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Abstract. Data uncertainty is seen as one of the main issues of several
real world applications that can affect the decision of experts. Several
studies have been carried out, within the data mining and the pattern
recognition fields, for processing the uncertainty that is associated to the
classifier outputs. One solution consists of transforming classifier outputs
into evidences within the framework of belief functions. To gain the best
performance, ensemble systems with belief functions have been well stud-
ied for several years now. In this paper, we aim to construct an ensemble
of the Evidential Editing k-Nearest Neighbors classifier (EEk-NN), which
is an extension of the standard k-NN classifier for handling data with un-
certain attribute values expressed within the belief function framework,
through rough set reducts.

Keywords: Evidential Editing k-Nearest Neighbors classifier, rough set
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1 Introduction

A multiple classifier system, also referred to as a classifier ensemble, has been
proven to be an effective and efficient way for solving complex classification
problems and achieving high performance [17]. The construction of an ensemble
of classifiers consists mainly on two distinct levels: the generation of a set of
base classifiers and the combination of their output predictions. It should be
emphasized that the process of improving ensemble accuracy requires the best
choice of the base classifiers and also the combination operator. In this paper,
we focus only on the generation of good base classifiers for enhancing accuracies.
Ensuring diversity between the base classifiers has been defended as a successful
means for the production of a good ensemble of base classifiers. Although diver-
sity can be achieved in several ways, the manipulation of the input feature space
has been theoretically and experimentally proven to be one of the best meth-
ods for establishing high diversity between base classifiers [2, 29, 31]. In fact, it
does not only allow the correlation reduction between the combined classifiers,
but it also performs faster thanks to the reduced size of the input feature space



[2, 5, 9, 30]. The process of generating feature subsets with good predicting power
is still under study. One commonly used solution is the random subspace method
(RSM) offtenly called random subspacing. The major shortcoming of this latter
technique is the random partition of the original input features. As a matter
of fact, the random selection may potentially increase the risk of irrelevant and
redundant features as part of the selected subsets.
The rough set theory, introduced by Pawlak [15], has been successfully applied
in pattern recognition, data mining and machine learning domains, more partic-
ularly for attribute reduction problems. The reduced attribute set, representing
the minimal subset of attributes that enables the discernation of objects with
different decision values, is referred to as reduct. Since there have been usually
multiple reducts for a given data set, the concept of ensemble classifiers through
rough set reducts have been introduced and applied in a range of practical prob-
lems such as text classification [20], biomedical classification [21], tumor classi-
fication [32], web services classification [19], etc. It is important to emphasize
that several real world application data suffer from some kinds of uncertainty,
imprecision and also incompleteness that mainly pervade the attribute values.
However, to the best of our knowledge, there are no rough set techniques allowing
to obtain the possible reducts from data with uncertain attribute values.
In this paper, we aim to develop a classifier ensemble through rough set reducts
(RSR) for dealing with uncertain data. More precisely where the uncertainty ex-
ists in the attribute values and is represented within the belief function theory, a
flexible way for managing and representing all kinds of uncertainty. We therefore
propose a new method for generating approximate reducts from such a kind of
data. Since tens or hundreds of reducts may be generated, a selected subset of
these reducts have to be used for constructing the base classifiers, notably the
most diverse ones.
Herein, we have used the Evidential k-Nearest neighbors [28], an extension of the
well known k-NN to handle the uncertainty that occurs in the attribute values
within the belief function framework, as base classifiers. Given a query instance,
the output beliefs of the base evidential classifiers will then be merged through
a combination operator that is offered by the belief function framework [23].
The remaining of this paper is organized as follows: Section 2 is dedicated to
recall some basic concepts of the belief function theory. Section 3 is committed
to highlighting the fundamental concepts of the rough set theory. We describe,
in Section 4, our proposed idea for constructing an ensemble of classifiers via
rough set reducts for handling uncertain data. Our conducted experimentation
on several synthetic databases is presented in Section 5. Finally, the conclusion
and our main future work directions are reported in Section 6.

2 Belief function theory: Fundamental concepts

The belief function theory has been shown to be a convenient way for represent-
ing, managing and reasoning under uncertainty. In this Section, we briefly recall
some fundamental concepts underlying this theory.



2.1 Information representation

Let Θ = {θ1, θ2, . . . , θN} be a frame of discernment with a finite non empty set
of N elementary hypotheses that are assumed to be exhaustive and mutually
exclusive. An expert’s belief over a given subset of Θ has to be represented by
the so-called basic belief assignment m (bba) as follows:∑

A⊆Θ

m(A) = 1 (1)

Each subset A of 2Θ having fulfilled m(A) > 0 is called a focal element.

2.2 Combination operators

In several real-world problems, information has to be gathered from distinct
sources. These latter have to be merged with the aim of obtaining the most
accurate information possible. The belief function framework provides a set of
combination rules for fusing such kinds of information. The conjunctive rule,
proposed by Smets within the Transferable Belief Model (TBM) [25], is one of
the best known rules. Given two information sources S1 and S2 with respectively
m1 and m2 as bbas, the conjunctive rule, denoted by ∩©, will be set as:

m1 ∩©m2(A) =
∑

B∩C=A

m1(B)m2(C), ∀A ⊆ Θ. (2)

The belief fully involved to the empty set reflects the conflictual mass. With
the aim of retaining the basic properties of the belief function theory, Dempster
have proposed in [4], a normalized version of the conjunctive rule. This latter
allows to manage the conflict by redistributing the conflictual mass over all focal
elements. It is obtained as follows:

m1 ⊕m2(A) =
1

1−K
∑

B∩C=A

m1(B)m2(C), ∀A ⊆ Θ (3)

where the conflictual mass K caused by the combination of the two bbas m1

and m2 through the conjunctive rule, is given as follows:

K =
∑

B∩C=∅

m1(B)m2(C) (4)

2.3 Decision making

The pignistic probability BetP , proposed in [24], is an efficient and binding way
for decision-making. It transforms beliefs into probability measures as follows:

BetP (A) =
∑

B∩A=∅

|A ∩B|
|B|

m(B), ∀A ∈ Θ (5)



Making decision consists of selecting the most likely hypothesis, meaning the
hypothesis Hs with the highest pignistic probability:

Hs = argmaxABetP (A), ∀A ∈ Θ (6)

2.4 Dissimilarity between bbas

Numerous measures have been introduced for computing the dissimilarity degree
between two given bbas [7, 18, 26]. The Jousselme distance [7] is regarded as one
of the well-known ones. Formally, the Jousselme distance, for two given bbas m1

and m2, is defined by:

dist(m1,m2) =

√
1

2
(m1 −m2)TD(m1 −m2) (7)

where the Jaccard similarity measure D is set to:

D(X,Y ) =


1 if X=Y= ∅
|X ∩ Y |
|X ∪ Y |

∀ X,Y ∈ 2Θ
(8)

3 Rough set theory

The rough set theory, which is proposed by Pawlak [15], constitutes a valid
mathematical solution for handling imperfect data for several machine learning
applications. Examples include clustering [14], classification [6, 8] and attribute
reduction [1, 11], etc. Attribute reduction within the rough set theory consists
of discovering the minimal subsets of relevant features, also named reduct, from
the original set. Authors in [22], have introduced the notation of discernibility
matrix and function as a way for finding reducts for a given data T . Suppose
that T = {x1, . . . , xD} is a data composed with D objects xi ( i ∈ {1, . . . , D})
characterized by N attributes A={a1, . . . , aN} having values V = {vi1, . . . , viN}
and a class label Yi ∈ C = {cA, . . . , cQ} (i.e. Q is the number of classes). The
discernibility matrix of T , denoted by DM , is a |D| × |D| matrix in which the
element DM(xi, xj) for an object pair (xi, xj) is defined as follows ∀ i, j =
{1, . . . , D} and ∀ n = {1, . . . , N}:

DM(xi, xj) = {an ∈ A|vin(xi) 6= vjn(xj) and Yi 6= Yj}

Each element DM(xi, xj) represents the set of all condition attributes discerning
objects xi and xj that have not the same class label. The notion of discernibility
function can be defined from the discernibility matrix as follows:

f(DM) = ∧{∨(DM(xi, xj))|∀xi, xj ∈ T,DM(xi, xj) 6= ∅} (9)



Reducts may be yielded by transforming the discernibility function from con-
junctive normal form into disjunctive normal form. The major shortcoming of
this solution is its costly computation which makes it impractical for large or
even medium sized data sets. Therefore, several heuristics have been discussed
to overcome this drawback. Johnson’s heuristic algorithm and the hitting set
approach are ones of the most known algorithms [3].

4 Classifier ensemble through rough set reducts

In this paper, we aim to construct an ensemble of classifiers from data charac-
terized by uncertain attribute values expressed within the belief function frame-
work. Particulary, we propose to construct an ensemble of the Enhanced Eviden-
tial k Nearest Neighbors (EEk-NN), an extended version of the classical k-NN
for handling evidential data, through rough set reducts. The general structure
of our proposed idea is depicted in Figure 1.

Fig. 1: The general structure of the proposed method.



Given a training data with uncertain attribute values, we have to generate firstly
all possible rough set reducts R = {r1, . . . , rM}. Subsequently, we have to choose
the ones enabling the construction of a good ensemble of EEk-NNs. Mainly, we
have to pick out the most diverse ones. The decision yielded by each individual
classifier, for a given query instance, will be merged using the Dempster operator,
one well used belief function combination rules for merging distinct classifiers.

Numerous reduct generation methods have been proposed in the literature and
the commonly used ones are mainly based on the information entropy and the
discernibility matrix. Examples include the Johnson algorithm and the hitting
set approach. The former one consists of a greedy search technique for piking
out a single reduct which is generally close to the optimal, while the latter one
allows the computation of multiple reducts. Within the hitting set approach, a
multiset ζ will contain the non empty sets of a given discernability matrix and
the minimal hitting sets of ζ are exactly the reducts.

Since the computation of reducts using the hitting set approach is an NP-hard
problem, genetic algorithms have been used for generating approximate hitting
sets, meaning approximate reducts. One example is the SAVGenetic algorithm
reducer [16], a Rosetta toolkit algorithm providing multiple reducts on the basis
of the hitting set paradigm [10]. Since this algorithm is widely used, it has not the
ability to handle uncertain data. Herein, we propose to extend the SAVGenetic
algorithm reducer for handling data with uncertain attribute values represented
by belief functions.

In analogy with the SAVGenetic algorithm, our proposed algorithm consists
firstly of computing the discernability matrix for data with uncertain attributes.
We have already proposed, in [27], a belief discernability matrix for discern-
ing pairs of objects with uncertain attribute values expressed in terms of belief
functions.

Given a data set T={x1,. . .,xD} with a finite set of D objects xi (i ∈
{1, . . . , D}). Every object xi is defined by a set of N uncertain attributes
A = {a1, . . . , aN} with values uV i = {uvi1, . . . , uviN} and a certain class la-
bel Yi ∈ C = {c1, . . . , cQ}. Each uncertain attribute value uvin relative to an
instance xi (with n in {1, . . . , N}) will be expressed by a basic belief assignment
mΘn
i where Θn reflects the frame of discernment relative to the attribute n. Let

S denotes a tolerance threshold (i.e. in this paper S is set to 0.1 for maximizing
the search space) and dist reflects the Jousselme distance. The entries of our
proposed belief discernibility matrix, denoted by Λ′, have been set as follows ∀
i, j ∈ {1, . . . , D} and n ∈ {1, . . . , N}:

Λ′(xi, xj) = {an ∈ A|dist(mΘn
i ,mΘn

j ) > S and Yi 6= Yj} (10)

A multiset ζ ′ will then contain the non empty set of Λ′ and the approximate
hitting sets of ζ ′ correspond exactly to the approximate reducts. Our algorithm’s



fitness function corresponds exactly to that of the standard SAVGenetic algo-
rithm. It consists of two main parts. The former one rewards subsets with short-
est size, while the latter one rewards subsets that are hitting sets (i.e. meaning
subsets having a non empty intersection with all elements of the discernability
matrix). It is set as follows for each subset B ∈ 2N :

f(B) = (1− α)× |A| − |B|
|B|

+ α×min{ε, [z ∈ ζ ′|z ∩B = ∅|]
|ζ ′|

} (11)

where α ∈ [0, 1] reflects the adaptive weighting between the two terms and ε
expresses the minimal hitting set fraction.

It is important to note that rough set approaches may generate tens or even
hundreds of reducts and the most diverse ones have to be chosen for ensemble
learning. One simplest algorithm for picking out diverse reducts is introduced in
[3]. It consists of choosing randomly a reduct from the initial list and then adding
progressively reducts that are diverse as much as possible from the chosen ones.
The diversity degree is set as:

Divs = 1−

∑
k∈L Reds∩Redk
Reds∪Redk

L
(12)

where L is the number of the chosen reducts and Reds is the candidate reduct.
The candidate reduct with the highest diversity will be added to the list of the
chosen reducts.

5 Experimentations

More recently, we have introduced an ensemble of EEk-NNs through the random
subspace method (RSM) and we have proven its performance compared with the
individual EEk-NN that is trained in full feature space [28]. In this paper, we
aim to evaluate the performance of the ensemble of EEk-NNs through rough
set reducts (RSR). Thus, we propose to carry out a comparative study with
the ensemble proposed in [28]. We relied mainly on the percentage of correct
classification criterion (PCC). In what follows, we present our experimentation
settings and results.

5.1 Experimentation settings

As we are handling data with uncertain attribute values expressed in terms of
belief functions, we have proposed to construct synthetic databases by inject-
ing uncertainty on real databases obtained from the the UCI machine learning
repository [12]. We provide, in Table 1, a brief description of some categorical
databases where #Instances, #Attributes and #Classes denote, respectively, the
number of instances, the number of attributes and the number of classes. We
have tackled different uncertainty levels P :



– Certain case: P=0
– Low uncertainty case: (0 < P < 0.4)
– Middle uncertainty case :(0.4 ≤ P < 0.7)
– High uncertainty case (0.7 ≤ P ≤ 1)

Table 1: Description of databases.

Databases #Instances #Attributes #Classes

Voting Records 435 16 2
Monks 432 7 2
Breast Cancer 286 9 2
Lymphography 148 18 4
Tic-Tac-Toa 958 9 2

Suppose that T is a database composed with D instances xi (i ∈ {1, . . . , D}).
Each instance xi is characterized by N uncertain attribute values uvni (n ∈
{1, . . . , N}). Suppose thatΘn is the frame of discernment relative to the attribute
n. Each attribute value uvni relative to an instance xi such that uvni ⊆ Θn will
be expressed in terms of belief functions as follows:

mΘn{xi}(uvni ) = 1− P (13)

mΘn{xi}(Θn) = P

It is important to note that some databases suffer from incompleteness. The
belief function theory allows to represent and manage missing attribute values.
In this paper, the missing attribute values will be modeled as follows:

mΘn{xi}(uvni ) = 0 ∀ uvni ⊆ Θn (14)

mΘn{xi}(Θn) = 1

5.2 Experimentation results

In this experimentations, we have relied on the 10-fold cross validation strategy
for learning the individual Enhanced k- Nearest Neighbors classifiers. One key
issue which has to be addressed is the number of neighbors that may give satis-
factory results. In our experimentation tests, we evaluate five values of k which
respectively correspond to 1, 3, 5, 7 and 9. Another substantial key element when
designing an ensemble of classifier is the number of individual classifiers used to
get the final decision. The conclusion conducted following to the study of [13]
proves that ensembles of 25 classifiers are sufficient for reducing the error rate
and consequently for improving performance. Thus, in our paper, the number of
the merged classifiers will be equal to 25. The final PCCs, which are obtained
through the combination of the classifier outputs using the Dempster rule, will be
given from Table 2 to Table 6, where RSM reflects the results yielded through



the random subspace method and RSR reflects the results obtained with the
rough set reducts method.

Table 2: Results for Voting Records database (%).

k = 1 k = 3 k = 5 k = 7 k = 9

RSM RSR RSM RSR RSM RSR RSM RSR RSM RSR

No 90.23 93.72 91.62 93.72 90.93 93.72 91.93 93.72 91.16 93.72

Low 90.46 93.95 91.62 93.95 91.16 93.95 90.06 93.95 91.39 93.95

Middle 91.39 93.95 91.39 93.95 91.86 93.95 91.62 93.95 90.93 93.95

High 88.37 95.53 89.53 89.76 89.76 89.76 89.76 90 89.30 90

Average 90.11 95.03 91.04 92.84 90.92 92.84 90.70 93.65 90.69 93.65

Table 3: Results for Lymphography database (%).

k = 1 k = 3 k = 5 k = 7 k = 9

RSM RSR RSM RSR RSM RSR RSM RSR RSM RSR

No 83.57 86.42 82.85 86.42 85.71 85 84.28 85 80.71 85

Low 81.42 77.85 90 77.85 81.42 73.85 78.85 78.57 79.28 77.85

Middle 83.57 81.42 82.85 81.42 83.57 80.71 81.42 80 82.85 80

High 62.24 72.85 62.85 73.75 61.42 73.57 62.85 73.57 61.42 73.57

Average 77.70 79.62 77.38 79.81 78.03 79.28 76.82 79.10 76.06 79.10

Table 4: Results for Tic-Tac-Toa database (%).

k = 1 k = 3 k = 5 k = 7 k = 9

RSM RSR RSM RSR RSM RSR RSM RSR RSM RSR

No 62.10 62 61.15 63.89 61.05 62.42 60.84 62 60 60.63

Low 55.36 56.73 55.78 57.05 55.89 54.52 55.89 55.26 55.57 55.68

Middle 55.57 57.57 56 57.47 56 55.47 56.21 56.10 56.21 56

High 57.78 57.89 57.68 58.10 58 57.89 58.31 58.21 50.31 59.15

Average 57.70 58.54 57.25 59.2 57.73 57.57 57.81 57.89 57.52 57.86

Table 5: Results for Monks database (%).

k = 1 k = 3 k = 5 k = 7 k = 9

RSM RSR RSM RSR RSM RSR RSM RSR RSM RSR

No 73.13 85.45 60.26 85.45 61.68 85.45 69.03 85.45 79.81 85.45

Low 71.01 84.36 59.49 84.36 94.16 84.36 70.65 84.36 76.54 84.36

Middle 69.85 85.27 60.26 85.27 68.9 85.27 72.84 85.27 70.72 85.27

High 56.14 64.72 53.68 64.72 52.03 64.72 53.72 64.72 54.18 64.72

Average 67.35 79.95 58.42 79.95 69.19 79.95 66.56 79.95 70.31 79.95



Table 6: Results for Breast Cancer database (%).

k = 1 k = 3 k = 5 k = 7 k = 9

RSM RSR RSM RSR RSM RSR RSM RSR RSM RSR

No 73,13 75.08 76.18 75.07 75.10 73.71 74.04 76.03 76.03 76.9

Low 73.10 73.57 76.10 76.18 74.89 75.10 73.91 74.04 75.8 76.9

Middle 73.92 73.75 75.59 76.18 74.32 75.10 73.80 74.04 76 76.9

High 73.01 73.75 75.45 76.18 74.62 75.10 72.12 74.04 76.13 76.9

Average 73.29 74.03 75.83 75.90 74.73 74.75 73.46 74.53 75.99 76.9
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Fig. 2: Average accuracies.

The PCC results given from Table 2 to Table 6 and the average classification ac-
curacies depicted in Figure 2 have proven the efficiency of the ensemble classifiers
that are obtained through the rough set reduct approach over that yielded using
the random subspace method. In fact, the average accuracies achieved by the
RSR method for the different values of k are almost always greater than those
achieved by the RSM method. Taking the Voting Records database as example,
the average accuracy done by the RSR approach are equal to 95.03, 92.84, 92.84,
93.65 and 93.65, while there are equal to 90.11, 91.04, 90.92, 90.70 and 90.69
for respectively k=1, k=3, k=5, k=7 and k=9. The conclusion derived from the
carried out experimentation tests may be justified by the fact that random sub-
space methods may negatively affect the classification process as irrelevant and
redundant features can part of the selected subsets .

6 Conclusion

The idea underlying this paper is to increase accuracy for a given classification
system through ensemble systems. Herein, we have constructed an ensemble of



the so-called Enhanced Evidential k-Nearest Neighbors for dealing with uncer-
tain data, more precisely where the uncertainty pervades the attribute values and
is represented with belief functions. With the aim of assessing the performance of
our proposed technique, we have conducted a comparative study with ensemble
constructed through random subspaces. The yielded results have shown the effi-
ciency of the rough set reducts over random subspaces. As we combine distinct
classifiers, in this paper, we have relied on the Dempster rule of combination. As
there are other combination rules, in our future work, we intend to pick out the
combination operator that yields the best classification results. With the aim
of increasing accuracy, we look forward to take into consideration not only the
diversity between reducts, but also the diversity between the merged classifiers
and the accuracy of the individual classifiers to yield more performance.
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