
HAL Id: hal-03643826
https://hal.science/hal-03643826

Submitted on 16 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CEC-Model: A new competence model for CBR systems
based on the belief function theory

Safa Ben Ayed, Zied Elouedi, Eric Lefevre

To cite this version:
Safa Ben Ayed, Zied Elouedi, Eric Lefevre. CEC-Model: A new competence model for CBR systems
based on the belief function theory. International Conference on Case-Based Reasoning, ICCBR’2018,
Jul 2018, Stockholm, Sweden. pp.28-44, �10.1007/978-3-030-01081-2_3�. �hal-03643826�

https://hal.science/hal-03643826
https://hal.archives-ouvertes.fr


CEC-Model: A new competence model for CBR
systems based on the belief function theory

Safa Ben Ayed1,2, Zied Elouedi1, and Eric Lefèvre2

1 LARODEC, Institut Supérieur de Gestion de Tunis, Université de Tunis, Tunisie,
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Abstract. The high influence of case bases quality on Case-Based Rea-
soning success gives birth to an important study on cases competence for
problems resolution. The competence of a case base (CB), which presents
the range of problems that it can successfully solve, depends on various
factors such as the CB size and density. Besides, it is not obvious to
specify the exactly relationship between the individual and the overall
cases competence. Hence, numerous Competence Models have been pro-
posed to evaluate CBs and predict their actual coverage and competence
on problem-solving. However, to the best of our knowledge, all of them
are totally neglecting the uncertain aspect of information which is widely
presented in cases since they involve real world situations. Therefore, this
paper presents a new competence model called CEC-Model (Coverage &
Evidential Clustering based Model) which manages uncertainty during
both of cases clustering and similarity measurement using a powerful
tool called the belief function theory.

Keywords: case-based reasoning, competence model, cases coverage,
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1 Introduction

Among the main concerns within the knowledge engineering field is to offer tech-
niques aiming to assess informational resources. In particular, the community of
Case-Based Reasoning (CBR) provides a specific interest to evaluate case bases
since their quality presents the key factor’s success of CBR systems. In fact,
the higher the quality of this knowledge container, the more ”competent” it is.
Actually, the competence (or coverage) of a CBR system refers to its cabability
to solve target problems. That’s why, the notion of case competence is widely
used, also, within the field of Case Base Maintenance (CBM), where most of the
CBM policies ([8], [16], [17], [18], [19], etc.) do their best to maintain the most
competent cases. However, this key evaluation criterion is difficult to predict
since the true character of competence within CBR as well as its sources are not
well comprehensible [1]. Moreover, even if we could estimate the competence of
an individual case, the estimation of the global case base competence remains



complex because of the lack of clarity towards the relationship between local and
global competence contribution. By this way, we find several research, over the
years, that are interested on case base competence notion, where some of them
offer case competence models for CBs evaluation. Typically, case competence
models divide cases into competence groups, then estimate cases coverage using
similarity measures. Their theoretical contributions are obviously well defended.
However, the embedded imperfection in cases was totally neglected within this
area, especially that each case refers to one real world experience. Evidently,
events and situations occured within our world are full of uncertainty and im-
precision. Therefore, we propose, in this paper, a new case competence model,
called CEC-Model encoding ”Coverage & Evidential Clustering based Model”,
that aims to accurately evaluate the overall case base coverage using the belief
function theory [2] [3]. This theory offers all the necessary tools to manage all the
levels of uncertainty in cases. Through Fig. 1, it is straighforward to show the
different fields intersection leading to build and construct our new competence
model. In a nutshell, CEC-Model divides the case base into groups using the
evidential clustering technique called ECM [6]. Then, it uses a distance within
the belief functions framework that leads, ultimately, to estimate the global cov-
erage of the case base. Like the competence model on which we are based [1] to
estimate the relation between local case competence and global CB competence,
our CEC-Model makes some assumption; First, we assume that the set of cases
in the CB presents a representative sample of the set of target problems. Second,
we assume that the problem space is regular, where we are based on the CBR
hypothesis ”Similar problems have similar solutions”.
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Belief Function Theory
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Fig. 1: Towards CEC-model

The reminder of this paper is organized as follows. In section 2, we overview
the related work of the Competence concept by offering its foundation, defining



the basic factors affecting the case base competence, and presenting some com-
petence models. Section 3 offers the basic concepts of the belief function theory
as well as the used evidential tools for building our model. Throughout Section
4, our new CEC-Model is described in details through its different steps. Finally,
our model is supported in Section 5 using an experimental analysis.

2 General Outlook on Case-Base Competence

A case base is said to be ”effective” when it is able to offer solutions efficiently and
successfully to solve as many target problems as possible. To evaluate the case
base effectiveness for CBR systems, two criteria are generally used: Performance
(Definition 1) and Competence (Definition 2).

Definition 1. The Performance is the answer time that is necessary to generate
a solution to a target problem.

Definition 2. The Competence is the range of target problems that can be suc-
cessfully solved.

Contrary to the competence, the performance criterion for a case base can be
straightforward measured. Hence, we will focus, in the following of this Section,
on the competence criterion by presenting its foundations (Subsection 2.1), its
influencing factors (Subsection 2.2) and some existing models to predict the
overall case base competence (Subsection 2.3).

2.1 Case Competence Foundations

When we talk about case competence, two main concepts arise: case Coverage
(Definition 3) and case Reachability (Definition 4).

Definition 3. The coverage of one case is the set of target problems that this
case is able to solve. It is defined formally as follows [8]:

CB = {c1, .., cn}, c ∈ CB,Coverage(c) = {c′ ∈ CB/Solves(c, c′)} (1)

where CB presents the case base and Solves(c, c′) is the fact that the case c is
able to solve the case c′.

Definition 4. The reachability of a target problem is the set of cases that can
be used to solve it. It is defined such that [8]:

CB = {c1, .., cn}, c ∈ CB,Reachability(c) = {c′ ∈ CB/Solves(c′, c)} (2)

These two latter definitions are based on the assumption that the case base
presents the representative sample of all target problems. In fact, it is impossible



in the reality to define and fix the entire set of all the target problems. Besides,
in that step, we are not intended to explicitly define the predicate ”Solves”.

For the sake of clarity regarding Definitions 3 and 4, we illustrate in Fig. 2 an
example. Let c1, c2 and c3 three cases, and their coverage are labeled with 1, 2
and 3 respectively. Therefore, Coverage(c2) = {c2, c3} and Reachability(c2) =
{c2, c1}. Logically, we assign more interest to cases having a large coverage an
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Fig. 2: Concepts of cases Coverage & Reachability

a small rechability set. In this paper, we restrict the competence of the case
base to its overall coverage. However, the interaction between local competences
is necessary to well estimate the entire case base’s coverage. Moreover, several
factors can influence the prediction of this criterion.

2.2 Basic factors influencing case base competence

Building an appropriate competence model requires an awareness on the different
factors influencing CB’s competence as well as understanding how they affect it.
Actually, several factors have been studied in the literature. On the one hand,
we find statistical properties such that the CB’s size, distribution and density
of cases [7] [9] [10]. On the other hand, the competence is naturally relied to
the problem solving properties such as vocabulary, similarity and adaptation
knowledge [11] [12], as well as individual cases coverage [1] [7] [13].
Similarly to some other research [1] [9], we focus in this paper to understand
and measure this competence through case base size and density factors as well
as the coverage concept.

2.3 Case Competence Modeling

In the literature, various ways are proposed to model cases competence in order
to evaluate the ability of case bases on problem solving. Besides, these models can
be the basis of numerous case base maintenance approaches. Hence, we present
in what follows three among the most known case competence models.



Model 1: Case Competence Categories [7]: Based on the notions of cover-
age and reachability, Smyth & Keane classify cases according to their competence
characterization into four types, where the following Definitions arise.

Definition 5. Pivotal cases represent single way to solve a specific problem.
They are defined such that:

Pivot(c) iff Reachability(c)− {c} = ∅ (3)

Definition 6. Auxiliary cases are totally subsumed by other cases. They do not
influence the global competence at all. Hence, they are defined such that:

Auxiliary(c) iff ∃c′ ∈ Reachability(c)− {c}/
Coverage(c) ⊂ Coverage(c′)

(4)

Definition 7. Spanning cases do not directly influence the CB competence.
They link together regions covered by the two previous types of cases (Pivotal
and Auxiliary).

Definition 8. Support cases exist in groups to support an idea. Each support
case in a support group provides the same coverage as the other cases belonging
to the same group. They are formally defined such that:

Support(c) iff ∃c′ ∈ Reachability(c)−{c}/Coverage(c′) ⊆ Coverage(c) (5)

For further clarification, and by returning to Fig. 2, we mention according to
the four previous Definitions that c1 represents a Pivotal case, c2 presents a
Spanning case, and c3 is an Auxiliary case. Concerning Support cases, Fig. 3
illustrates three examples of them that cover the same space.

Model 2: Coverage model based on Mahalanobis Distance and Clus-
tering (CMDC) [14]: Based on the idea that the CB’s competence is pro-
portional to individual case’s contribution, CMDC defines the overall case base
competence as follows:

Comp%(CB) = |1−
∑K
j=1

∑N
i=1 Cov(cij)

SizeCB
| (6)

where K is the number of groups building the CB, N is the size of the jth group,
and Cov(cij) represents the coverage of case i towards cluster (group) j.

After applying the DBSCAN-GM algorithm [15] for clustering cases belong-
ing to the CB, this model proposes a classification of cases into three types in
order to calculate Cov(cij) used in Equation 6. The first type concerns Noisy
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Fig. 3: Example of Support cases towards one Support group

cases where their coverage is null since they are considered as a distortion of
values. The second type concerns a closely group of cases existing on the core of
one cluster and named Similar cases. The coverage of Similar cases is equal to
their cardinality within each group. Finally, Internal cases represent cases that
are situated in the border of each cluster. They only cover themselves and their
coverage is equal to one (See Fig. 4).

Fig. 4: Cases types defined by CMDC model [14]

Actually, this model was the basis of several policies aiming to maintain case
bases for CBR systems, such that [16], [18], [19], etc.

Model 3: Smyth & McKenna (S&M) model [1]: Basically, S&M model
tries to estimate the competence by finding and encoding the crucial relationship
between individual case (local) and the entire CB (global) competence. To do,
S&M identifies the fundamental unit of competence as the competence group of
cases.In fact, within a very traditional point of view, this unit was ”the case”
only. To recognize these groups, authors in [1] define a competence group as the



set of cases that have a shared coverage. Formally, this is defined such that:

For G = {c1, .., cp} ⊆ CB,CompetenceGroup(G) iff

∀ci ∈ G,∃cj ∈ G− {ci} : SharedCoverage(ci, cj)

∧∀ck ∈ CB −G,¬∃cl ∈ G : SharedCoverage(ck, cl)

(7)

where

For c1, c2 ∈ CB
SharedCoverage(c1, c2) iff Coverage(c1) ∩ Coverage(c2) 6= ∅

(8)

To ease the concept of competence group, we indicate using Fig. 2 that the
different cases c1, c2 and c3 present only one coverage group since they share
their coverage (similarly for Fig. 3).

Furthermore, S&M model allocate a considerable interest to identify Cover-
age groups since the larger group coverage means a larger ability to solve target
problems. By this way, authors in [1] affirm that it is mainly depending on the
size and density of cases. Obviously, the first factor is straightforward calculated.
However, the density of cases is defined such that:

GroupDensity(G) =

∑
c∈G CaseDensity(c,G)

|G|
(9)

where CaseDensity(c,G) presents the local density of the case c within the
group G ⊂ CB, and |G| is the number of cases belonging to G.
Since the coverage of a group must be directly proportional to its size and in-
versely proportional to its density, the current model defines it as follows:

GroupCoverage(G) = 1 + [ |G| (1−GroupDensity(G)) ] (10)

Undoubtedly, the proposed contributions to model cases competence are in-
teresting. However, they remain limited by their disability to manage uncer-
tainty within knowledge, especially for real experiences (cases). The next Section
presents, therefore, a powerful tool used for this matter called the Belief function
theory.

3 Belief Function Theory: Basic Concepts

The belief function theory [2] [3], also known by Evidence theory or Dempster-
Shafer theory, is a theoretical framework for reasoning under partial and unreli-
able (uncertain and imprecise) information. It was introduced by Dempster and
Shafer [2] [3], and then studied by Smets [4] [5]. As a generalization of other
uncertainty management theories [20] [21] [22], belief function theory proved to
be effective in various applications. The rest of this Section will recall the main
definitions and concepts and the used tools offered within this theory.



Let ω be a variable taking values in a finite set Ω = {w1, .., wK} named
the frame of discernment. The mass function m(.), which represents the uncer-
tainty and imprecision knowledge about the actual value of ω, is defined as an
application from the power set of Ω (2Ω) in [0, 1] and satisfying∑

A⊆Ω

m(A) = 1 (11)

Actually, m(A) can be viewed as the degree of belief committed exactly to the
subset of events A. A is called focal element if m(A) > 0, and the mass function
m is equivalent to a probability distribution when all the focal elements are
singletons. It is then called Bayesian mass function.

Since two events within the belief function theory are mainly described by
their mass functions, it is also interesting to measure the similarity and distance
between them. One of the most known and used distances between two pieces
of evidence is called the Jousselme Distance of evidence [23].
Given two pieces of evidence m1 and m2 on the same frame of discernment, the
Jousselme distance between them is defined as follows:

d(m1,m2) =

√
1

2
(−→m1 −−→m2)TD (−→m1 −−→m2) (12)

where D is a 2K × 2K matrix whose its elements are calculated as follows:

D(A,B) =

{
1 if A = B = ∅
|A∩B|
|A∪B| ∀ A,B ∈ 2Ω

(13)

To make decision towards the value of ω, the mass function m can be trans-
formed into a pignistic probability distribution BetP [4] such as:

BetP (A) =
∑
B⊆Ω

|A ∩B|
|B|

m(B)

1−m(∅)
∀A ∈ Ω (14)

Finally, the decision is made by choosing the variable with the highest BetP
value.

Concerning the evidential clustering of n objects, the partial knowledge in
that time will concern the membership of objects to clusters. Hence, the frame
of discernment Ω, in that case, contains the set of all clusters. Basically, an n×
2|Ω| credal partition matrix is generated after applying an evidential clustering
technique. It offers n mass functions that reflect the membership degrees of belief
to each clusters’ subset (partition).

The Evidential C-Means (ECM) [6] presents one of the most known evidential
clustering techniques. It takes as input the set of n objects and the number K
of clusters, and generates as output the credal partition (matrix M) as well as
the prototype (center) of each partition (matrix V ). Like almost of clustering
methods, ECM aims to create dense groups by minimizing distances belonging



to the same cluster and maximize those belonging to different ones. To do, ECM
method intend to minimize the following objective function:

JECM (M,V ) =

n∑
i=1

∑
j/Aj 6=∅,Aj⊆Ω

|Aj |αmβ
ijd

2
ij +

n∑
i=1

δ2mβ
i∅ (15)

subject to ∑
j/Aj⊆Ω,Aj 6=∅

mij +mi∅ = 1 ∀i = 1...n (16)

where dij represents the euclidean distance between the object i and the center
of the partition j, the parameter α controls the degree of penalization allocated
to partitions with high cardinality, and δ and β are two parameters aiming to
treat noisy objects.
To minimize the above objective function, an alternation between two steps is
performed. The first one consists of supposing that the matrix of centers V is
fixed and solving Equation 15 constrained by Equation 16 using the Lagrangian
technique. Then, the second phase consists to fix the credal partition M and
minimize the unconstrained problem defined only by Equation 15.

During this Section, we only focused on the necessary background within the
belief function framework that allow to understand our contribution presented
hereafter. More details can be found in [2], [3], [4], [5], [6], and [23].

4 Coverage & Evidential Clustering based Model
(CEC-Model)

The purpose of this Section is to present our new case competence model ded-
icated for this paper. This model is named CEC-Model and able to manage
uncertainty within the base knowledge. It also uses the coverage concept as well
as the mathematical relation between the competence of a group and the local
competence contribution of its individual cases [1] to provide as output a predic-
tion of the global case base competence. Our model can serve, on the one hand,
at evaluating the quality of any given case base. On the other hand, it can be
the basis for maintaining case bases by finding, for instance, the combination of
cases that offer a maximum rate of global competence offered by CEC-Model.
For the sake of simplicity, the global process followed by our model to reach
its objective in estimating the CB competence rate while managing uncertainty
is shown in Fig. 5. First of all, we perform the evidential clustering technique
to offer a credal partition of cases that allows to manage uncertainty not only
towards the membership of cases to clusters, but also towards their membership
to all possible subsets of clusters (partitions). At the second level, the credal
partition generated during Step 1, which is a way to model cases membership
uncertainty, will be used then, during Step 2, to measure the similarity between
cases. Besides, it will be transformed using the pignistic probability (Equation
14), during Step 3, to make the decision about the membership of cases to groups.
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Fig. 5: CEC-Model steps for CB’s competence estimation

The outcome of both Steps 2 and 3 will serve then to calculate the individual
cases densities regarding their groups, the density rate of each group, and the
coverage of the different groups. Finally, the global competence rate of the over-
all case base defines the purpose of Step 5, where it is estimated by the average
of normalized coverages of all groups composing the case base. In what follows,
within the reminder of this Section, we will present in more details every step
composing our CEC-Model.

4.1 Step 1: Group cases using evidential clustering

In our first Step, we aim to group cases according to their similarities. The
more two cases are similar, the more they are able to cover each others. In fact,
similarly to several research in competence modeling [1] [14], the idea is that
the coverage of one case is defined by the range of cases that are similar to it.
Hence, applying a clustering technique based on distances computing offers a
simple and reasonable solution to devise the case base into a number of coverage
groups. However, the amount of imperfection that is commonly presented in
cases knowledge do not allow us to be certain about the membership of cases to
the different clusters. For that reason, we make use of the belief function theory
and the evidential clustering, more accurately the Evidential C-Means (ECM)
technique (see Subsection 3). The idea consists on creating coverage groups with
degrees of belief. Finally, the output of this Step is a credal partition containing
n pieces of evidence mi describing the belief’s degrees of membership.

4.2 Step 2: Measure similarity between cases within the evidential
framework

At this Step, we aim to take advantage of the offered credal partition to measure
the similarities between every couple of cases. A case is therefore characterized by



its mass function that defines the membership degrees of belief to every partition
of groups. For instance, given three groups G1, G2 and G3, the mass function of
case ci is presented as a vector where it has the following form:

mi = [mi(∅) mi(G1) mi(G2) mi(G1, G2)

mi(G3) mi(G1, G3) mi(G2, G3) mi(Ω)]
(17)

Let us remind that the sum of all its elements are equal to one.
Now, we have to calculate distances between every two cases through their

corresponding pieces of evidence. To do, we choose to use a well known powerful
tool within the belief functions community called Jousselme Distance [23], which
offers results in [0, 1]. Therefore, we build an n×n distances matrix that we called
CredDist, where CredDist(ci, cj) is the result of Jousselme Distance between
mi and mj using Equations 12 and 13.
Then, the similarity matrix CredSim is generated as follows:

CredSim = Ones− CredDist (18)

where Ones is an n× n matrix filled by 1.

4.3 Step 3: Decide the membership of cases to groups

After computing cases distances with taking into account the uncertainty pre-
sented in cases, we move on now from the credal level to the pignistic level where
we have to make decision about the membership of cases to the different groups.
To do, we transform the mass function of each case to a pignistic probability
using Equation 14. Then, we put each case in the group offering the highest
pignistic probability value.

4.4 Step 4: Estimate the coverage of each group

The challenge of this step consists on finding the best configuration to model
the relationship between a local (individual case) and the global (entire CB)
competence contributions. As mentioned in Subsection 2.2, several factors are
affecting the interaction between them. For our model, and based on [1], the
combination to build the global competence properties of case bases is influenced
by two main factors: Size and Density.
As specified in the Introduction, we assume that the problem space is regular.
Hence, cases with high density imply a high degree of mutual similarity. Per
contra, sparse cases present low degree of mutual similarity. Consequently, our
model calculate the local density of a case c towards the group G ⊆ CB in which
it belongs as follows:

CaseDensity(c,G) =

∑
c′∈G−{c} CredSim(c, c′)

|G| − 1
(19)

Afterwards, we calculate the density of each group as the average of all its
corresponding cases density using Equation 9.



Ultimately, and based on [1], we define the relationship between the density and
the coverage of each group. In fact, dense groups cover smaller target problems
space (Density factor). In contrast, groups with higher size cover larger problem
space (Size factor). Consequently, we calculate the coverage of each group using
Equation 10.

4.5 Step 5: Define the global case base competence rate

Last but not least, we aim at estimating the global competence of case bases
based on groups coverage computed during the previous step. In S&M model
[1], the global competence is calculated as the sum of all the coverage measure-
ments of groups building the CB. However, we aim in our model to estimate the
global competence as a percentage. Then, the proposed global competence rate
is calculated as follows:

Comp(CB)% =

∑|Ω|
k=1GroupCovn(Gk)

|Ω|
(20)

where GroupCovn(Gk) is the normalized coverage of the kth group, defined such
that:

GroupCovn(Gk) =
GroupCoverage(Gk)− 1

|Gk|
(21)

The demonstration that gives birth to groups coverage normalization formula
(and then the global CB competence rate) is presented as follows:
Let Ω be the frame of discernment containing K groups Gk. CB = {c1, .., cn} is
then divided into |Ω| groups:
We have: 0 ≤ CredSim(c, ci) ≤ 1

0 ≤
∑
ci∈G−{c} CredSim(c, ci) ≤ |G| − 1

0 ≤
∑
ci∈G−{c}

CredSim(c,ci)

|G|−1 ≤ 1

0 ≤ CaseDensity(c,G) ≤ 1

0 ≤
∑
c∈G CaseDensity(c,G)

|G| ≤ 1

0 ≤ GroupDensity(G) ≤ 1
1 ≤ 1 + [|G|(1−GroupDensity(G))] ≤ 1 + |G|
1 ≤ GroupCoverage(G) ≤ 1 + |G|
0 ≤ GroupCoverage(G)−1

|G| ≤ 1

0 ≤ GroupCovn(G) ≤ 1
0 ≤

∑
G∈Ω GroupCovn(G) ≤ |Ω|

0 ≤
∑
G∈Ω GroupCovn(G)

|Ω| ≤ 1

0 ≤ Comp(CB) ≤ 1

5 Experimental Analysis

During the previous Sections, we reviewed the main definitions for competence
and coverage modeling, and we proposed a novel model for case bases com-
petence estimation within the frame of belief function theory and evidential



clustering. In this Section, we need to support our model using an empirical ev-
idences. The idea is to demonstrate experimentally that our model competence
rate predictions are sufficiently match to the actual competence measurements
such as the Percentage of Correct Classification (accuracy). Furthermore, it is
more reasonable to define the correlation between their values than focusing on
which criterion has the highest values. To start, we present the setup of experi-
mentation. Then, we show how to proceed to support our CEC-Model.

5.1 Experimental Setup

Our CEC-Model algorithm was developed using Matlab R2015a, and tests were
performed on real data sets taken from UCI repository [24]. In this paper, we
share results offered by three data sets 1 that are described in Table 1. In fact,

Table 1: UCI data sets characteristics

Case base Attributes Instances Classes Class distribution

Mammographic Mass 6 961 2 516/445
Ionosphere 34 351 2 226/125
Iris 4 150 3 50/50/50

within the context of CBR, attributes are considered as problems description and
the class characterizes their solutions. Besides, default values of the ECM algo-
rithm are taken, and the number of clusters is equal to the number of solutions
in the CB. Since we will support our model basing on the accuracy criterion, we
measure it by applying 10-folds cross validation using the following formula:

PCC(%) =
Number of correct classifications

Total number of classifications
× 100 (22)

where we used the 1-Nearest Neighbor as a classification method.

5.2 Evaluation criteria

Our experimental study is divided into two parts, where each one carries on one
evaluation criterion. Firstly, we are interested to know the correlation between
the actual CB’s competence (Accuracy) and the estimated global competence
rates predicted by our CEC-Model. The different values are the results of a
randomly incremental evolution of case bases. Actually, the higher a positive
correlation, the more our model is supported. Hence, we measure this correlation
using the Pearson’s correlation coefficient [25] which is bounded between −1 and
1, and defined as follows:

r =

∑n
i=1(ai − a)(bi − b)√∑n

i=1 (ai − a)2
√∑n

i=1 (bi − b)2
(23)

1 Other CBs are offering similar results but are not presented here due to lack of space.



where ai (respectively bi) are the values of the actual CB’s competence (respec-
tively the predicted global competence by CEC-Model), and a (respectively b)
presents the mean value of ai (respectively bi) measurements.

During the second part of our experimentation, we opt to measure the error
rate between CEC-Model estimated competence and the PCC values, such that:

Error(%) =
|EstimatedComp− PCC|

PCC
× 100 (24)

5.3 Results and discussion

For the first part of our experimentation, results are shown in Fig. 6, where the
actual and estimated competence are plotted against the size of three different
case bases. These results provide a high support in favor of our CEC-Model.
In fact, it seems to be an almost perfect closely relationship between every two
curves (problem-solving accuracy and CB’s competence), and hence a strong
correlation between them. For the sake of precision, we further measured this
correlation for every CB using Equation 23 and we found high results reflecting
a good match between the predicted and the true competence (0.91 for Mam-
mographic Mass, 0.8 for Ionosphere, and 0.83 for Iris). Let us remind that the
closer the value to one, the higher the correlation is.
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Fig. 6: Comparing estimated competence using our CEC-Model to the CB’s accuracy
for Mammographic Mass, Ionosphere, and Iris data sets

In the second results part, we note from Table 2 that our CEC-Model of-
fers close competence estimation to the actual accuracy regarding the totality



of the different three tested case bases. Actually, this closeness was measured
formally using the error rate criterion (Equation 24), where competitive results
were provided comparing to those offered by S&M [1] and CMDC [14] models.
For instance, we offered the minimum error rate for Iris data set which is esti-
mated to 0.8%. Besides, the error rate for Mammographic Mass is estimated to
environ 5.9%, where it is measured as 21.1% with S&M and environ 13.8% with
CMDC (S&M and CMDC models are reviewed in Subsection 2.3).

Table 2: Results in term of Error rate (%)

Case base S&M CMDC CEC-Model

Mammographic Mass 21.10 13.820 5.928
Ionosphere 3.544 0.287 1.779
Iris 4.010 0.927 0.807

6 Conclusion

The evaluation of knowledge resources are regularly a concern of widespread in-
terest in knowledge management systems. In CBR systems, modeling case base
competence with managing uncertainty within knowledge is essential to find the
real coverage of cases. In this paper, we proposed a new competence model based
on a previous work [1] with joining the ability to manage all levels of cases mem-
bership uncertainty towards groups building the case base, as well as to satisfy
the need of imperfection handling when measure similarities and cases density.
To support our model, we tested on data sets from UCI repository [24] with vary-
ing their size. Actually, competence estimations offered by our model are quite
closely to the actual competence measurement (Accuracy) with a relatively high
positive correlation between them.
Since the competence of CBR systems case bases presents the basis of the Case
Base Maintenance (CBM) policies, we can, as future work, use our new compe-
tence model CEC-Model at the aim of maintaining CBs in order to well detect
useless cases for target problems resolution.
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