions.

5. Update the control variables using equation [START_REF] Bucci | A Simplified Indirect Technique for the Measurement of Mechanical Power in Three-Phase Asynchronous Motors[END_REF].

6. Check the upper and lower boundaries and transition constraints given in equations ( 16) and (17).

7. The reduction strategy to concentrate the search space and there for enhance the solution quality.

The factor α refers to the coefficient applied for reduction strategy. In this strategy, the search space is managed through adaptive variation of the upper and lower limits according to the following two equations:
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In this paper the factor α equals 0.08.

8. Repeat steps 3 to 4 until the maximum iteration as stopping criteria are achieved. Figure 3 shows the flow chart of HPJOA. according to the specifications of the IEEE Std 112 TM -2004 for tests procedure for PIM [START_REF] Al-Jufout | Optimization of induction motor equivalent circuit parameter estimation based on manufacturer's data[END_REF]. Table 1 represents the recorded measurements for three-phase and six-phase IMs. By using the data recorded for voltage, current, input power and the dc resistances from no load, short circuit and short circuit tests in Table 1. These records are used to determine the three and six phase induction motor parameters by using the proposed hybrid HPJOA and the competitive algorithms.. Rdc Ω 21. 25 12 Figure 4: Experimental setup at Faculty of Engineering, Kafrelsheikh University.

Settings of competitive optimization algorithms' parameters

The parameters setting for the competitive algorithms are described as follows:

1. Maximum iteration number is 100 and the population size is 60.

2. For GA [START_REF] Hasanova | A Comparative Study of Particle Swarm Optimization and Genetic Algorithm[END_REF], the parameters were set crossover length = 0.5, resolution = 3, and mutation probability = 0.12. For DE [START_REF] Guedes | Parameters estimation of three-phase induction motors using differential evolution[END_REF] [49], the parameters were set crossover probability = 0.7 and scaling factor =0.5, mutation probability = 0.5. Finally, for HPJOA, the parameters are c1= 1, c2= 2, c3 = 1.5 and search space length were set max k v = 0.8, and

min k v = 0.3.

Case 1: three phase induction motor parameter estimation

The competitive algorithms are integrated to obtain the parameter estimations of 1/3 HP three-phase induction motor. The experimental parameters of the steady state equivalent circuit of the 3 phase induction motor are shown in the second column of Table 2. The estimated parameters of steady-state equivalent circuit of three phase induction motor using PSO, JOA, GA, DE and HPJOA methods are reported in the rest of columns of the Table 2. The obtained results show that the parameters by using the proposed HPJOA are closer to actual value of motor than PSO and JOA, GA and DE. In the viewpoint of operational indices, a comparison is carried out between the estimated and the experimental values of the starting, maximum, full load torques, and full load power factor. The HPJOA has the lower fitness function (1.71×10 -6 ) compared with Jaya method which equals (2.9×10 - 5 ), with PSO method which equals (9.25×10 -5 ), with GA method which equals (4.84×10 -5 ) and with DE method which equals (1.98×10 -4 ). It is cleared that, the proposed HPJOA achieves the hoiesht reduction of 91.36% improvement is occurred with the largest fitness function obtained with DE. Case 2: Six phase induction motor parameter estimation Table 3 shows the experimental tests are recorded for the 3 HP modified six-phase induction motor.

To confirm the proposed HP JOA algorithm is performed for parameter estimation. While the estimated parameters of steady-state equivalent circuit of six phase induction motor using PSO, Jaya and Hybrid PSO-Jaya methods are recorded in Table 4, receptively. The comparison between the experimental and estimated parameters concludes that the investigated estimation algorithms can accurately estimate the equivalent circuit parameter at acceptable levels of closeness. The estimated parameters obtained by using HPJOA are closer to actual value of motor and it has smaller error than Jaya, and PSO. The Hybrid PSO-Jaya optimization algorithm has lower fitness function (2.08×10 -6 ) compared with Jaya method which equals (7.88×10 -5 ), with PSO method which equals (9.63×10 -5 ),

with GA method which equals (3.29×10 -5 )and with DE method which equals (7.91 ×10 -5 ). It is cleared that, the proposed HPJOA achieves the highest reduction of 97.84% improvement is occurred with the largest fitness function obtained with PSO. 

Performance of operating characteristic with estimated parameters

Figure 5 shows the three-phase induction motor torque-slip characteristic using parameters that was recorded from the measurements clearly, that the parameters estimated from optimization PSO, that the parameters estimated from optimization Jaya, that the parameters estimated from optimization GA, that the parameters estimated from optimization DE, and that the parameters estimated from the proposed HPJOA. Estimated torque-slip characteristic, using parameters calculated by DE, has a little difference compared to the measured torque-slip characteristic, while estimated curve using parameters obtained by the HPJOA is very close to real characteristic.

The stator-slip and rotor current-slip characteristics using parameters estimated by the five algorithms are shown in Figures 6a,b. Estimated stator and rotor current characteristics using parameters calculated by PSO has large difference compared to the measured characteristics, while estimated characteristics using parameters calculated by the HPJOA is very close to the real characteristics. The magnetizing current-slip and power factor-slip characteristics of three-phase induction motor using parameters calculated by the PSO, Jaya, GA, DE and HPJOA are shown in Figure 6 c,d. Estimated magnetizing current and power factor characteristics using parameters calculated by PSO, Jaya, GA and DE have big difference compared to the measured characteristics, while estimated characteristics using parameters calculated by the HPJOA is very close to the real characteristics.

Figure 7 shows the six-phase induction motor parameters estimated from the measurements clearly, that the parameters estimated from optimization PSO, that the parameters estimated from optimization Jaya, GA, DE and that the parameters estimated from the proposed hybrid algorithm. Estimated torque-speed characteristic using parameters calculated by PSO, Jaya, GA and DE have little differences compared to the measured torque speed characteristic, while estimated curve using parameters obtained by the proposed algorithm is very close to real characteristic. The stator and rotor current -slip characteristics of six-phase induction motor that are based on the parameters calculated by the PSO, Jaya and Hybrid PSO-Jaya are shown in Figures 8a and8b.

Estimated stator and rotor current characteristics using parameters, which are calculated by PSO and Jaya are compared to the measured characteristics, while estimated characteristics using parameters calculated by the Hybrid PSO-Jaya is very close to the real characteristics. The magnetizing current and power factor-slip characteristics of six-phase induction motor using parameters calculated by the PSO, Jaya and HPJOA algorithm are shown in Figure 8 

Convergence rates

The convergence rate of the fitness function of the competitive optimization algorithms are shown in Figure 9 a and b, respectively. It can be seen that from this figure that the proposed HPJOA has better converges rates as the early reaching to final solution provides a proof for fast response compared with other optimization algorithms 

Robustness

To verify the robustness of the competitive algorithms, 100 separate runs are applied on the tested motors. 
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  Differential evolution DE Differential evolution DE is algorithm based on stochastic and population. The population is composed of pop individuals and every individual in the population represents a solution that possible to minimize the fitness function. DE operates in three sequential steps in all iteration[22]:
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 8 Fig. 8: Performance characteristics of six phase IM (-measurement,* PSO, × Jaya, o GA, Δ DE, +HPJOA).6.1 Competitive tools assessment 6.1.1 statistical analysis Tables 4 and 5 present the statistical indices, mean, median, best, worst, standard deviation and variance, of the competitive algorithms that are carried for 100 iterations and 60 populations, respectively. It is concluded that the proposed HPJOA leads to the best values of the indices compared with PSO, GA, DE and JOA.
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 9 Fig. 9: Convergence rates of competitive algorithms (PSO, Jaya, GA, DE and HPJOA)

Figure 10 a

 10 and b illustrate the robustness of the five algorithms. It is clear that, the proposed HPJOA has the highest robustness compared with PSO, GA,DE and Jaya algorithms. To confirm the fair comparison between the competitive algorithms, we consider the effects of population and maximum iteration variation. Figures 11 and 12 clear that, the proposed HPJOA has the highest robustness, compared with PSO, GA, DE and Jaya algorithm.
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 motor101112 Fig. 10: Robustness of competitive algorithms (PSO, Jaya, DE, GA and HPJOA).

Table 1 :

 1 Experimental tests of 1/3 HP three-phase and 3 HP six-phase IMs.

		Three phase IM (1/3 HP)		Six phase IM (3 HP)
	Variables	No load test	Short-circuit test	No load test	Short-circuit test
	Voltage, V	220	89.7	220	96.9
	Current, A	0.22	0.65	0.95	2.67
	Input power, W	9.5	25.6	104	159.37

Table 2 :

 2 Assessment of competitive algorithms for 3-phase induction motor

	Parameters	Experimental	DE	PSO	GA	Jaya	HPJOA
	Rs	21.25	19.46	21.53	20.21	21.33	21.177
	Xs	61.95	63.42	60.40	60.62	61.87	61.01
	Rr	39.32	40.08	39.379	39.93	39.42	39.352
	Xr	61.95	62.74	63.78	64.99	62.03	63.07
	Xm	999.52	1049.5	1012.1	1045	1005.3	1000.1
	Tst	0.89	0.889	0.89	0.889	0.89	0.89
	TFL	0.987	0.981	0.988	0.985	0.992	0.988
	Tmax	1.435	1.44	1.433	1.43	1.439	1.436
	Pf	0.807	0.810	0.808	0.811	0.807	0.806
	ΔF ×10 -4	1.98	0.924	0.484	0.29	0.0171

Table 3 :

 3 Assessment of competitive algorithms for six-phase induction motor

	Parameters Experimental PSO	DE	Jaya	GA	HPJOA
	Rs	12	11.63	11.38	11.65	12.4	11.898
	Xs	12.8426	13.86	12.74	13.78	12.65	13.095
	Rr	8.0978	8.12	8.26	8.105	8.04	8.092
	Xr	12.8426	12.14	13.69	12.13	12.65	12.66
	Xm	266.68	273.55	268.41	274.29	268.27	263.66
	Tst	3.34	3.348	3.35	3.36	3.348	3.34
	TFL	3.1785	3.17	3.16	3.18	3.183	3.18
	Tmax	5.36	5.377	5.38	5.386	5.339	5.36
	Pf	0.844	0.846	0.84	0.847	0.847	0.842
		ΔF ×10 -4	0.963	0.791	0.788	0.329	0.0208
	% reduction	-	17.86%	18.18%	65.84%	97.84%

Table 4 :

 4 Statistical analysis of the competitive methods for the three-phase IM index

				Competitive algorithms	
		GA	DE	PSO	Jaya	HPJOA
	Mean	3.77×10 -5	6.33×10 -5	3.2×10 -5	4.23×10 -5	3.09×10 -6
	Median	3.43×10 -5	4.92×10 -5	2.82×10 -5	3.74×10 -5	2.20×10 -6
	Best	4.34×10 -6	6.86×10 -6	1.47×10 -6	2.07×10 -6	3.59×10 -7
	Standard deviation	2.27×10 -5	4.49×10 -5	2.28×10 -5	2.85×10 -5	2.43×10 -6
	Variance	5.13×10 -10	2.01×10 -9	5.19×10 -10	8.15×10 -10	5.91×10 -12

Table 5 :

 5 Statistical analysis of the competitive methods for the six-phase IM index

				Competitive algorithms	
		GA	DE	PSO	Jaya	HPJOA
	Mean	3.44×10 -5	7.57×10 -6	1.87×10 -5	1.52×10 -4	5.21×10 -6
	Median	3.04×10 -5	6.49×10 -9	8.93×10 -6	1.22×10 -4	2.57×10 -6
	Best	5.82×10 -6	4.07×10 -7	4.89×10 -7	9.74×10 -6	2.30×10 -7
	Standard deviation	1.96×10 -5	5.78×10 -6	3.73×10 -5	1.19×10 -4	8.18×10 -6
	Variance	3.84×10 -10	3.34×10 -11	1.39×10 -9	1.42×10 -8	6.69×10 -11
	worst	9.47×10 -5	2.79×10 -5	2.89×10 -4	5.77×10 -4	4.88×10 -5