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Abstract

This study proposes a reduced model based on the state space representation for identifying
an accurate electric equivalent circuit of Lithium-Polymer Battery Cells. The parameter ex-
traction process is formulated as non-linear optimization problem via three-stage procedure.
The first stage estimates the state of charge (SoC) based on the non-linear characteristics
associated with the battery current and the initial SoC condition. In the second stage, the
open circuit voltage is estimated in terms of the resulted SoC that is employed in the first
stage with varied linear and non-linear models. In the third stage, an Equilibrium Algorithm
(EA), a recent optimizer, is developed for optimally identifying the battery parameters. The
EA’s parameters are adjusted based on Taguchi’s design of experiment approach to reduce
the computational time as well as the number of experiments that are required to get the
optimum possible parameter arrangement. Numerical simulations associated with exper-
imental implementation are emulated on Li-Ion Battery to prove the high capability of
the proposed EA an as efficient identification procedure. In Addition, the proposed EA is
characterized with high accuracy compared with several recent optimization algorithms for
ARTEMIS driving cycle profile. The solution quality improvement of the proposed reduced
model is achieved with high closeness to the experimental measurements for battery voltage
and SoC. Furthermore, 16 % less computational times 12 % more accuracy are obtained by
the proposed reduced model compared with linear and non-linear models.

Keywords: Li-Ion Battery Cells; Non-linear models;Equilibrium Optimizer; Three stage
parameter identification; State of charge estimation.
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List of Symbols and Nomenclature

SoC State of charge
OCV Open circuit voltage
EA Equilibrium Algorithm
VT Battery terminal voltage
IL Battery terminal current
R0 Internal resistance
Qr Nominal battery capacity
Ci Equivalent circuit capacitors
Ri Equivalent circuit resistances
Voc Open circuit voltage
Vex Experimental voltage
Fi(u) is the objective function
iand u is the estimated parameters of the battery
N is the number of the estimated
umin, umax are the accepted parameter bounds of control variable’s vector u ,
nobf is the number of objective functions.

V̂bat and Vbat refer to the estimated and experimental battery voltages, respectively.
w1 and w2 weighting factors to reflect the degree importance of objectives, F1 and F2.
min and max refer to the minimum and maximum operators of the extracted parameters.
X∗ and X are the new and current vectors of the particle concentration, respectively.
Xr,eq is a random extracted individual from the four best-so-far concentrations

in equilibrium pool.
λ The random factor and its range is within [0, 1];
F is an exponential term
Gr is the rate of generation rate.

1. Introduction

1.1. Motivation

Energy storage systems act important role in facilitating the inclusion of different types
of renewable resources such as wind, fuel and solar energies into the electrical power grids
while the network reconfiguration is carried out with the existence of renewable distributed
generation units [1]. Added to that, Energy storage can be used to manage the maximum
load affecting on the power grids [2] as one of the important devices in the renewable
energy resources [3]. Parameter estimation of battery is an urgent issue in recent years
for efficient modeling of these elements on the overall system operation [4]. Finding the
most accurate model for emulating the battery is still rich research field. Estimation of the
battery parameters of various models is carried out based on the utilization of experimental
methods. But this estimation procedure suffers from several demerits as cost expensive, high
computational capacity, is needed in addition it consumes more time because the existence
of repeated computation tasks In [5].
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1.2. Literature Review

Several efforts have been employed for finding the optimal parameters of battery and to
extract the state of charge. In [6],the parameters of the Lithium Ion Polymer are optimized
by using the genetic optimization algorithm. In [7], another optimization method was devel-
oped by using the Simulated Annealing optimization method In [8]. The sunflower optimizer
was developed for extracting the battery parameters and estimating the SoC of lithium ion
battery. The proposed method is employed with aid of the state space model and the SoC
with battery voltage relationship is represented by a linear equation which is not the case in
reality. The model based methods are largely investigated especially for SoC estimation [9],
[10]. An online extraction of the SoC based on the equivalent circuit with offer high accuracy
and robustness [11]. A number of these methods includes parameters identification problem
to deal in particular the internal resistance uncertainties. The authors in Ref. [9] proposes
to use a Lunberger observer to estimate the SoC of Lithium-ion battery by considering the
effect of the measurement noises on the parameter identification. The problem is solved
by considering two linear models, the first one to estimate the SOC and the second one to
identify the parameters. As it is well known, linear model can give an accurate estimation in
limited operation conditions. Using the same approach, [12] proposed the real-time battery
SoC is extracted based on the adaptive sliding observer. Firstly, an online parameter esti-
mator was developed and then a sliding mode observer is designed based on the estimated
parameters. The developed solution offers good results but it is very hard for real time
implementation in particular when low cost embedded systems are employed. [13] propose
to combined observer for parameter and SoC estimation. A H-infinity filter was employed
for on-line parameter identification and a modified version of Kalman observer is employed
for SoC estimation. Thanks to the online parameter identification, the proposed solution
allows an accurate estimation of SoC in different operation conditions but the stability of
the both observers cannot be guaranteed which limit its scope.

The electrochemical model was the crucial tool which allows to analyse the dynamic be-
haviour of lithium battery because it allows the analysis of the dynamic behavior of batteries
[14]. Several SoC estimation methods have been implemented based on the electrochemi-
cal model, such that last-square fitting method, Kalman filtering and electromotive force
method [15]. These methods offer an accuracy estimation in particular when the model
impedance is updated. However, the estimation accuracy is affected by the aging of the
battery and the related variations in the battery temperature.

The Open Circuit Voltage (OCV) was employed for estimating the SoC of lithium battery
based on approximate linear relationship model to express the open circuit voltage in terms
of the state of charge as presented in Refs. [16]. This relationship varies from a battery
to another because it depends on the battery capacity and material. Moreover, it is not
easy to express the OCV measurement in real time because that is needs cutting off the
power and the battery rest for long period [17]. Another approach was considered for the
estimation of the lithium battery SoC [18] on the basis of Ampere-hour counting method
was also employed. This method offers an estimation in particular when the initial SoC is
known. Moreover, the battery capacity should be not considered constant since it is affected
with the battery lifetime [19]. The estimation of the Li-ion batteries SOC was the focus
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of great number of researchers in recent 10 years. The dynamic model is considered with
for formulating the parameters estimation problem. But, the rate of changes of the battery
parameters is not considered in the previous studies of estimation process. The work in
[20] discussed the change of rate of the estimated parameters. With the development of
the computing systems, the intelligent mathematical tools become good candidate for SoC
estimation of lithium battery system. Among these tools one can find neural network [21]
fuzzy logic [22], adaptive neuro-fuzzy interface [23] and support vector machine [24].

These methods allow to meet the of accurate estimation requirements to represent the
SoC independently to the battery internal circuit with the initial value of SoC by using the
trained data and to work when the battery is operated in nonlinear conditions. The artificial
intelligence method can be combined with other estimation methods such as model-based
method as in [25] where a neural network is combined with a nonlinear observer to obtain
an accurate estimation of SoC. However, the artificial intelligence methods require large
memory to store a large data which is not always possible. Reference [26] presented an
evaluation and assessment model for batteries that were connected in series into the grid.
The assessment system is developed on the basis of the operation data in real domain. In
Ref. [27], the aging issue of battery assessment in real world was carried on incremental
capacity analysis accomplished with neural network as a radial training mechanism. In Ref.
[28] presented the electrochemical energy based on combined mechanism storage systems.
References it was presented a survey about the electrical vehicle application in smart grid
environments. Reference [29] presented Random Forest Classification Feature for Analysis
and Model the Li-Ion batteries. In Ref. [30] the machine learning method was developed
for identifying the aging of Li-Ion batteries as an assessment study.

The optimization techniques with their excellent global search abilities were used for
the parameter identification and SoC estimation of lithium batteries [31]. These techniques
presented excellent tools to identify with high accuracy the parameters of the developed
battery models. The optimization algorithms are generally combined with other estimation
tools such as genetic algorithm [32], model-based method [31], battery equivalent circuit
method [33]. The estimation obtained by using the optimization algorithms depend also on
the employed model. The using of the nonlinear models lead to more accuracy estimation
[34] compared to the linear models. However, the nonlinear models are more complicated
and require more computing time even when the battery is operated in linear conditions.
Recently, the equilibrium optimization algorithm was proposed by A. Faramarzi et al. in [35].
The EA has a straightforward optimization framework with adaptive controlling parameters.
It simulates the dynamic equilibrium states that describe and characterize the mass balance
patterns. In the EA, each search individual mimics the concentration of a particle which is
randomly initialized and updated in respect of attaining the optimal fitness that mimics the
final equilibrium state. Later, some EA applications are noticed in the literature for solving
engineering problems of image segmentation [36], vehicle components design [37], parameters
extracting of fuel cell [38], and economic dispatch [39]. As further successful applications of
EA the following references can cited: distributed generation (DG) allocation with network
reconfiguration [40], Feature Selection [41], Optimal Power Flow (OPF) of hybrid grids [42],
OPF with Renewable Energy [43], and biomass DGs placement in power systems [44].
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1.3. Research Gap

Many issues are considered for modeling the battery parameters identification and SOC
estimation. Actually, no assessment for the impact non-linear modeling were considered the
previous studies in the literature. Also, most of the models presented in the literature are
based on a complex state space model. The linear model doesn’t need lot of computation
time for parameter identification. However, it can not give a good accuracy for parame-
ter identification because the Lion-Ion Battery is a nonlinear system. From the other side,
nonlinear model can give a good accuracy for parameter estimation, but it requires longer
computation time. The proposed strategy has produced a reduced nonlinear model which
give a good identification accuracy with less computation time compared to classical non-
linear models. Then, the parameter estimation are greatly effected by the solution method.
To overcome this problem, the proposal of the reduced model with enough accuracy for pa-
rameter estimation becomes an absolute necessity The current study is concerned with the
previous raised research gaps in the literature. In this regard, linear and non-linear repre-
sentation of the relation between open circuit voltage and the state of charge are considered.

1.4. Paper Contributions

The salient features of this study are summarised as follows:

1. The state space model is divided into three separated models that enhance the solution
methodology and find the accurate relation for each stage.

2. in this study, an assessment between the various linear and non-linear models, that are
employed the relation between open circuit voltages and the battery state of charge.

3. An new solution methodology based on Enhanced Equilibrium Optimization Algo-
rithm (EA) is proposed considering statistical indices that reflect the proposed method
capability.

4. The EA’s parameters are designed based on Taguchi’s design of experiment approach.

5. The proposed procedure is initially applied on real Li-Ion Battery Characteristics then
dynamic verification study is carried out on ARTEMIS driving cycle.

6. Less computational time is achieved by using the reduced model at acceptable level of
accuracy compared with linear and non-linear models.

1.5. Paper Organization

The rest sections of this study are organised as follows: Section 2 presents the prob-
lem formulation of the considered parameters estimation problem of the Li-IOn battery. In
Section 3, the proposed battery parameters and SoC estimation is introduced. The exper-
imental results are presented in Section 4. This study conclusions are reported in Section
6.
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2. Problem Formulation

The problem of battery parameters estimation is still of interest for many researchers .
The proposed formulation describes the way to compute the battery voltage and state of
charge. According to [8], the battery voltage and the state of estimation are modelled by
state space model as:

2.1. Modeling of Lithium Ion Battery

The general equivalent circuit model is constructed with a number of n times RC elements
denoted by nRC-model [45], normally it is extended up to 3 RC elements[46]. The RC group
is considered as relaxation part to avoid the complexity raised for the extraction the battery
parameters. In the sequel,the state space model for the battery dynamics is represented in
the following form:

Ẋ = AX +Bu (1)

y = CX +Du+ b0 (2)

where,

X =

[
SOC
Vrc

]
,

A =

[
0 0
0 − 1

RC

]
, B =

[
1
QR
1
C

]
, C =

[
b1 1

]
, D = R0.

To describe the static characteristic of the battery under predetermined conditions of
temperature and age, Equation (3) presents a linear relationship between the Voc and SoC
is assumed as [47] as:

VOC = f(SOC) = b0 + b1SOC. (3)

The nonlinear relation that describes the open circuit voltage versus the state of charge can
be expressed in exponential form as:

VOC = f(SOC) = aO +
∑N

i=1 aje
aj+1(1−SOC)i

+aj+2e
aj+3(SOC)i (4)

where
j = i+ 3× (i− 1)

Based on Eq. (4), the variable N can control the number of terms that is used to describe
the nonlinear relation between VOC and SOC.

In the current work,the state space dynamic model is used to describe the terminal
voltage (VT ) versus current (IL). Both the temperature and ageing of the battery effects are
not considered in this work.
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2.2. Parameterization model development

To optimize the parameters of the Li-ion battery model, The dynamic model of the
battery described in the previous section is used. An objective function has to be set
for fitting the estimated output voltages with the corresponding recorded voltage in the
experimental tests. This objective function aims at minimizing the Squares Error Sum (SSE)
between the estimated and experimental data. The common form of this optimization form
is:

minuFi(u), i = 1, 2..nobf (5)

umin ≤ u ≤ umax

The parameters extraction model is dependent on the battery experimental data. In
the proposed method, two cases studied are considered. A multi-objective MoF fittness
function that aims at minimizing the aggregation of the root mean square of the normalized
deviation between both the estimated and experimental battery voltage and the estimated
and experimental state of charge is proposed. This function MoF combines two objectives
which are:

F1(u) =
∑

(
ˆV bat− V ex
V max
bat

)2; (6)

F2(u) =
∑

(
ˆSOC − soc
socmax

)2; (7)

The first objective function (F1(u)) represents the normalized deviation between ex-
tracted and experimental voltage of the battery while the second one represents the normal-
ized deviation of the state of charge (F2(u)). Then, the combined objective function of the
battery model identification can be expressed as:

MoF (u) = w1 ×
n∑
i=1

(
ˆV bat− V ex

V max
bat

) + w2 ×
n∑
i=1

| (
ˆSOC − soc

socmax
) | (8)

Then, the combined objective function,Eq. (8), is optimized with respecting the following
inequality constraints for each control parameter (u) within their boundaries as:

Rmin ≤ R ≤ Rmax (9)

R0min
≤ R0 ≤ R0max (10)

Cmin ≤ C ≤ Cmax (11)

b0min
≤ b0 ≤ b0max (12)

b1min
≤ b1 ≤ b1max (13)

Qrmin
≤ Qr ≤ Qrmax (14)
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Table 1: The nonlinear relation between VOC and SOC

N Model VOC = f(SOC) Parameters Number

1 =a0 + a1e
a2(1−SOC) + a3e

a4SOC a0, a1, ... a4 5

2 =a0 + a1e
a2(1−SOC) + a3e

a4SOC + a5e
a6(1−SOC)2 + a7e

a8SOC2
a0, a1, ... a8 9

3
= a0 + a1e

a2(1−SOC) + a3e
a4SOC+a5e

a6(1−SOC)2 + a7e
a8SOC2

+ a9e
a10(1−SOC)3 + a11e

a12SOC3 ao, a1, ... a12 13

4
= aO + +a1e

a2(1−SOC) + a3e
a4SOC + a5e

a6(1−SOC)2 + a7e
a8SOC2

+ a9e
a10(1−SOC)3 + a11e

a12SOC3

+ a13e
a14(1−SOC)4 + a15e

a16SOC4 ao, a1, ... a16 17

5

= ao + a1e
a2(1−SOC) + a3e

a4SOC + a5e
a6(1−SOC)2 + a7e

a8SOC2

+ a9e
a10(1−SOC)3 + a11e

a12SOC3

+ a13e
a14(1−SOC)4 + a15e

a16SOC4

+ a17e
a18(1−SOC)5 + a19e

a20SOC5

ao, a1, ... a20 21

6

= ao + a1e
a2(1−SOC) + a3e

a4SOC + a5e
a6(1−SOC)2 + a7e

a8SOC2

+ a9e
a10(1−SOC)3 + a11e

a12SOC3

+ a13e
a14(1−SOC)4 + a15e

a16SOC4

+ a17e
a18(1−SOC)5 + a19e

a20SOC5+a21ea22SOC6++a23e
a24SOC7

ao, a1, ... a24 25

3. Proposed Battery Parameters Procedure based EA

The parameter extraction problem is represented as non-linear three-stage procedure
based optimization problem. The first stage estimates the SoC based on its non-linear
relation defined by equations with the battery current (1)-(2) considering the initial SoC
condition. It can be computed by equation(15). In this equation, η refers to the battery
efficiency and SoCint refers to the initial condition of the SoC. In the second stage, the
open circuit voltage is estimated in terms of the resulted SoC that is employed in stage 1
with varied linear and non-linear models. Equation (4), represents these several models that
describe the nonlinear relation between VOC and SOC by varying the number of the control
parameters that are required to be identified as reported in the Table 1. From this table, 6
non-linear models are used to express the open circuit voltage and SoC

SoC = 100(̇SoCint −
1

Qn

∫
ηIbdt) (15)

In the third stage, the recent optimizer called equilibrium algorithm is employed for
optimally identifying the battery parameters. In EA [35], the initial concentrations with a
particular number (Npr) are iteratively generated

X∗ = Xr,eq +
Gr

λ
(1− F) + (X− Xr,eq) · F (16)

F = A1sign(B − 0.5).(e−λ(1−
Z

Zmax
)A2Z/Zmax − 1) (17)

Gr =

{
0.5r1 (Xr,eq − λX) F if r2 ≥ GP
0 if r2 < GP

(18)
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where, the constants A1 and A2 equal 2 and 1 , respectively. the vector B, r1 and r2 are
is random within range [0, 1]; Z and Zmax are the current and the maximum number of
the iterations, respectively. are random numbers within range [0, 1]; GP is the probability
of generation that is set to 0.5. As shown (16), the updating process of each particle
concentration is mainly based on the effect of three parts. The first is the extracted individual
from the four best-so-far concentrations in the equilibrium pool. The second and third parts
is dependent on the variation measure between the extracted equilibrium concentration and
the current one. These two parts have a randomized vector of exponential behavior that is
responsible for exploitation and exploration characteristics of the EA in the search space to
optimally find the outcome. The main steps of the EA can be written as follows:

1. Create the initial population of the particle’s concentrations randomly.

2. Check the bounds of the control variables (u) and set any violated one to its nearest
bounds ((9)-(14)).

3. Estimate the fitness function in Equation (8) of each concentration in the population.

4. Pick out the four best-so-far concentrations to form the equilibrium pool using Equa-
tion(16).

5. Update the exponential term (F) and the generation rate (Gr) using Equations (17)
and (18), respectively.

6. Update each particle concentration X∗ using Eq. (16).

7. Go to step 2 until reaching the maximum iteration number which is considered as the
stopping criteria.

4. Experimental Results

In this study, the 40 Ah Li-ion battery cell is an example of the commercial batteries
that achieve high improvements in the drive performance and its accompanied reliability [48].
The pertinent specifications that can be found in the data -sheet are: nominal voltage equals
3.7 V, internal resistance is 0.9 mΩ, the capacity 40 Ah, specific energy is 167 Wh/kg of
weight 0.885 kg and both charging/discharging currents are 40A. In this study, the proposed
estimation procedure is employed for two cases. These cases are considered to emulate linear
and non-linear representation for the relation between VOC and SoC as follows:

1. Case study 1: Consideration of Linear relation between VOC and SoC

2. Case study 2: Consideration of Non-Linear relation between VOC and SoC

Added to these two cases, the proposed estimation procedure is developed for Artemis
driving cycle.
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Table 2: Bounds of battery parameters [8]

Variables LB UB Variables LB UB
R (mΩ) 0.01 10 b0(V) 1 5
C1 (µF) 0 105 b1 (V) 0 3
R1 (Ω) 0 1300 a0, a1.....a24 -100 100
QR (As) 13000 170000

Figure 1: Response of the voltage drop over the internal resistance for ARTEMIS driving cycle

Figure 2: Response of the capacitor voltage for ARTEMIS driving cycle

4.1. Simulation results of Case study 1

Table 2 presented the considered boundaries of the estimated parameters of the battery
cells. In the first case, the relation between VOC and SOC is taken in its linear form as
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Table 3: Optimal parameters based on EA for Linear and Non-linear Models

Parameter Linear Non-Linear
R (mΩ) 0.13120618 0.000568
R1 (Ω) 0.74081781 0.000954
C1 (F) 0.0001026851 0.036197
R2 (Ω) 0.033796674 0.000946
C2 (F) 0.0022340423 0.059282
Qr (As) 144000 147964.2

Coefficients
b0 = 3.36673
b1 = 0.74081

a0=3.7480 a7=-0.1236
a1=0.3658 a8=-1.5833
a2=-3.0791 a9=-0.06919
a3=-0.2624 a10=0.7384
a4=-14.4221 a11=0.0228
a5=0.1348 a12=-3.2842
a6=-10.8373 a13=-0.1626

F1 0.015985615 0.007243354
F2 0.013588193 0.0004103893
MOF 0.029239027 0.0076537439

described in Eq. (3) [48]. The proposed EA is applied for minimizing the aggregation of
the root mean square of the normalized difference between both battery voltage and state
of charge for the experimental and estimated values. Table 3 shows the obtained optimal
parameters and their corresponding results.

4.2. Simulation results of Case study 2

In the second case, the relation between VOC and SOC is taken in its non-linear form
as described in Eq. (4) [49]. Similar to Case 1, the proposed EA is applied effectively, and
the optimal results is tabulated in Table 3. In this case, the identified parameters are more
than double the parameters in Case 1. However, the considered objective, in this case, is
greatly minimized to 0.00765 compared to 0.0292 in Case 1. Both indexes are minimized
where the root mean square of the normalized difference of the battery voltage between
both the estimated and experimental records is declined to 0.0072 and the estimated and
experimental state of charge is declined to 0.0135 as well.

Fig. 3 depicts the estimated battery voltage versus the corresponding experimental
voltage for Cases 1 and 2. Great improvement is shown in the estimated battery voltage
in Case 2 compared to Case 1. This improvement is originally due the accurate high non-
linearity consideration between the open circuit voltage and the state of charge as shown in
Fig. 4. This figure clearly illustrates the curved relationship in Case 2 that makes accurate
tracking to the experimental battery voltage. Fig. 5 depicts the estimated battery voltage
versus the corresponding experimental voltage in both forms. As shown, great improvement
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Figure 3: Constant current profile with CC/CV charge protocol (b) Experimental and modeling responses
of battery voltage

in the estimated battery voltage in the non-linear model compared to the linear model. Not
only that, but also great improvement in the estimated SOC in Case 2 compared to Case 1 is
acquired as clearly shown in Fig. 6 that depicts the estimated SOC versus the experimental
SOC for Cases 1 and 2.
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Figure 4: Relation between estimated open circuit voltage and SOC for Cases 1 and 2

4.3. Effect of exponential terms in the Non-Linear relation between VOC and SOC

As discussed previously, the non-linear form that describes the relation between VOC and
SOC has better performance than the linear form. In this subsection, the effect of increasing
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Figure 5: Responses of the estimated open circuit voltage for Cases 1 and 2

Figure 6: Experimental and modeling responses of battery SOC

and decreasing the exponential terms in the Non-Linear relation of Eq. (5) between VOC
and SOC is considered. This effect is discussed by controlling the number (N) in Eq. (5).
Table 4 summarizes the optimal parameters based on EA for different N values which is
specified at 5, 9, 13, 17, 21, and 25, respectively. The proposed EA can reach the minimum
MOF in all cases of 0.00775, 0.00764, 0.00764, 0.00784, 0.00765, and 0.00767 at N values of
5, 9, 13, 17, 21, and 25, respectively. As shown, no significant improvement in the accuracy
by increasing N values more than 9. On the other side, the more increasing of the value
of N, the more increasing in the parameters that are required to be optimally identified.
Consequently, the computational complexity is increased and so it needs more calculation
time.
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Table 4: Optimal parameters based on several algorithms for Case 2

N 5 9 13 17 21 25
R0 0.000313 0.00092 0.00115 0.00025 0.00087 0.00058
a0 3.44539 2.90216 2.95816 3.04743 3.86027 1.53556
a1 0.71692 -0.01987 -0.25092 -0.17554 -0.11100 3.08155
a2 -2.09764 -71.41551 -10.28074 -2.50577 -0.33987 -0.29232
a3 -0.27755 -0.32546 -0.30660 -0.3110 -0.56280 0.01156
a4 -15.19273 -12.19807 -13.39952 -15.64221 -5.86341 2.32518
a5 23.26866 0.05772 0.06925 3.11795 -0.46976 0.00942
a6 -11.4172 -1.91169 -5.23991 -5.11693 -26.91067
a7 0.68162 0.40582 0.32992 0.35757 0.40626
a8 0.5718143 1.22954 -6.09220 -20.68999 -2.88182
a9 27.92645 -0.03106 -2.68465 2.18453 -0.07038
a10 -82.95173 -14.23189 0.04824 1.58637
a11 0.18982 0.19827 -1.74397 -0.04575
a12 -2.43041 -1.04874 0.0047 0.23968
a13 22.27915 0.75288 0.39776 -0.0105
a14 -34.4296 -1.22888 3.63572
a15 -0.01623 -1.05411 -0.03389
a16 -6.10648 -2.00274 -0.37811
a17 46.01661 0.18642 0.01262
a18 -2.41969 0.08977
a19 0.05885 -0.1899
a20 -30.62175 -1.71234
a21 -0.07887 0.27886
a22 0.88715
a23 -0.67662
a24 0.04349
a25 -0.38525
Qr 147963.94 147964.49 147964.1 147962.72 147963.53 147963.15
R1 0.00162 0.00029 0.00123 0.00210 0.00068 0.00034
C1 0.06704 0.02097 0.02714 0.06499 0.02596 0.05867
R2 0.00053 0.00125 8.86633E-05 0.00011 0.00091 0.00156
C2 0.05142 0.03845 0.03241 0.04186 0.072524062 0.04877
MOF 0.00775 0.00764 0.00764 0.00783 0.00765 0.00766
Calculation
Time (sec) 357.12 392.86 426.73 461.535 501.15 539.81
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Table 5: Optimal parameters based on several algorithms for Case 2

EA FBI GWO PSO BSA
Ro 0.000568 0.000719 0.002335 0.00001 0.000588
a0 3.748055 2.635103 3.644386 5 2.44061
a1 0.365885 -0.38412 -0.00064 -1.0927 13.09921
a2 -3.0791 1.030771 -46.5625 0.394574 -9.06146
a3 -0.2624 0.090911 -0.29748 100 -13.4491
a4 -14.4221 0.131675 -7.09734 -100 -34.0529
a5 0.134894 0.367197 0.833493 0.094509 -1.96034
a6 -10.8373 -0.33207 -12.1331 -100 -97.1077
a7 -0.1236 0.762054 -0.16797 -0.97144 15.44068
a8 -1.58334 0.336337 -38.5273 -100 -27.0616
a9 -0.06919 0.359072 -0.3547 0.14212 -7.11499
a10 0.738454 -0.32747 -57.1836 -100 -72.6671
a11 0.022825 0.355903 0.098728 -0.0308 -6.20173
a12 -3.28428 -10.8378 -99.4059 -100 -55.0202
a13 -0.16269 -1.16718 19.04225 -100 33.63797
Qr 147964.2 147876.7 147949.6 170000 149654.8
R1 0.000954 0.001705 6.11E-06 0.000001 0.004249
C1 0.036197 0.059723 0.047881 0.1 0.088662
R2 0.000946 0.000169 3.37E-06 0.000001 0.02417
C2 0.059282 0.059705 0.017428 0.000001 0.079619
MOF 0.007654 0.009216 0.008614 0.097418 0.577422

4.4. Comparison of several optimization algorithms in Consideration of Non-Linear relation
between VOC and SOC

In this subsection, several recent optimization algorithms are applied to show the capabil-
ity and robustness of the proposed EA in consideration of Non-Linear relation between VOC
and SOC. Beside the EA, 2020, the compared algorithms are Forensic-based investigation
algorithm (FBI), 2020 [50], grey wolf optimizer GWO, 2021 [51], efficient particle swarm op-
timization (PSO), 1995, backtracking search algorithm (BSA), 2013 [52]. These algorithms
are applied with the same number of individuals of 100 and maximum number of iterations
of 500. Their obtained parameters and results are tabulated in Table 5. This table elucidates
the high capability of the proposed EA in finding the global minimal as it obtains the min-
imum MOF with 0.007654 where GWO, FBI, PSO and BSA acquire 0.008614, 0.009216,
0.00974, and 0.5774, respectively. Furthermore, a robustness test for these algorithms is
executed by running them 10 times and recording the Best, Mean, Worst, and standard
deviation (Std) in Table 5. It is clear that the proposed EA is distinguished with high
robustness minimum indices, Best, Mean, Worst, and Std, of 0.007654, 0.00861, 0.011873,
and 0.001248, respectively.

For any meta- heuristic optimization method, there really is no promise to say that
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(a) 

(b) 

Figure 7: (a) Laboratory current profile with 150 km ARTEMIS driving cycle (b) Experimental and modeling
responses of battery voltage

the gained response is the optimal option except it is identified [53]. This returns to the
probability of such optimization methods to be trapped in a local optima and, subsequently,
stop developing. As described in [44], the continuity in developing the best solution in the
convergence curve declares a good indicator for avoiding local minimal area. Fig. 8 describes
the EAâs convergence curve of ten separate runs. This figure demonstrates the significant
development of the best solution by non-stick iterations at a local minimum. Added to that,
Fig. 9 illustrates the box and Whiskers plot for the competitive optimization algorithms,
MPO, FBI, GWO and EA, which demonstrates the high effectiveness of the EA in finding
the minimum MOF compared with the others. Furthermore, a robustness test for these
algorithms is executed by running them 10 times and recording the Best, Mean, Worst,
standard deviation (Std) and the computation time per iterationin Table 6. It is clear
that the proposed EA is distinguished with high robustness minimum indices, Best, Mean,
Worst, and Std, of 0.007654, 0.00861, 0.011873, and 0.001248, respectively. In terms of
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Table 6: Robustness test of several optimizers for Case 2

EA FBI GWO PSO BSA
Best 0.007654 0.009216 0.008614 0.097418 0.577422
Mean 0.00861 0.01084 0.019526 0.556035 1.272247
Worst 0.011873 0.013717 0.026385 1.150793 2.879003
Std 0.001248 0.001342 0.006806 0.452099 0.757069
Time/Iteration (sec) 0.6048 1.2069 0.5716 0.7507 0.9980

the computation time per iteration, the proposed EA consumes 0.6048 sec compared with
FBI, GWO, PSO and BSA which consume 1.2069 sec, 0.5716 sec, 0.7507 sec and 0.998 sec,
respectively. It is cleared that the fast optimizer is GWO then the proposed EA.

Figure 8: Convergence curve of the employed EA for Case 1

The EA employed is defined by its adaptive framework. However, there seem to be
the size of the population (Ps) and the maximum number of iterations show high effect on
results.

4.5. Parameter Tuning of Competitive Algorithms

In this subsection, the all competitive parameters are adjusted based on Taguchi’s design
of experiment approach, which reduces computational time and the number of experiments
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Figure 9: Box and Whiskers plot for MPO, FBI, GWO and EA for Case 1

Table 7: Combination of parameters for the compared algorithms

Parameters Level 1 Level 2 Level 3
Population Size 25 50 100

Maximum number of iterations 100 300 500

required to get the optimum possible parameter arrangement [54]. The orthogonal array
LÉ¡(32) is used to execute the parameter combinations listed in Table 7, as the number of
parameters is 2 and each one has 3 levels. The array results in 9 treatments. Table 8 shows
the orthogonal array with the MOF value.

Table 9 tabulates and depicts the response score and meaningful ranking of the pa-
rameters. The maximum number of iterations, rated first, has a significant impact on the
performance of the EA in minimizing the MOF value, followed by the population size, ranked
second. As a result, the following arrangement from Fig. 10 is chosen: The population size
is set to 100, and the maximum number of iterations is set to 500. Similarly, for each of the
examined methods, the parameter determination curves by means of the Taguchi method-
ology are depicted in Figs. 4.5 and 12. Similar conclusions may be derived, as the optimum
tuning settings are supplied where the population size is set to 100, and the maximum num-
ber of iterations is set to 500. For the PSO, two other control parameters must be specified
whereas the cognitive and social learning factors are required. Considering the maximum
number of iterations is fixed at 500, Taguchi method is applied where the orthogonal array
LÉ¡(33) is used to execute the parameter combinations and it is reduced to 8 treatments as
the number of parameters is 3 and each one has 3 levels as listed in Table 10. Thus, the
best values of the cognitive and social learning factors are 2 and 2, respectively.

18



Table 8: Orthogonal table based on Taguchi method for the compared algorithms

Population Size Maximum number of iterations MOF
25 100 0.023716523
25 300 0.00783557
25 500 0.007732807
50 100 0.007966795
50 300 0.000768923
50 500 0.0007697034
100 100 0.007732807
100 300 0.007697034
100 500 0.0007653744

Table 9: Response table of means for the EA.

Item Population Size Maximum number of iterations
Level 1 0.01309496667 0.01313870833
Level 2 0.0031684738 0.005433842333
Level 3 0.005398405133 0.003089294933
Delta 0.009926492869 0.0100494133970
Rank 2 1

Table 10: Combination of parameters for the PSO

Parameters Level 1 Level 2 Level 3
Population Size 25 50 100

Cognitive learning factor 1 2 4
Social learning factor 1 2 4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Parameters selection for EA based on Taguchi method
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(a) FBI 

(b) GWO

(c) BSA

Figure 11: Parameters selection based on the Taguchi method for FBI, GWO and BSA methods
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Figure 12: Parameters selection based on the Taguchi method for PSO method

5. DESIGN OF EXPERIMENTS

In this paper, the design of experimental tests is dependent on classification constraints.
The objective aims at reducing the cycling times with preserving the important test features,
such as the maximum current intensity and the amount of charge exchanged [55], [56]. The
ARTEMIS driving cycle is selected for extracting the battery parameters using a dynamics
model of the urban electric vehicle (BollorÃ© Bluecar).

5.1. Driving cycle

Recently, several normalized/non-normalized driving cycles are suggested to evaluate the
pollution emissions and fuel consumption of gasoline-powered engines for examples the ECE,
NEDC, UDC, ARTEMIS, FTP75,WLTC and NYCC [57]. The modeling of the tested driving
cycle is employed based on speed-time sequences that emulates the traffic conditions and
driving behavior in a specific area. In this paper, the Assessment and Reliability of Transport
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Emission Models Inventory Systems (ARTEMIS) driving cycle is chosen for its real-world
driving behavior. ARTEMIS has three driving cycles called urban, rural and highway. In this
work, the ARTEMIS cycle selected to represent the urban and the rural cycle. Recently,
various types of batteries have been developed to meet the main requirements of electric
and hybrid vehicles with enhancing the drive performance and high reliability such as a
commercial 40 Ah Li-ion battery [8] and [48], . This battery under reference of HED-
SLPB90216216 that is produced by Kokam manufacturer is selected study.

5.2. Verification study on Artemis driving cycle

The ARTEMIS, Assessment and Reliability of Transport Emission Models Inventory
Systems, driving cycle is generally represented in terms of their speed-time sequences which
are originally based on the driving behavior and traffic conditions in a particular area.
In the current paper, this driving cycle is performed by the urban and the rural cycle
with the average distance of 22 km in 2075 seconds. The average and maximal speeds
are 38.4 and 111.5 km/h, respectively. The proposed EA is applied to optimally identify
the battery parameters considering the linear and non-linear relation between VOC and the
SOC as described in the previous sections. For both cases, Table 11 shows the obtained
optimal parameters and their corresponding results. Similar conclusion is drawn where the
linear consideration is unsuitable that it creates bad accuracy compared to the non-linearity
relation. The considered objective, in the non-linear form, is greatly minimized to 0.00445
compared to 0.012 in the linear form. The root mean square of the normalized deviation
between the estimated and experimental battery voltage is reduced from 0.0119 to 0.00437.
Fig. 13 displays the error response of the battery voltage for both models. As shown,
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Figure 13: Error response of the battery voltage

very small error is clearly illustrated over the time where the maximum error does not
exceed 0.07 for the non-linear model while it is reached to more than 0.13 several times
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for the linear model. This improvement is originally due the accurate high non-linearity
consideration between the open circuit voltage and the state of charge as shown in Fig. 14.
This figure clearly illustrates the curved relationship in the non-linear model that makes
accurate tracking to the experimental battery voltage. On the other side, no significant
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Figure 14: Response of the open circuit voltage for ARTEMIS driving cycle

preference of both models on the second objective of the root mean square of the normalized
deviation between estimated and experimental state of charge as shown in Figs. 15 and
16 depicts the error response of the state of charge, respectively. From these figures, both
models demonstrate the high accuracy in tracking the state of charge.

5.3. Efficient simplified nonlinear model of lithium-ion battery

A linear model of lithium-ion battery has been proposed in [8], this model is quite
simple but it couldn’t give precise identification because it doesn’t take into account the
nonlinear dynamics of the lithium-ion battery. The nonlinear model of lithium-ion battery
presented in [49] is efficient but it is too complicated and requires more computation time to
identify its parameters and to estimate the SoC. The proposed simplified model is presented
with keeping the same performance obtained in [49]. This reduced model contains only 5
parameters instead of 13 as it can be shown in Table 1. The proposed model is compared
with 13th parameter to show their performance. The obtained results are shown by Figs. 17
and 18 As shown, no significant difference is noticed between both models in evaluating the
battery voltage and the state of charge. Furthermore, the simplified model (N=5) has less
computational time than the high accurate one of (N=13) since the simplified model has
16.31% decrease in the computation time.
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Figure 15: State of charge experimental and modeling responses
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Figure 16: Error response of the state of charge for ARTEMIS cycle
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Figure 17: Comparison between 5th and 13th parameters models

Figure 18: Comparison between 5th and 13th parameters models for ARTEMIS cycle

6. Conclusion and future work

6.1. Conclusion

An improved procedure for lithium ion battery parameter estimation has been proposed
in this paper based on an enhanced equilibrium optimization algorithm. The significant
contributions can be concluded as follows:

• A good compromise between state space model and nonlinear model is obtained and the
estimation problem is divided into three steps that enhance the solution methodology
and find the accurate relation for each stage.

• An assessment between various non-linear models, to represent the dependency be-
tween open circuit voltages and the battery state of charge, has been employed com-
pared with linear models.

• An enhanced equilibrium optimization algorithm considering has been employed, the
statistical indices reflect that the proposed method improve the accuracy by 12%
compared to competitive methods.

• Comparison with other state-of-the-art solutions have shown that the proposed give
more precise results with less computation time (16 % improvement).

• Dynamic verification study has been carried out on ARTEMIS driving cycle to prove
the capability of the proposed solution.

• Tuning the parameters of all competitive algorithms to assign the optimal modeling
method at the best algorithm parameters.
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Table 11: Optimal parameters based on EA for Linear and Non-Linear relation for ARTEMIS driving cycle

Parameter Linear Non-Linear (N=5) Non-Linear (N=13)
R (mΩ) 0.002334072394 0.0003068363818 0.00131930343899999
R1 (Ω)) 0.001244251137 0.00037837 0.001630968
C1 (F) 0.08266382139 0.06375762 0.019172327
R2 (Ω)) 0.0006059282676 0.003494296 0.001234919
C2 (F) 0.068005188 0.099650938 0.032159331
Qr (As) 144000 143999.998 144000.234499999

Coefficients
b0 3.248043
b1 0.873431

a0 3.40327
a1 0.80028
a2 -2.3124
a3 -33.35991
a4 -30.68399
a5 -46.75711

a0 3.33767 a7 -1.16956
a1 0.27462 a8 -24.78047
a2 -4.77465 a9 0.34301
a3 -0.24291 a10 -0.87348
a4 -5.25495 a11 0.65556
a5 0.23610 a12 -58.29117
a6 -14.74987 a13 13.48667

F1 0.01192552947 0.004577236303 0.004378931369
F2 0.000077476147 0.00007747614742 0.00007747937708
MOF 0.01200300562 0.00465471245 0.004456410746
Calculation
time (sec) 584.15 668.22 842.371

6.2. Future work

The future trends of this study can be classified into two main categories:

• Considering the thermal impacts for single battery or a set of batteries especially for
varied environmental conditions and for electrical vehicles applications.

• Considering the uncertainty of measurements and the shift noises from sensors and
the battery aging.

• Developing new solution modeling for real time applications of the different types of
batteries
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adaptation using hâ extended kalman filter,” Control Engineering Practice, vol. 81, pp. 114 – 128,
2018.

[12] B. Ning, B. Cao, B. Wang, and Z. Zou, “Adaptive sliding mode observers for lithium-ion battery state
estimation based on parameters identified online,” Energy, vol. 153, pp. 732 – 742, 2018.

[13] Q. Yu, R. Xiong, C. Lin, W. Shen, and J. Deng, “Lithium-ion battery parameters and state-of-charge
joint estimation based on h-infinity and unscented kalman filters,” IEEE Transactions on Vehicular
Technology, vol. 66, no. 10, pp. 8693–8701, 2017.

[14] X. Hu, D. Cao, and B. Egardt, “Condition monitoring in advanced battery management systems:
Moving horizon estimation using a reduced electrochemical model,” IEEE/ASME Transactions on
Mechatronics, vol. 23, no. 1, pp. 167–178, 2018.

[15] M. Li, “Li-ion dynamics and state of charge estimation,” Renewable Energy, vol. 100, pp. 44 – 52, 2017,
special Issue: Control and Optimization of Renewable Energy Systems.

[16] J. Meng, M. Boukhnifer, and D. Diallo, “Comparative study of lithium-ion battery open-circuit-voltage
online estimation methods,” IET Electrical Systems in Transportation, vol. 10, no. 2, pp. 162–169, 2020.

[17] M. Hannan, M. Lipu, A. Hussain, and A. Mohamed, “A review of lithium-ion battery state of charge
estimation and management system in electric vehicle applications: Challenges and recommendations,”
Renewable and Sustainable Energy Reviews, vol. 78, pp. 834 – 854, 2017.

[18] R. Xiong, J. Tian, H. Mu, and C. Wang, “A systematic model-based degradation behavior
recognition and health monitoring method for lithium-ion batteries,” Applied Energy, vol. 207, pp.
372 – 383, 2017, transformative Innovations for a Sustainable Future â Part II. [Online]. Available:
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