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Abstract

In this paper, we show how one can find the Planck units without any knowledge of Newton’s gravitational
constant. This is in contrast to the assumption that one needs to know G in order to find the Planck units.
The work strongly supports the idea that gravity is directly linked to the Planck scale, as suggested by several
quantum gravity theories. We demonstrate that there is no need for the Planck constant in observable gravity
phenomena, and we also suggest that standard physics uses two di↵erent mass definitions without acknowledging
it directly.
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1 Background

In 1899, Max Planck [1, 2] introduced what is known today as the Planck units. He did this by assuming there
were three universal constants, namely the speed of light c, the Planck constant ~, and Newton’s gravitational
constant. Using dimensional analysis, he derived a mass, time, length, and temperature (energy), which he thought

were important, even fundamental units. These were given mathematically by mp =
q

~c
G , lp =

q
G~
c3 , tp =

q
G~
c5 ,

Ep =
q

~c5
G .

Haug [3, 4] has recently suggested that G is a universal composite constant of the form G =
l2pc

3

~ , and that it

is the Planck units that are even more fundamental. Naturally, we can find G =
l2pc

3

~ mathematically by solving
Planck’s formula for the Planck length with respect to G. Similarly, we can solve the Planck mass formula, the

Planck time formula, or the Planck energy formula with respect to G; this gives G = ~c
m2

p
, G =

t2pc
5

~ , and G = ~c5
E2

p
,

respectively. To suggest that the gravity constant is a composite constant related to the Planck units was suggested
already in 1984 by Cahill [5, 6]. His suggested formula was based on solving the Planck mass formula for G, so
his formula was G = ~c

m2
p
. However, modern physics relies on G to find the Planck units, so claiming that G is a

universal composite constant seems to lead to a circular problem. This circular problem was likely first pointed
out in 1987 by Cohen [7]. For example, McCulloch [8, 9] as late as 2016 has suggested the same composite formula
for G as Cahill, that is; G = ~c

m2
p
(unaware of the Cahill formula as it was more or less forgotten), and McCulloch

repeats the standard physics assumption that one needs to know G in order to find the Planck mass. In his own
words,

In the above gravitational derivation, the correct value for the gravitational constant G can only
be obtained when it is assumed that the gravitational interaction occurs between whole multiples of the
Planck mass, but this last part of the derivation involves some circular reasoning, since the Planck mass
is defined using the value for G. – M. McCulloch, 2016

This is a common assumption in modern physics, but here we will prove that the Planck mass and the other
Planck units can be extracted from gravity observations with no knowledge of G, and we will also discuss some
possible implications of this method.
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2 A Short History on the Gravitational Constant

Newton did not measure the gravitational constant himself, nor did he introduce it in his work. His formula was
actually F = Mm

R2 , which he only described in words in Principia [10]. Even without any gravitational constant,
he was able to measure and predict the mass of planets relative to each other quite accurately, see Cohen [11] for a
more detailed description. In 1798, Cavendish [12] produced his famous paper on finding the density of the Earth
and he did not measure, describe, or use a gravitational constant either. The Cavendish apparatus was needed to
compare the density of the Earth with a mass of a known uniform material, such as water, iron, mercury, or lead.
If one knew of a planet or moon in our solar system that consisted of a uniform amount of matter, and also knew
the amount of that matter, then a Cavendish apparatus would not be needed to find the density of that celestial
object – the Earth, for example. However, this is obviously not the case. Therefore, the Cavendish apparatus is
very useful because then one has full control over the choice of the material of the gravitational objects; they can
be made of lead, for example. Then one can compare the weight of such an object with whatever clump of matter
one has decided on as a standard weight, such as the kg.

The Cavendish apparatus is also well suited for measuring the gravitational constant. What is known today as
Newton’s gravitational constant was actually first mentioned by Cornu and Baille [13] in 1873, which introduced
the formula F = f Mm

R2 . In any case, in 1894, the notation G for the gravitational constant was introduced by Boys
[14]. It took many years before G became the standard notation; as late as 1928, Max Planck [15] was still using the
notation f , for example. Naturally, whether the gravitational constant is called f or G is merely cosmetic; what is
interesting here is that for hundreds of years, scientists were able to perform a large number of gravity calculations,
measurements, and predictions with no knowledge of G, see Haug [16] for an in depth study of the history of the
gravitational constant. One can argue that Cavendish used G indirectly, but we can just as well argue that he was
relying on the Planck units indirectly, which, like the gravitational constant, had not been introduced at the time
of Cavendish. The Planck units were introduced in 1899, while Newton’s gravitational constant was introduced in
1873. Of course, the fact that one constant was introduced before another one does not necessarily make it more
fundamental and the frontiers of understanding may change over time, something we will also look at in this paper.

3 The Planck Mass Measured Directly with a Cavendish Apparatus

Remarkably, using a Cavendish apparatus, we can measure the Planck units without any knowledge of Newton’s
gravitational constant. Here we will demonstrate this first for the Planck mass. A Cavendish apparatus consists of
two small balls and two larger balls, all made of lead, for example. The torque (moment of force) is given by

✓ (1)

where  is the torsion coe�cient of the suspending wire and ✓ is the deflection angle of the balance. We then have
the following well-known relationship

✓ = LF (2)

where L is the length between the two small balls in the apparatus. Further, F can be set equal to the gravitational
force given by

F =
l2pc

3

~
Mm

R2
=

t2pc
5

~
Mm

R2
=

~c5
E2

p

Mm

R2
=

~c
m2

p

Mm

R2
(3)

This means we have

✓ = L
~c
m2

p

Mm

R2
(4)

We also have that the natural resonant oscillation period of a torsion balance is given by

T = 2⇡

r
I


(5)

Further, the moment of inertia I of the balance is given by

I = m

✓
L

2

◆2

+m

✓
L

2

◆2

=
mL2

2
(6)
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this means we have

T = 2⇡

r
mL2

2
(7)

and when solved with respect to , this gives

T 2

22⇡2
=

mL2

2

 =
mL2

2 T 2

22⇡2

 =
mL22⇡2

T 2
(8)

Next in equation 4, we are replacing  with this expression, and solving with respect to the Planck mass

mL22⇡2

T 2
✓ = L

~c
m2

p

Mm

R2

L22⇡2R2

~cLMT 2
✓ =

1

m2
p

m2
p =

~cMT 2

L2⇡2R2✓

mp =

r
~cMT 2

L2⇡2R2✓
(9)

The mass M is the mass of each of the two large lead balls in the Cavendish apparatus, not the mass of the
Earth. All we need in order to find the mass of the large balls is an accurate measurement of weight. Such a
measurement of weight should be independent of knowledge of Newton’s law of gravitation, but since weight is an
e↵ect of gravity, they are still related. For example, the act of choosing an arbitrary clump of matter and using
that as the standardized weight unit can be applied here. If we work with the kg definition of mass, we can weigh
the large balls in the Cavendish apparatus with the one kg mass on the other side. Keep in mind that in addition
to measurements done in relation to the Cavendish apparatus, we need Planck’s constant. Planck’s constant can be
found from the Watt balance [17–20], or more traditionally from the black body spectrum [21]. That we need the
Planck constant is related to the fact that we are operating with masses in the form of kg. The new kg definition
is directly linked to the Planck constant.

The angle ✓ and the oscillation time period T are what we measure with the Cavendish apparatus. The length L
is the distance between the small lead balls and R is the distance between the large lead ball’s center to the center
of the small lead ball, when the arm is in equilibrium position (mid-position).

Today there even exists a small, ready-to-use Cavendish apparatus, where the angle of the arm and the time are
measured very accurately by fine electronics and plugged directly into a computer with a USB cable; see Figure 1.
Using this low budget apparatus, we can measure the Planck mass with only about 5% error without any knowledge
of Newton’s gravitational constant.

As soon as we know the Planck mass, we have the input needed to perform gravitational predictions, such as
predictions on the orbital velocity of planets and satellites, for example, see Table 1. Looking at several places
in Table 1, we find the parameter N , which is the number of Planck masses in the gravitational object, e.g., the
Earth. The number of Planck masses in the Earth can be found first by finding the Planck mass from a Cavendish
apparatus as described in this section. Second, one measures the gravitational acceleration on the surface of the
Earth; to do this we simply need an object we can drop, a brass ball, for example, and two time-gates. Next we
have from the table that

g = N
~c

R2mp

N = g
R2mp

~c (10)
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Figure 1: Low budget modern Cavendish apparatus combining old mechanics with modern electronics that feed directly
to your computer through a USB cable. It is remarkable that using such an instrument, we can measure the Planck
mass with only about 5% error.

Now we have N (the number of Planck masses in the Earth, N = 9.81⇥ 6,371,0002⇥mp

~c ⇡ 2.7432 ), and again we
had no need for G to find it; we now have the input we need to complete all other gravity predictions in the table.

Haug [22–24] has, in a similar way, shown how the Planck units can be found independent of big G using
a Newton force spring as well as a pendulum clock and a ball clock, but here is the focus on using a Cavendish
apparatus. We have looked at this lightly before [25], but this paper goes much more in depth. See also Appendix A,
on how we can extend the derivation above to find the Planck length and Planck time “directly“ from a Cavendish
apparatus.

Table 1 show a series of outputs we can get from a Cavendish apparatus. All of the Planck units in this table
require that we know the Planck constant as well, and some also require the speed of light to find them.

4 Why Newton’s Gravitational Constant Likely Is a Universal Com-

posite Constant

In our analysis, the first strong indication that the gravitational constant is a composite constant is given by its
output units, which are m3 ·kg�1 ·s�2. It would be very strange if something concerning the fundamental nature of
reality would be found in meters cubed, divided by kg and seconds squared. The Planck mass, the Planck length,
and the Planck time are somewhat easier to relate to. The speed of light is also something we can relate to logically;
it is the distance light travels in a vacuum during a pre-specified time interval. The Planck constant is more complex
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Standard form/way Planck form Observed

Gravitational constant G ⇡ 6.67 ⇥ 10�11 G = ~c
m2

p
=

l2pc3

~ ⇡ 6.67 ⇥ 10�11 indirectly only

Cavendish: Gravitational constant G = L2⇡2R2✓
MT2 indirectly only

Cavendish: Planck mass Only derived from G mp =
q

~cMT2

L2⇡2R2✓
indirectly only

Cavendish: Planck length Only derived from G lp =
q

~L2⇡2R2✓
MT2c3

indirectly only

Cavendish: Planck time Only derived from G tp =
q

~L2⇡2R2✓
MT2c5

indirectly only

Cavendish: Schwarzschild radius Normally dependent on G rs = L4⇡2R2✓
c2T2 indirectly onlyo

Newton’s gravity force F = GmM
R2 F = n1n2

~c
R2 indirectly onlya

Gravitational acceleration field g = GM
R2 g = N

lp

R2 c2 or g = N ~c
R2mp

Yes

Mass from acceleration field M = gR2

G M = gR2~
l2pc3

indirectly only

Orbital velocity vo =
q

GM
r vo = c

q
N

lp
r Yes

Escape velocity ve =
q

2GM
r ve = c

q
N2

lp
r indirectly onlyb

Time dilation t2 = t1
q

1 � 2GM
rc2

t2 = t1

q
1 � N2

lp
r Yes

Newton’s gravitational bending of light � = 2GM
rc2

� = N2
lp
r Twice of that

GR gravitational bending of light � = 4GM
rc2

� = N4
lp
r Yes

Gravitational red-shift limr!+1 z(r) = GM
R2 limr!+1 z(r) = N

lp
r Yes

Schwarzschild radius rs = 2GM
rc2

rs = N2lp indirectly only

Einstein’s field equation Rµv � 1
2 gµvR = 8⇡G

c4
Tµv Rµv � 1

2 gµvR =
8⇡lp

mpc2
Tµv indirectly only

Einstein’s constant  = 8⇡G
c2

 =
8⇡lp
mp

Indirectly only

Einstein’s cosmological constant ⇤ = ⇢vac ⇤ =
8⇡lp
mp

⇢vac indirectly only

Hawking temperature c3

8⇡GM
~
kb

T = 1
N8⇡

mpc2

kb
indirectly onlyc

Hawking dissipation time tev = 15360⇡G2M3

~c4
T = 15360⇡

lp
c indirectly onlyd

Bekenstein-Hawking luminosity P = ~c6

15360⇡G2M2 P = 1
N215360⇡

~c2

l2p
indirectly onlye

Table 1: The table shows a series of gravity formulas when using the standard Newton gravitational constant and the
alternative when arguing that Newton’s gravitational constant is a composite constant. Note that N is the number of
Planck masses in the gravitational object; this can be found by measuring the Planck mass indirectly first.

a
Actually, Newton’s gravitational force has never been observed directly, only indirectly through the predictions that come from

mathematically rearranging this formula to develop other predictions, such as orbital velocity.
b
To my knowledge the escape velocity has not been tested empirically.

c
At least not directly.

d
At least not directly.

e
At least not directly.

(and its interpretation is outside the scope of this paper), but it is related to the view that energy seems to come
in quanta. In sum, the Planck mass, the Planck time, the Planck length, the Planck constant, and even the speed
of light seem to be more intuitive than the gravitational constant.

Haug [3] has shown that assuming the gravitational constant is a composite will help make all of the Planck

units more intuitive. For example, the Planck time is given by tp =
q

G~
c5 ; when rewritten based on the idea that

the gravitational constant is a composite, this simply gives the (known) tp = lp
c . The latter form is known, but the

view that Newton’s gravitational constant is a composite constant renders the form tp =
q

G~
c5 unnecessary. We

might then ask, what is the intuition on c5 and G? The answer may not be so clear. Yet, the intuition behind lp
c

is simple; it is a very short distance divided by the speed of light, so it comprises a very short time interval. The
gravitational constant composite formula has the same challenge, in that we could end up with a circular problem
again because modern physics typically assumes that we need to know big G before we can find the Planck units.
However, as we have shown in this paper, this is not the case. This does not mean that big G is wrong; it is just
likely to be a composite universal constant rather than a fundamental constant.

We find that many gravitational formulas may be seen in a new perspective when rewritten based on the idea that
Newton’s gravitational constant is a composite constant; we summarize a selection of such gravitational formulas
in Table 1.
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5 Relative Standard Uncertainty

Assume we have measured the Planck mass (with a standard uncertainty of 1%) on the kitchen table with Cavendish
apparatus plugged into our computer. The relative uncertainty in the gravitational constant must then be

@G

@mp
⇥

mp

100

G
=

2~c
m3

p

⇥ mp

G⇥ 100
=

1

50
= 2% (11)

That is to say, the standard uncertainty in the Newton gravitational constant will always be twice that of the
standard uncertainty in the Planck mass measurements. This is in line with what is found in NIST (2018) CODATA,
which reports a relative standard uncertainty for the gravitational constant of 2.2 ⇥ 10�5 and 1.1 ⇥ 10�5 for the
Planck mass.

6 Finding the Planck Length and Planck Time without Knowledge of

G and h

We can actually find the Planck length and the Planck time without knowing the Planck constant, in addition to
not knowing G. To do this, we also need to know the Compton wavelength of the mass (the gravitational object).
Here we will show how the Compton wavelength from any mass can be found with no knowledge of ~; for a discuss
of the Compton wavelength and its relation to the de Broglie wavelength see Appendix A. We can write any kg
mass as

m =
h

�

1

c
=

~
�̄

1

c
(12)

where �̄ is the reduced Compton wavelength of the mass in question. This is simply the well-known Compton [26]
wavelength formula, �̄ = ~

mc solved with respect to the mass1. Equation 12 actually holds for any mass, including
composite masses such as protons and even cosmological size objects. A mass consisting of many fundamental
particles does not have one Compton wavelength, but rather it has one for each fundamental particle it consists of.
However, these wavelengths from each elementary particle can be aggregated in the following way

�̄ =
nX

i=1

=
1

1
�̄1

+ 1
�̄2

+ 1
�̄3

+ · · ·+ 1
�̄n

(13)

This is then what we will call a reduced Compton equivalent mathematical wavelength for the mass in question.
This is because a composite mass consists of many elementary particles that likely all have their own reduced
Compton wavelengths. We will soon get back to how the Compton wavelength may be related to the de Broglie
wavelength. In this framework, c and ~ are constants; the only thing that distinguishes di↵erent size rest-masses
is the Compton wavelength. We think there is no simpler way to express the kg mass from assumed fundamental
constants, and naturally we also need one variable to distinguish between di↵erent mass sizes, and this variable is
the Compton wavelength. This does not alter the basic standard addition of mass rule

m = m1 +m2 +m3

~
�

1

c
=

~
�̄1

1

c
+

~
�̄1

1

c
+

~
�̄1

1

c
~
1

1
�1

+ 1
�2

+ 1
�3

1

c
=

~
�̄1

1

c
+

~
�̄1

1

c
+

~
�̄1

1

c
(14)

In this case, all we need to compare the relative size of masses will be their Compton wavelengths. One can
find the Compton wavelength of an electron, for example, by Compton scattering2. This does not require that one

1
Compton gave this formula indirectly in his 1923 paper and it assumes the electron initially stands still. The relativistic version of

the reduced Compton wavelength would be �̄ =
~

mc� .

2
Or from the hydrogen spectrum based on the Rydberg formula [27]. The reduced Compton wavelength of an electron, as derived

from the Rydberg formula, is �̄e =
�
2⇡Z2

✓
1
2

↵2

n2
1
� 1

2
↵2

n2
2

◆
, where Z is the atomic number, and n1 is the principal quantum number of

an energy level, and n2 is the principal quantum number of an energy level for the electron transition. In this formula, � is the observed

electromagnetic radiation wavelength in a vacuum. See Appendix A for the Rydberg formula approach.
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first knows the mass in kg or the Planck constant. One is simply shooting a photon with wavelength �1 before it
hits the electron. Then one measures the photon wavelength, �2, of the photon after it hits the electron, and in
addition one measures the angle between the incoming photon (beam) and the outgoing photon; from this alone we
know the Compton wavelength of the electron, and mathematically we have

�1 � �2 =
h

mc
(1� cos ✓)

�1 � �2 =
h

h
�e

1
c c

(1� cos ✓)

�1 � �2 = �e(1� cos ✓)

�e =
�1 � �2

1� cos ✓
(15)

Next, the cyclotron frequency is given by

f =
qB

2⇡m
(16)

Because the electrons and protons have the same charge, the cyclotron ratio is equal to their mass ratio, and
their mass ratio is equal to their Compton wavelength ratio

fP
fe

=
qB

2⇡mP

qB
2⇡me

=
me

mP
=

�P

�e
(17)

This means if we know the Compton wavelength of the electron and the cyclotron frequency of the electron and
the proton, then we also know the Compton wavelength of the proton. Next we can simply count the number of
protons in the gravity object. We can count the number of protons used as the gravity object (the large mass) in
the Cavendish apparatus. This is naturally a challenge, but not impossible. For example, in recent years one has
used very uniform silicon crystal balls that have been turned into almost perfect spheres, and has basically counted
the number of atoms3, see [29, 30]. So, this is more than pure theory.

As soon as we know the Compton wavelength of the gravity object in the Cavendish apparatus, we can easily
find the Compton wavelength from the Earth, for example. This is because we have

g1R2
1

g2R2
=

GM1

R2
1
R2

1

GM2

R2
2
R2

2

=
M1

M2
=

~
�̄1

1
c

~
�̄2

1
c

=
�̄2

�̄1
(18)

We can measure the gravitational acceleration field from the large ball in the Cavendish apparatus without
knowledge of any constants; it is given by

g =
L4⇡2✓

T 2
(19)

Further, the gravitational acceleration field of the Earth can be measured without knowledge of any physical
constant. This also means that we can find the Compton wavelength of small and large objects without knowledge
of any gravitational constant. In Appendix B, we show, similar to our derivation for the Planck mass, that the
Planck length from a Cavendish apparatus is given by

lp =

r
~L2⇡2R2✓

MT 2c3
(20)

If we now replace M with M = ~
�̄M

1
c , where �̄M still is the reduced Compton wavelength, but we have just added

a subscript symbol, so one later easily can see when the reduced Compton wavelength comes from the larger or
smaller mass, then the Planck constant cancels out, and we are left with

lp =

r
�̄ML2⇡2R2✓

T 2c2
=

⇡R

Tc

p
�̄ML2✓ (21)

3
Also other methods exist to count the number of atoms, see [28], for example.
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and since we can find the Compton wavelength without knowledge of the kg mass or the Planck constant, we can
find the Planck length also without any knowledge of G or ~. The same is the case for the Planck time, which is
just the Planck length divided by the speed of light, so it is given by

tp =

r
�̄ML2⇡2R2✓

T 2c4
=

⇡R

Tc2

p
�̄ML2✓ (22)

Clearly the Planck length and the Planck time can be found without knowledge of the Planck constant or the
gravitational constant, see Table 2 for a summary of the Planck units.

From Cavendish Apparatus: Constants needed:

Planck mass mp =
q

~cMT 2

L2⇡2R2✓ = T
⇡R

q
~

2�̄ML✓
Needs ~

Planck energy Ep =
q

~c5MT 2

L2⇡2R2✓ = c2T
⇡R

q
~

2�̄ML✓
Needs ~ and c

Planck length lp =
q

~L2⇡2R2✓
c3MT 2 = ⇡R

cT

p
2�̄ML✓ Needs c

Planck time tp =
q

~L2⇡2R2✓
c5MT 2 = ⇡R

c2T

p
2�̄ML✓ Needs c

Schwarzschild radius rs =
L4⇡2R2✓

c2T 2 Needs c

Gravitational acceleration g = L2⇡2✓
T 2 Constant free

Orbital velocity vo =
q

RL4⇡2✓
T 2 Constant free

Newton gravitational constant G = L2⇡2R2✓
MT 2 = 2L⇡R2✓�̄Mc

~T 2 Needs ~ and c

Table 2: The table highlights the Planck units and other gravitational phenomena that can be found with a Cavendish
apparatus. The table also shows what constants we will need to find those units and phenomena when using this
method.

7 Is Newton’s Gravitational Constant Even Needed?

In the beginning of this paper, we pointed out that Newton’s original gravitational formula was F = Mm
R2 , and

not the “modern“ (1873) version of F = GMm
R2 . The characteristic of Newtonian mechanics, which appears at this

point, is that the force depends on the product of the masses and on the inverse of the relative distance squared.
By dimensional analysis, it at first seem that a multiplicative dimensional constant with dimensions equal to the
Newton gravitational constant must appear in this expression to get the right dimensions of Newton force, which
in modern physics is given by m · kg · s�2. Based on this, any of the following constants will do, as they are

dimensionally equivalent and will give exactly the same output values G = ~c
m2

p
=

l2pc
3

~ =
t2pc

5

~ = m3 · kg�1 · s�2.

However, the need for these dimensions in the gravitational constant, we will demonstrate, is simply due to our
modern mass definition, which we have reason to think is incomplete. We will claim that all observable gravity
phenomena need GM and not GMm. One of the masses always cancels out in the derivation for any observable
gravity phenomena, something we soon will show more clearly. So, the dimensions that are input for any gravity
phenomena are linked to GM = m3 · s�2. That is, there is no kg in any observable gravitational observation, only

in the gravitational force formula itself and in the current mass definition. Actually GM =
l2pc

3

~
~

�̄M

1
c = c2

l2p
�̄M

. We
see that the Planck constant embedded in G always cancels with the Planck constant in the kg mass. We will claim
the Newton gravitational constant is needed to get the Planck constant out of the kg mass definition and to get the
Planck length into the mass. Prof. Jammer [31] has in his work on mass made it clear that we still are searching
for an adequate definition of mass, and to put it a bit on the edge he has stated “mass is a mess.” Even if one
knows much about mass today, we think one should be open for new suggestions of mass definitions as long as they
seem to lead to a consistent theory, in particular when it can add a deeper understanding. Haug [22] has recently
suggested a new mass definition where any mass is given by

m̄ =
lp
c

lp
�̄

(23)

That is, mass should be seen as the Planck time multiplied by lp
�̄
, which we have coined collision-time. Our

new mass definition assumes that any mass is quantized and observations can only exist in whole Planck times,
something we will get back to in section 8.
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What is interesting here is that when one uses that mass definition instead, one will get a Newtonian gravity
formula equal to

F̄ = c3
M̄m̄

R2
(24)

and when we use the unit of length equal to the unit of time connected through the speed of light, we get Newton’s
original formula F = M̄m̄

R2 . Even if we set c = 1, this is not the same as setting also h = 1 and G = 1, so this is not
why we do not need h and G. The dimensions of this gravity formula are di↵erent than in standard gravity. But
then we will claim the Newton force itself cannot be observed. This formula still gives identical predictions for any
observable gravity phenomena to the modern version of the Newton formula. This can be clearly seen in Table 3.
Even if the gravity force formulas are di↵erent, all the formulas for predictable phenomena end up being identical,
both in numerical outputs and dimensions. However, our new approach contains one less physical constant. In the
Newtonian formula, we need to know G and M . When we break down the mass to the simplest way for expressing
it in terms of kg based on fundamental constants, we have M = ~

�̄M

1
c . So, to know G and M we need to know three

constants, G, ~, and c; these are the three constants Planck suggested were the fundamental universal constants.
In addition, we need to know one variable that is dependent on the mass size, namely the Compton wavelength.
However, to know the gravitational constant multiplied by the kg mass, GM , we only need to know the Planck
length, the speed of light, and the Compton wavelength. That is, if we know that G is a composite constant and
we can only assume G is a composite constant, if and only if we can find the Planck units without knowing G first
hand. Here we have demonstrated that this is indeed the case.

In our alternative mass and gravity formula, we have c3M̄ = GM = c2
l2p
�̄M

. However, when using c3M̄ rather

than GM we do not need more information to know our gravitational constant, c3, in addition to our mass M̄ ,
compared in order to find the product of the two c3M̄ . To know both G and M , we need information that is not
necessary for predicting gravity phenomena, namely the Planck constant. Indirectly, we will claim standard physics
uses two di↵erent masses without being aware of it, or at least not acknowledging it directly. The convention is
to use the kg mass definition, which is linked to the Planck constant that contains enough information to be used
in all non-gravity physics. In addition, modern physics indirectly uses our new mass definition M̄ = lp

c
lp
�̄M

that

is obtained by multiplying G with M , which gives GM = c3M̄ , where c3 is a gravitational constant. In a recent
publication [4, 22], we have claimed that incorporating our mass definition M̄ = G

c3M into physics could be useful
for unifying gravity with other parts of physics, but that is outside the scope of this paper, see [32]. The fact that
we can find all of the Planck units without knowledge of G, and also the Planck length and Planck time without
knowledge of ~, and further, that we can predict observable gravity phenomena only using two constants, the Planck
length and the speed of light, rather than three constants, is the essence of this paper.

8 Interpretation of the Alternative Mass Definition and Its Link to

Standard Mass

Our new mass definition is rooted in ideas similar to those of Newton. Newton was clear that mass was the quantity
of matter (“quantities materiae”). Less known among many researchers today is that Newton [10] also clearly
claimed all matter ultimately consisted of indivisible particles and further that the smallest time interval was also
indivisible. In other words, the mass should somehow be related to the quantity of these indivisible particles. In
Principia [10], in the third part of his book, which was about gravity, Newton even claimed that the indivisible
particles were the foundation of his entire philosophy. Newton held on to this view, as he repeated much of it in
his book in Opticks [33], published in 1704.

Naturally, Newton had not yet figured out the size of these indivisible particles, nor the time interval of the
indivisible moment of time as he called it, nor had he made any observations that could directly back his hypothesis.
Almost three hundred years later, in 1899, Max Planck first linked the Newton gravity theory indirectly to the Planck
units by deriving the Planck units from dimensional analysis, relying also on the gravity constant G combined with
h and c. At that time, there was considerable disagreement on the importance of the Planck units. Einstein was
likely the first, in 1916, to suggest that a quantum gravity theory was the next step, after he finished his general
relativity theory; in his own words:

Because of the intra-atomic movement of electrons, the atom must radiate not only electromagnetic
but also gravitational energy, if only in minute amounts. Since, in reality, this cannot be the case in
nature, then it appears that the quantum theory must modify not only Maxwell’s electrodynamics but
also the new theory of gravitation.
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Modern Newton: Alternative:

Mass M = ~
�̄M

1
c (kg) M̄ = lp

c
lp
�̄M

(collision-time, see [22])

Non observable (contains GMm)

Gravitational constant G,
⇣
G =

l2pc
3

~

⌘
c3

Gravity force F = GMm
R2 (kg ·m · s�2) F = c3 M̄m̄

R2 (m · s�1)
Observable predictions, identical for the two methods: (contains only GM)

Gravity acceleration g = GM
R2 = c2

R2

l2p
�̄M

g = c3M̄
R2 = c2

R2

l2p
�̄M

Orbital velocity vo =
q

GM
R = c

q
l2p

R�̄M
vo =

q
c3M̄
R = c

q
l2p

R�̄M

Time dilation TR = Tf

r
1�

q
2GM
R

2

/c2 = Tf

q
1� 2l2p

R�̄M
TR = Tf

r
1�

q
2c3M̄
R

2

/c2 = Tf

q
1� 2l2p

R�̄M

Gravitational red-shift z =

q
1� 2GM

R1c2q
1� 2GM

R2c2

� 1 =

r
1�

2l2p
R1�̄Mr

1�
2l2p

R2�̄M

� 1 z =

r
1� 2c3M̄

R1c2

r
1� 2c3M̄

R2c2

� 1 =

r
1�

2l2p
R1�̄Mr

1�
2l2p

R2�̄M

� 1

Gravitational red-shift z1(r) ⇡ GM
c2R =

l2p
R�̄M

z1(r) ⇡ c3M̄
c2R =

l2p
R�̄M

Gravitational deflection (GR) � = 4GM
c2R = 4

R

l2p
�̄M

� = 4c3M̄
c2R = 4

R

l2p
�̄M

Advance of perihelion 6⇡GM
a(1�e2)c2 = 6⇡

a(1�e2)

l2p
�̄M

6⇡c3M̄
a(1�e2)c2 = 6⇡

a(1�e2)

l2p
�̄M

Indirectly/“hypothetical“ observable predictions: (contains only GM)

Escape velocity ve =
q

2GM
R = c

q
2

l2p
R�̄M

ve =
q

2c3M̄
R = c

q
2

l2p
R�̄M

Schwarzschild radius rs =
2GM
c2 = 2

l2p
�̄M

rs =
2c3M̄
c2 = 2

l2p
�̄M

Gravitational parameter µ = GM = c2
l2p
�̄M

µ = c3M̄ = c2
l2p
�̄M

Two body problem µ = G(M1 +M2) = c2
l2p
�̄1

+ c2
l2p
�̄1

c3(M̄1 + M̄2) = c2
l2p
�̄1

+ c2
l2p
�̄2

Quantum analysis:

Constants needed G, ~, and c or lp, ~, and c lp and c
Variable needed one for mass size one for mass size

Table 3: The table shows that any gravity observations we can make contain GM and not GMm; GM contains and
needs less information than is required to find G and M . We can, therefore, set up an alternative Newton-like gravity
that only requires knowledge of the speed of light (gravity) and the Planck length; this alternative theory gives exactly
the same predictions for anything that can be observed.

In 1922, Eddington [34] suggested the Planck length had to play a central role in a quantum gravity theory
and stated: “But it is evident that this length (the Planck length) must be the key to some essential structure. It
may not be an unattainable hope that someday a clearer knowledge of the process of gravitation may be reached.”
However, other prominent physicists at that time, such as Bridgman [35] ridiculed the idea that the Planck units
could play a role of any importance, and that they were more like mathematical artifacts coming out of dimensional
analyses [36]. Even to this day, the physics community is split in their opinions on the Planck units. The majority of
researchers seems to think the Planck length and the Planck time are the shortest possible length and time interval,
see for example [37, 38], while others are still claiming that the Planck length is more or less a mathematical artifact
[39]. If the Planck length can only be calculated from G, h, and c as believed by most researchers today, then why
not simply assume the Planck units have no significance, just as Einstein abandoned the ether. If it cannot be
detected, nor does it lead to implications that can be observed, then why not simply abandon it? However, since
we have now demonstrated that we can measure the Planck length and the Planck time independent of G and ~,
and also that all observable gravity predictions we have looked at can be made using only two constants, lp and c,
this gives strong support to the idea that the Planck length is indeed central in gravity, and represents something
very fundamental.

Back to our new mass definition, in our model we will postulate that both energy and matter ultimately consist
of indivisible particles, somewhat similar to the Newton corpuscular theory, that again was rooted in ideas from
ancient atomism. Even if several researchers clearly were interested in this path, may be mostly from a historical
perspective, for example Schrödinger [40], little or nothing seemed to come out of this line of thought in recent
times. Most researchers have assumed this path leads to a dead end and have stopped investigating it, but we
will challenge that view here. Today we know much more about mass and energy than was known in Newton’s
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time, and we can, therefore, combine some new insights with the corpuscular view of Newton. We will assume
the indivisible particles always move at the speed of light, except when it collides. The collision itself lasts the
Planck time. Actually, we do not need to assume that the diameter of this particle is the Planck length, or that
it moves at the speed of light. All we need to do is to assume it has a diameter, that it has extension in space as
Newton explicitly pointed out in Principia. Further, that such indivisible particles move at a constant speed when
not colliding. Both the diameter of this indivisible particle and its speed can be extracted from gravity phenomena
with no prior knowledge of G, ~, or c. Next, we can use these two constants to predict any observable gravity
phenomena, see Appendix C.

In our model, indivisible particles that do not collide will be what we call pure energy and are massless (and they
move at c, not by assumption, but from what we find from observable gravity phenomena). It is easy to think this
automatically is in conflict with the wave-particle duality, but this is not necessarily the case, as the wavelength in
this theory will be the distance between two indivisible particles traveling in the same direction and after each other.
Further, in this model it is the collision between indivisible particles that corresponds to what we call mass, so the
quantity of matter is linked to the quantity of collisions (number of collisions). However, there are two aspects of
these collisions, first, how many collisions one has in an observational time-window, but also the duration of these
collisions. We will show that the current mass definition contains information about the number of collisions. That
is, the quantity of mass can be counted as the number of collisions, but this would be an incomplete definition
of mass, as it does not tell anything about the duration of these collisions. We will assume the duration of each
collision is the Planck time.

Let us first go back to the standard mass definition to show why we mean the standard mass definition contains
the number of collisions in a mass. An electron has a mass of approximately 9.1⇥ 10�31 kg. That is, it is basically
a fraction of one kg. Therefore, we will always get the same value for mass if we write me

m1kg
= me

1 since m1kg = 1kg,

this ratio we could claim is dimensionless, but still one could claim this is actually what we call the kg mass of an
object as if we always linked to one kg; that is, if we always keep one kg in the denominator, which is needed if we
want to get the kg mass. One could try to object here, as kg is also related to weight, but Newton pointed out in
Principia that mass is a word for the quantity of matter, and he also stated “I have always found that the quantity
of matter to be proportional to their weight.”. This should not be misunderstood, but If we move one kg from the
Earth to the moon and also a hundred grams, the mass and the weight of the hundred grams will still be the same
as found from weighing it on the moon relative to the one kg clump of matter we also brought there. The weight
of the 100g or the one kg moved to the moon is only lower compared similar masses as measured in the Earth’s
gravitational field. As long as the one kg and the 100 grams are in the same gravitational field and both are at
rest relative to each other, they will have the same weight relative to each other no matter what gravity field we
measure them in (except in a zero gravity field). That is, the weights in kg are directly proportional to the quantity
of matter in each object for masses that are in the same gravitational field, as first pointed out by Newton.

The mass ratio of an electron relative to one kg can be written

me

m1kg
=

~
�̄

1
c

~
�̄1kg

1
c

=
c
�̄e

c
�̄1kg

=
fe
f1kg

(25)

The reduced Compton frequency of one kg is

f1kg =
c

�̄1kg
=

c
~

1kg⇥c

=
c2 ⇥ 1kg

~ ⇡ 8.52⇥ 1050 times per second (26)

and the electron’s reduced Compton frequency is

fe =
c

�̄e
⇡ 7.76⇥ 1020 times per second (27)

Interestingly, this is also very close to the predicted trembling motion by the electron predicted by Schörodinger
[41], that has not actually been observed. However, what if it is an internal “trembling motion,” or more precisely
the numbers of collisions that happen at the Compton periodicity inside the electron? That is, matter is ticking at
the Compton frequency, something that has been more or less verified by recent research, see [42, 43]. In any case,
the kg mass of the electron, based on the view that the kg definition of mass from a deeper perspective actually is
a frequency ratio, is given by

me =
7.76⇥ 1020

8.52⇥ 1050
⇡ 9.1⇥ 10�31 fraction of one kg (28)
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Which is the well-known electron mass. Similar frequencies (collisions-ratios) can be found for any mass, small or
large. The Compton frequency ratio will always give the correct mass as expressed in kg. That is, we will claim
the kg mass of an object is closely related to the ratio of Compton frequency in the mass of question divided by
Compton frequency in a one kg mass. This is not really a surprise, as it is in line with existing knowledge because it

is well known that we have m2
m1

= �̄1

�̄1
=

c
�̄2
c
�̄1

. However, if one always uses one kg as reference mass m1 = m1kg, then

we always have that this presents a frequency ratio that gives the mass relative to one kg, in other words, the kg
mass of an object. In our view, any mass expressed as kg (or pound) or relative to any human chosen reference mass
(such as a pond) is, from a deeper perspective, best understood as a frequency ratio, that again we claim represents
a collision ratio. It is important to see that such a mass definition in general is independent of the observational
time window; if we cut the observational time window to half a second, then the frequency ratio of both the electron
and the one-kg reference mass drops in half, so the electron mass is still the same 9.1 ⇥ 10�31 kg. An exception
is when we get to observational time windows close to the Compton time of the elementary particle in question.
If, for example, the observational time-window is equal to one and a half time the Compton time of the particle in
question, then the mass is suddenly time-dependent. If we are studying an electron, then one and a half Compton
time is 1.5 �̄e

c . The number of collisions in the electron will only be one, as we assume one collision happens every

Compton time. However, the numbers of collisions in one kg will be 1.5 �̄e
c ⇥ 8.52 ⇥ 1050 ⇡ 1.65 ⇥ 1030 collisions,

and the observed mass of the electron will then be fe
f1kg

= 1
1.65⇥1030 ⇡ 6.07 ⇥ 10�31 fraction of a kg. This is lower

than the known electron mass. This is a considerably shorter time interval than we can measure with todays best
atomic or optical clocks, so it is not in conflict with what has been observed. If we had an observational window
of an electron over just a random Planck-time, then there would only be a probability for the electron to be in
a collision state, but we could not calculate this probability without knowing the duration of the collision itself,
something we soon will get back to.

In our model, a collision happens between two indivisible particles at the Compton periodicity in matter. Still,
it is clear that the kg definition of matter does not contain any information about the duration of these collisions,
only the number of collisions in a given time interval as well as the ratio relative to the numbers of collisions in
a kg. An analogy would be that you have a clock that rings every hour; we know the time between each time it
rings, that is one hour, but the clock does not tell us how long the ring lasts. If the duration of collisions is what
is important for gravity, then one cannot use such a mass definition for gravity predictions without adding this
aspect to the mass. If the Planck length and the speed of light are linked to the duration of the collision, in form of
Planck time, then the Planck time must appear directly or somehow embedded in the mass definition for it to be
of any use for gravity calculations. And this is what we claim the current gravity theory unknowingly does when
multiplying G with M , then we are getting the Planck length into the mass, and the Planck constant out of the
mass. This to get also the duration of each collision into the mass definition/model. Again, no one knew about the
Planck length when suggesting a gravity constant G in 1873, but it could very well be that the gravity constant
contains what is missing in the rest of the gravity formula, which is found by calibrating it to gravity observations.
That G was introduced a few years before the Planck units does not make it more fundamental. On the contrary,
one is most often understanding things at a surface level first.

Actually, it looks like any mass definition that is relative to a human constructed reference mass will indirectly
be a collision (frequency) ratio that does not contain information about the duration of the collisions. Even if we
take the ratio of two masses based on our new collision-time mass definition, where we choose the reference mass
to be the collision-time of a one kg mass, m̄1kg = lp

c
lp

�̄1kg
, then the end result is that this mass ratio is identical to

the kg mass ratio:

m̄e

m̄1kg
=

lp
c

lp
�̄

lp
c

lp
�̄1kg

=
c
�̄e

c
�̄1kg

=
fe
f1kg

⇡ 9.1⇥ 1031 fraction of one kg (29)

We see here that when we define the mass as a ratio relative to a human selected reference mass (collision-time of
a kg mass) then the Planck length cancels out in such a mass ratio definition. If the Planck time is related to the
duration of the collision itself, then the standard mass definition has no information about this part. We have reason
to think gravity is directly related by the duration of these collisions. This is more than a loose opinion; we have
demonstrated how the Planck length and Planck time can be extracted from gravity phenomena with no knowledge
of G. We have shown how a long series observable gravity phenomenon are only dependent on two constants,
namely the Planck length and the speed of light (speed of gravity?). So, to describe any gravity phenomena, one
need to get the Planck time into the mass. Standard physics has been able to do this by calibrating a constant G to
gravity observations. This gravity constant is, in all observable gravity phenomena, multiplied by the gravitational

mass, GM , and this is equal to GM =
l2pc

3

~
~
�̄

1
c = c3 lp

c
lp
�̄

= c3m̄, that is standard physics is getting indirectly the
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mass we have suggested and standard gravity needs to do this, as we need the duration of the internal collisions
that happens inside matter. This is partly a hypothesis, but it is more than that, as it gives an explanatory model
of why and how we can measure the Planck length and the Planck time without any knowledge of G and ~.

Back to our new mass definition m̄ = lp
c

lp
�̄
. The first part of this equation lp

c represents the duration of a

collision between two indivisible particles. The second part, lp
�̄
, presents the percentage of the observational time

window when the mass is in collision state, that is how much of the observational time window two indivisible
particles are in collision. For example, assume we observe an electron in a one second observational time-window.
According to our model, it then has fe = c

�̄e
⇡ 7.76 ⇥ 1020 collisions in that time window. The duration of the

sum of the collisions is 7.76 ⇥ 1020 ⇥ tp ⇡ 4.19 ⇥ 10�23second, which is identical to lp
�̄

⇡ 4.19 ⇥ 10�23 % . That
is, for any observed elementary particles such as an electron we see that this fraction is very small. When we
are observing (even hypothetically) the particle at as short time windows as one Planck time then lp

�̄
represents

the probability for the particle to be in a collision state. Assume an electron has a collision every Compton time:
tc = �̄e

c ⇡ 1.29 ⇥ 10�21 seconds. However, the one collision we will have in this observational time-window only
lasts the Planck time. If we take a random selected Planck time observational window, then we do not know if

the particle is in collision-state or not, but we know the probability, which must be
lp
c
�̄
c

= lp
�̄

(for a Planck time

observational time-window).

If the reduced Compton wavelength of the particle is less than the Planck length, lp
�̄
> 1, then the integer part

will be identical to the number of collisions (quantization) during a Planck time observational time-window, and
the remaining fraction (if any) can be seen as a probability for an additional collision to happen in the observational
time window of the Planck time. This also means that if we hypothetically observe masses in an observational time
window of one Planck time, then particles considerably smaller than a Planck mass are dominated by probability,
while masses equal to or above the Planck mass size are dominated by determinism. It is also important to be
aware that if the mass has a Compton wavelength shorter than the Planck length, then it must be a composite
mass. That is, it must consist of more than one elementary particle; see section 6 for further details.

9 Consistency

We have introduced a new mass definition, so a natural question to ask is: “Does this lead to a consistent theory,
or does it lead to inconsistencies where the consensus theory today already is proven to work well?” We have
completed extensive research to ensure that it leads to a consistent theory. We can always go between this mass
and the standard mass simply by multiplying the new mass with ~

l2p
, or by multiplying the standard kg mass with

~
l2p

to go back and forth between them. This is identical to multiplying the standard mass with G
c3 , which makes it

easy to see why we have GM = c3M̄ .
One might suspect that since our new mass definition and the standard mass definition only di↵er by a ratio

of two known physical constants, and GM = c3M̄ , that this is a trivial change of units without any important
implications. One could come up with almost an infinite number of unit changes that lead to no new insights and
that might only make the formulas and the output dimensions less intuitive than the established framework. For
example, we could multiply all masses and all energies by

p
c; this would alter no rules of physics, but would make

the existing formulas look more complex, and the output and dimensions would be less intuitive than they are in
the existing framework, but it would not lead to any new insight. As a minimum, a change of units should lead to
some simplification and hopefully some new insight. We will claim that our change of mass definition both simplifies
the formulas and leads to new important insight in physics.

Our multiplication of the existing mass with a ratio of two constants is more than just a change of units because
our new mass definition contains the two constants needed for predicting all observable gravitational phenomena
(that we have thought about), namely the Planck length and c, while the standard mass contains the Planck
constant and c, but has no information about the Planck length. However, as carefully explained in the previous
sections, one is indirectly doing the same already in standard physics, but by multiplying G with M , one is getting
the Planck length into the mass and, at the same time, removing the Planck constant. Our new mass definition
simply makes Newtonian gravity and other parts of gravity simpler; we can now work with two constants rather
than three. Taking up a popular theme of the day, superstring theory, for example, suggests that the speed of light
c and that the Planck length are the two fundamental constants [44], but superstring theory still has not led to the
breakthrough once hoped for, and thus it is time to look at existing formulas in a new and fresh way. This new
view gives us an idea that we may have been using two di↵erent mass definitions all along without being aware of
it, or explicitly noting it, as explained in the section above.



14

It is worth mentioning that our new mass definition seems to lead to one other important di↵erence that is not
discussed in this paper, namely that Lorentz symmetry breaks down at the Planck scale, but not before we reach the
Planck scale. This is discussed in depth in [22]. A break with Lorentz symmetry can easily seem like an indication
that it must be an inconsistent theory, as Lorentz symmetry has a very strong standing in physics, also based on
experimental physics. However, we will claim the opposite, that a theory predicting Lorentz symmetry break down
at the Planck scale (but not before the Planck scale) actually is in line with the predictions from several quantum
gravity theories, see for example the following review paper [45]. We strongly suggest that the physics community
evaluate whether or not they have been using two di↵erent mass definitions: in all non-gravity areas of physics,
one has used the kg mass definition of mass, while it seems that one is using the more complete mass definition in
gravity physics, through GM = c3M̄ .

10 Conclusion

We have shown that the Planck mass (and Planck energy) can be measured with a Cavendish apparatus without
any prior knowledge of G. Further, we have shown how the Planck length and Planck time can be found with no
knowledge of G and ~ using a Cavendish apparatus. This no longer posits the Planck units as simply being a derived
constant from big G, but possibly makes the Planck units even more important than big G, since the gravitational

constant can be written as a composite constant G = ~c
m2

p
=

l2pc
3

~ . In addition, we have shown that the standard

mass definition possibly is incomplete, since all gravity phenomena can be calculated by only knowing the Planck
length and the speed of light, plus one variable describing the mass size, which is the Compton wavelength. All of
these elements can be found without any knowledge of G or the Planck constant. We claim that the gravitational
constant embedded contains the Planck constant to get the Planck constant out of the standard mass definition,

since all predictable gravity phenomena have GM = c2
l2p
�̄M

. It seems that standard physics indirectly uses two
di↵erent mass definitions: one for all other areas of physics, the standard kg mass definition, but in gravity we think
one indirectly is using a more complete mass definition that one gets by always multiplying m with G. Using the
same mass definition in non-gravity physics as well could be the key to unifying gravity with other areas of physics.
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Appendix A: The Planck Time and the Planck Length

We can also find the Planck time directly without any knowledge of G in a Cavendish experiment by utilizing the
derivation below

✓ = LF
mL22⇡2

T 2
✓ = L

t2pc
5

~
Mm

R2

tp =

r
~L2⇡2R2✓

MT 2c5

(30)
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and since we can express M as M = ~
�̄

1
c we get

tp =
⇡R

c2T

p
2�ML✓ (31)

Similarly, we can also find the Planck length without knowledge of G and ~ by taking into account that the
mass of an elementary particle can be written as

m =
~
�̄

1

c
(32)

In this case, we know the mass is the Planck mass, so the reduced Compton wavelength is related to the Planck
length that we can find directly using a Cavendish apparatus

✓ = LF
mL22⇡2

T 2
✓ = L

l2pc
3

~
Mm

R2

lp =

r
~L2⇡2R2✓

MT 2c3

lp =
⇡R

cT

p
2�ML✓ (33)

In other words, all of the natural Planck units can be found directly from a Cavendish apparatus, with no
knowledge of G and the Planck time and the Planck length in addition with no knowledge of the Planck constant.

Appendix B: The de Broglie Wavelength versus the Compton Wave-

length

In 1923, de Broglie suggested that there likely was a matter wavelength. He likely came up with this suggestion
since it had been shown that light had a wave-particle duality, so why not matter also? He indicated that the
matter wavelength was given by the formula (see also [46])

�b =
h

p
=

h

mv
(34)

where �b is the de Broglie matter wavelength. Solved with respect to m, this gives

m =
h

�bv
(35)

this formula is valid when v << c (the non-relativistic approximation). A drawback in describing the mass as a
function of the de Broglie wavelength instead of the Compton wavelength is that the mass then is not defined for
a rest-mass, since this would mean v = 0. And dividing by zero is undefined, or infinity [47, 48], neither of which
make much sense. The relativistic form of the de Broglie wavelength is �b = h

mv� and the relativistic form of the

Compton wavelength is � = h
mc� . This means that the de Broglie wavelength is always equal to the Compton

wavelength times c
v . And we can again see that the de Broglie wavelength is not defined for a rest-mass particle,

while the Compton wavelength is.
From this, we also have m = h

�bv�
= h

� c
v v�

= ~
�̄�

1
c , where again �b is the de Broglie wavelength, and � and �̄ is

respectively the Compton wavelength and the reduced Compton wavelength. As a particle velocity is close to zero,
the de Broglie wavelength approaches infinity, something that has led to a series of strange assumptions.

Haug [22] has even suggested that the Compton wavelength is the true matter wavelength and that the de Broglie
wavelength just is a mathematical derivative of this. As the de Broglie wavelength always contains the Compton
wavelength, one can naturally get to most of the same results from using the de Broglie wavelength. However, in
the case of a rest-mass particle, in general we cannot use the de Broglie wavelength, but an in-depth discussion
of this is outside the scope of this paper. When one observed wave-like properties in electrons [49, 50], it was
assumed the de Broglie hypothesis was correct. It was correct in the sense that matter does indeed have wave-like
(and particle-like) properties; still, this does not mean that the de Broglie wavelength actually was measured. The
Compton wavelength, on the other hand, has been measured in a long series of experiments.
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Another drawback in using the mass as calculated from the de Broglie wavelength is that we need to know
the velocity of the particle. When using the Compton wavelength, we eliminate v. Further, the mass from the
Compton formula is the rest-mass. The mass formula linked to the Compton wavelength can easily be extended to
a relativistic form; this is �̄ = ~

mc� , but that is not needed here.

11 Appendix C

We assume the diameter of the indivisible particle is x and that this massless particle moves at an unknown speed
y. We have the following Newtonian “equivalent” gravity formula (see also Table 3)

F = x3 M̄m̄

R2
= x3

y
x

y
�̄M

y
x

y
�̄m

R2
(36)

this equation we discussed in section 7, but we then assumed x = lp and y = c. Here we assume the diameter of the
indivisible particle and the speed of it is totally unknown, but as we will demonstrate they can be extracted from
gravity phenomena and can then be used to predict any other gravity phenomena with no prior knowledge of G, ~,
or c.

This means we have

✓ = LF = Lx3 M̄m̄

R2
= Lx3

y
x

y
�̄M

y
x

y
�̄m

R2
(37)

where  is the torsion coe�cient of the suspending wire and ✓ is the deflection angle of the balance.
We also have that the natural resonant oscillation period of a torsion balance is given by

T = 2⇡

r
I


(38)

Further, the moment of inertia I of the balance is given by

I = m̄

✓
L

2

◆2

+ m̄

✓
L

2

◆2

=
m̄L2

2
(39)

this means we have

T = 2⇡

r
m̄L2

2
(40)

and when solved with respect to , this gives

T 2

22⇡2
=

m̄L2

2

 =
m̄L22⇡2

T 2
(41)

Next in equation 4, we are replacing  with this expression, and solving with respect to the Planck mass

m̄L22⇡2

T 2
✓ = Lx3

y
x

y
�̄M

y
x

y
�̄m

R2

xy =

r
�̄ML2⇡2R2

T 2
✓ (42)

As we have shown before in this paper, the reduced Compton wavelength can be found independent of any prior
knowledge of any physical constants. This means only x and y are unknowns. From this equation alone we cannot
find their separate values, but observations shows xy ⇡ lpc, and we will claim we must have xy exactly equal to
lpc if one looks away from any measurement error. Since x is the diameter of the indivisible particle, then it makes
sense that this diameter is the Planck length. And we know y is the speed of the indivisible massless particle, so
then the speed of the particle is c.
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We can, however, find their separate values also, without any speculation. What we have measured with a
Cavendish apparatus could be classified as a Newtonian gravity phenomenon. All Newtonian phenomena contain
lp and c, that is x and y, so from Newtonian phenomena alone we can only extract the combination of them. We
can naturally measure the speed of light from electromagnetic phenomena and then divide xy by c and find that
x = lp, but then we assume the speed in gravity formulas (the speed of gravity?) is identical to the speed of light.
This is not needed, we can separate the value of y and x only from gravity observations with no prior knowledge of
G, ~, and c.

For example, from gravitational deflection we have � = 4y3M̄
y2R =

4y3 x
y

x
�̄

y2R = 4
R

x2

�̄M
. Solved with respect to x, we

have x =
q

��̄MR
4 . The Sun’s deflection has been measured to be approximately 1.75 arcseconds. This gives a value

of x ⇡ lp (x =
q

1.75⇥⇡/648000⇥1.77⇥10�46⇥696340000
4 ⇡ 1.616 ⇥ 10�35 m). This is no coincidence. This is because

the Planck length is the only physical constant that deflection of light is dependent on. The same is true with
gravitational red-shift, and gravitational time dilation. So, from these we can find the Planck length independent
of knowledge of any other constant. Next we can measure any Newtonian gravity phenomena, which will give us
ylp, by dividing by the Planck length we then find the y ⇡ c. This is also no coincidence. All observable gravity
phenomena are only dependent on c and lp and they can be extracted from gravity phenomena with no prior
knowledge of any physical constant. Again superstring theory has suggested that only the same two constants are
needed, but there do not seem to have been any real breakthrough with it. The path we are proposing is thus
revolutionary. It means G is a composite that contained c, ~, and lp; it contains ~ to get this out of our incomplete
mass definition and it gets lp into the mass definition, and c is needed in some but not all gravity phenomena.


