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Abstract. The maintenance of Case-Based Reasoning (CBR) systems
has attracted increasing interest within current research since they proved
high-quality results in different real-world domains. This kind of systems
stores previous experiences, which are described by a vocabulary (e.g., at-
tributes), incrementally in a case base. Actually, the vocabulary presents
one among the most important maintenance targets, since it highly con-
tributes in providing accurate solutions and in improving systems’ per-
formance, especially within high-dimensional domains. However, there is
no policy, in the literature, that offers the ability to exploit prior knowl-
edge (e.g., given by domain-experts) during the maintenance of features
describing cases. In this paper, we propose a flexible policy for the most
relevant attribute selection based on the attribute clustering concept.
This new policy is able, on the one hand, to manage uncertainty using
the belief function theory based tools, and on the other hand, to make
use of domain-experts knowledge in form of pairwise constraints: If two
attributes offer the same information without any added-value, then a
Must-link constraint between them is generated. Otherwise, if there is
no relation between them and they offer different information, then a
Cannot-link constraint between them is created.

Keywords: Case-Based Reasoning · Vocabulary Maintenance · Belief
Function Theory · Uncertainty · Constrained Attribute Clustering.

1 Introduction

Case-Based Reasoning is a methodology of problem-solving that recalls past
experiences to solve new problems. It is mainly based on the hypothesis that
similar problems have similar solutions with offering the possibility to make
some adaptations to the provided solution in order to perfectly match the new
problem’s characterizations. After the revision of every provided solution, the
problem-solution couple is retained as a new case within the Case Base (CB)
[1]. Over the last three decades, CBR systems have been more and more utilized
and applied in several areas such as medicine [2], finance [3], and ecology [4].
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Obviously, this can only indicate its strength, success and adequacy even with
weak-understandable domains. Since CBR systems are now commercially used,
the need of their maintenance presents a key issue for overtime success. Hence,
more and more research focus on maintaining the different knowlege contain-
ers of CBR systems. Actually, there are four knowledge containers, as defined
in [5], that may be maintained [6] within a CBR system: (1) Case Base, (2)
Adaptation, (3) Similarity, and (4) Vocabulary. Obviously, the CB is the ele-
mentary container of any CBR system, that several research aimed to maintain
[7]. However, the vocabulary container also presents one among the most impor-
tant maintenance targets, since it can seen as the basis of the different CBR’s
steps to offer solutions. For Structural CBR systems (SCBR), we can restrict
the vocabulary knowledge to the set of attributes describing cases. By this way,
to maintain vocabulary for CBR systems, we are faced to two main challenges:
First, the elimination of redundant attributes in order to improve CBR systems
performance, especially within large-scale domains. Second, the removal of noisy
attributes so as to help the CBR system to be conducted to the most accurate
solution. To tackle these challenges in the best way possible, a crucial need of
uncertainty management within CBR systems knowledge arises. In fact, cases
stored in every CB involve real-world experiences which are never exact. Hence,
they cause ignorance and overlapping data regions during learning. This uncer-
tainty within knowledge is managed only in some research, in the literature,
that focus on maintaining CBR systems vocabulary via the automatic analysis
of their content. However, these works suffer from their disability to aid their
automatic maintaining mechanism when prior knowledge regarding attributes,
which can be provided by domain experts, are available. This limitation can be
tackled through semi-supervised learning of features, more precisely the semi-
supervised clustering. It consists, in our settings, at using the pairwise Must-link
and Cannot-link constraints on some instances to help the used unsupervised
attributes clustering. Since we intend to learn on features, Must-link constraint3

between two features is generated when a prior knowledge affirms that they offer
almost the same information. On the contrary, a Cannot-link constraint4 is cre-
ated when prior knowledge is available to affirm that there is no relation between
them. Based on these ideas, we build our new vocabulary maintenance policy
named CEVM, for ”Constrained Evidential Vocabulary Maintenance policy for
CBR systems”, which manages uncertainty within the framework of belief func-
tion theory [14, 15], and allows the exploitation of experts knowledge, related to
attributes relations, using the constrained evidential dissimilarity-based cluster-
ing technique called CEVCLUS [16].
The remaining of this paper is organized as follows. Section 2 is dedicated to de-
fine the vocabulary as a maintenance target in CBR systems with explaining our
motivation. The related background on the belief function theory is presented
in Section 3. Throughout Section 4, we detail our new established policy aiming
at selecting only the most relevant attributes for cases description. We show

3 Two attributes are surely belonging to the same cluster.
4 Two attributes cannot belong to the same cluster.
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our experimental study as well as our proposed modes for artificial constraints
generation in Section 5. Finally, the Section 6 is dedicated for the conclusion.

2 Vocabulary maintenance for CBR systems

Obviously, CBR systems are made to operate for a long period of time. How-
ever, the change of the context along with the incremental learning through
experiences give rise to the need of maintaining the vocabulary that describes
cases.

2.1 The vocabulary as a knowledge container in a CBR system

The vocabulary knowledge is presented and modeled in [5] as the basis of all
the other three knowledge containers. In fact, its definition depends mainly on
the knowledge source’s nature. In this paper, we focus on attribute-value data.
However, in non-structural CBR system, more sophisticated methods may be
included within the vocabulary container. For our current purpose, we restrict
the vocabulary knowledge container to the set of attributes.

2.2 The vocabulary as a maintenance target

Every encountered experience in our real life can be described with an infinite
number of features. However, only some of them are useful to provide the ac-
curate solution for one problem. As already mentioned, there are basically two
types of attributes that should be removed to maintain cases’ vocabulary. On the
one hand, the set of noisy attributes that their removal from the vocabulary con-
ducts to the improvement of the CBR system’s decision making. On the other
hand, the set of redundant attributes that we define by the ensemble of high
correlated features. Actually, we call them redundant since they offer the same
information, and the removal of one of them does not affect the whole CBR sys-
tem’s competence in solving new problems, but it may improve its performance
in term of response time. Within the same road, some works, such in [8–10],
target the vocabulary of CBR systems for maintenance. They are mainly based
on selecting the most relevant features, where we cite, for instance, the ReliefF
method [11] as one among the baselines of features selection methods. However,
existing policies suffer from some weaknesses towards the concepts shown in the
following Subsections, where we present our motivation.

2.3 Attribute clustering and uncertainty management during
vocabulary maintenance

Regrouping attributes according to some proximity data between them can be
reached through the attribute clustering concept [12, 13]. Actually, applying this
concept during maintaining vocabulary leads to preserve relations between fea-
tures and offers a high amount of flexibility to the CBR framework, where we
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can substitute every attribute by any other one belonging to the same cluster.
Similarly to object clustering, we can consider the set of attributes as the set of
objects, and regroup them in such a way that features belong to the same cluster
are somehow similar. In contrast, attributes belonging to different clusters are
dissimilar. However, uncertainty within attributes clustering has to be managed
since attributes-values refer to the description of real-world experiences that are
full of uncertainty, vagueness, and imprecision. Further, as mentioned in [18], the
vocabulary presents one among the origins of uncertainty in CBR framework.
That’s why, we make use of one among the most powerful tools for this matter
called the belief function theory [14, 15], where its basic concepts are shown in
Section 3.

2.4 Exploiting prior knowledge during vocabulary maintenance

Usually, research that are interested on knowledge extraction learn via the auto-
matic analysis of available data content without giving the possibility to domain-
experts or available prior knowledge to intervene inside this process. Within
Case-Based Reasoning framework, systems are generally solving problems within
some specific domain, where its experts may provide knowledge that are expen-
sively extracted by machine learning methods. Consequently, it is greatly use-
ful to aid the automatic maintenance process through the exploitation of prior
knowledge in form of Must-Link and Cannot-Link constraints. This can be done,
for instance, inside a constrained machine learning technique.

3 Belief function theory

To handle uncertainty during the decision making process, we use the belief
function theory [14, 15], called also Dempster-Shafer theory or Evidence the-
ory, which is a powerful mathematical framework used to deal with partial and
unreliable information in many fields. We show, during this Section, the funda-
mental concepts of this theory as well as the evidential clustering and the credal
partition concepts.

3.1 Fundamental concepts

A belief function model is originally defined by a discrete and finite set of el-
ementary events called the frame of discernment Θ of the problem taken into
account. The set 2Θ is called the power set and contains all the possible subsets
of Θ. The basic belief mass (bbm) mΘ is a mapping function from 2Θ to [0, 1] that
assigns to every subset A of Θ a degree of belief reflecting the partial knowledge
taken by a variable y defined on Θ, and verifies the constraint

∑
A⊆Θm(A) = 1.

A mass function m is normalized if m(∅) = 0. On the opposite case, the interpre-
tation of the mass assigned to the empty set partition consists at measuring the
degree of belief towards the hypothesis saying that y does not belong to Θ. This
amount of belief can be useful in clustering to identify noises [16]. From a given
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mass function m, the plausibility function is defined, to measure the maximum
amount of belief supporting the different subsets in Θ, as follows:

pl(A) =
∑

B∩A6=∅

m(B) ∀A ⊆ Θ (1)

Given two bbms m1 and m2, defined in the same frame of discernment Θ, the
following Equation, proposed in [15], presents one among the most known mea-
surements that aim to quantify the degree of conflict between them such that:

κ =
∑
A∩B

m1(A) m2(B) (2)

Authors in [17] proved that if two bbms represent evidence regarding two distinct
questions and defined in the same frameΘ, then the plausibility that they acquire
the same answer is equal to 1− κ.

3.2 Evidential clustering and Credal partition

We call Evidential Clustering the task of regrouping objects5, according to some
attribute-based/dissimilarity-based data, within the frame of belief function the-
ory. In an evidential clustering context, the frame of discernment Θ defines the
set of a finite number K of clusters. Besides, the uncertainty regarding the mem-
bership of an object oi to the different clusters is modeled by a bbm mi on Θ. If
we have n objects, the credal partition is, therefore, the n-tuple composed by n
mass functions, such that M = (m1, ...,mn) [17]. Generally, M is generated after
applying an evidential clustering technique to regroup a set of objects according
to their similarity while managing the uncertainty in their membership to all
the possible partitions of clusters. Since it quantifies uncertainty in a power set
space, the credal partition is more general than hard and soft partitions. Never-
theless, it can be converted to any one of these types [16, 17]. After generating
the credal partition, the decision about the membership may regard the cluster
having the highest pignistic probability, which is defined as follows:

BetP (ω) =
∑
ω∈A

m(A)

|A|
∀ω ∈ Θ (3)

In the case of non normalized mass functions, a preprocessing step of normal-
ization for every bbm should beforehand be applied as follows:

m∗(A) =


m(A)

1−m(∅)
if A 6= ∅

0 Otherwise
(4)

After presenting the essential background as well as our motivation, we move
on now at detailing our contribution for this paper.

5 In our context, these objects represent the set of features that describe cases.
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4 Maintaining vocabulary through evidential constrained
attribute clustering

At the aim of performing a high-quality attribute selection within a CBR sys-
tem, our new Constrained Evidential Vocabulary Maintenance policy for CBR
systems (CEVM) goes through three main steps, as shown in Fig. 1. It consists,

Case Base

n cases
p+1 attributes

Step 1: Extract Dissimilarity Data Between Attributes

Step 2: Constrained Evidential Attribute Clustering

Step 3: Attribute Maintenance

Measure the correlation

Measure the similarity

Conclude the dissimilarity

Delete noisiness

Making decision about 
attributes membership

Remove redundancy

Prior 
knowledge

Fig. 1. Steps and substeps of CEVM policy

first of all, at generating some dissimilarity data, from the CB, between at-
tributes based on the correlation between their values. Second, CEVM regroups
the set of attributes using their dissimilarities and with taking advantage of prior
knowledge. After managing uncertainty and generating the credal partition by
allowing every attribute to belong to all the partitions of clusters with a de-
gree of belief, we make decision about their membership along with removing
noisy and redundant features. More details are given during the three following
Subsections.

4.1 Step 1: Extracting attributes dissimilarity data

The notion of dissimilarity between attributes can be defined, according to the
context into account, in term of dependency, correlation, etc. To generate the
dissimilarity between attributes, three substeps are followed by our new CEVM
policy.

1. Correlation between attributes: In our context, the origins of dissimilarity
data between attributes are generated through measuring the correlation
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between their values. The idea is that if two attributes are highly corre-
lated, then they offer the same information for solving problems. We use the
Pearson’s Correlation Coefficient [19] so as to measure the linear association
between the different values ai and bi of attributes A and B respectively, as
follows:

rAB =

∑n
i=1(ai − a)(bi − b)√∑n

i=1 (ai − a)2
√∑n

i=1 (bi − b)2
(5)

where a and b are the mean values of features A and B respectively.
The set of correlations between every two features A and B gives rise to a
square relational matrix defined as R = (rAB).

2. Similarity between attributes: All the correlation values in R are bounded be-
tween −1 and 1 [19]. If rAB ' −1, then there is a high negative correlation
and a high similarity between A and B since they offer the same informa-
tion. Similarly, if rAB ' 1, then there is a high positive correlation and a
high similarity between A and B since they offer the same information for
learning. However, if rAB ' 0, then there is no correlation between them,
which makes A and B completely dissimilar. As an intuitive consequence,
we create the square similarity matrix S = (sAB) such as:

sAB = |rAB | (6)

3. Attributes dissimilarity data: After measuring the similarity between fea-
tures, it is straightforward to compute the square dissimilarity matrix D =
(dAB) such that:

dAB = 1− sAB (7)

By this way, values in D are also in the interval [0, 1].

4.2 Step 2: Constrained Evidential Attribute Clustering

When we have some background knowledge, it is so gainful to use them through-
out learning. Actually, this is the main principle of semi-supervised learning.
This step, that aims at regrouping features according to their similarity, is very
important to reach two other objectives during vocabulary maintenance. First,
managing the uncertainty in attributes membership to clusters from the complete
ignorance to the total certainty using the belief function framework. Secondly,
exploiting the prior available knowledge supplied, for instance, by the experts
of domain in which the CBR is applied. We used a constrained evidential clus-
tering method based on dissimilarity data between objects6 called Constrained
EVidential CLUStering (CEVCLUS) [16]. It is a variant of EVCLUS [17] that
is characterized by its ability to taking into account a prior knowledge in form
of two pairwise constraints: The Must-link (ML) constraint which concerns two
attributes that belong for sure to the same cluster, and the Cannot-Link (CL)

6 In our policy, it concerns dissimilarity data between attributes, which are supplied
from the previous step.
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constraint that concerns the pair of attributes that are known to belong to dis-
tinct clusters.
Given mi and mj two bbms regarding cluster-membership of attributes Ai and
Aj respectively, let plij(Θij) refers to their plausibility to belong to the same
cluster, and plij(Θij) refers to the plausibility of the complementary event. They
can be calculated as follows [16]:

plij(Θij) = 1− κij (8a)

plij(Θij) = 1−mi(∅)−mj(∅) +mi(∅) mj(∅)−
K∑
k=1

mi({ωk})mj({ωk}) (8b)

For the sake of clarity regarding the calculation of this plausibility, let men-
tion that it consists at placing ourselves in the Cartesian product Θ2 = Θ × Θ
and combining the two vacuous extensions of mi and mj [17]. If the resulted
combination is denoted by mij , then plij can be computed through mij using
Equation 1.

To construct the credal partition M , the non-constrained EVCLUS [17] al-
gorithm minimizes a stress function, using a gradient based algorithm, similar
to:

J(M) = η
∑
i<j

(κij − δij)2 (9)

where η = (
∑
i<j δ

2
ij)
−1, and δij = ϕ(dij), with ϕ is an increasing function such

as ϕ(d) = 1 − exp(−γd2). γ can be calculated as −logα/d20, with a recommen-
dation to fix α to 0.05 and d0, which determines the size of each class, can be
set to some quantile of the dissimilarities in D.

The principle of the previous stress function is explained by Equation 8a. It
means that if two attributes are too far in term of distance, then they should have
a low plausibility to belong to the same cluster, and a large degree of conflict. In
our context, if we have prior knowledge that attributes Ai and Aj surely belong
to different clusters, then the constraints plij(Θij) = 1 and plij(Θij) = 0 are
imposed. In contrast, if prior knowledge affirm that they belong to the same
cluster, then the constraints plij(Θij) = 0 and plij(Θij) = 1 are created. By
this way, the CEVCLUS algorithm minimizes, using an iterative gradient-based
optimization procedure, the following cost function composed by the sum of
EVCLUS’s stress function [17] and a penalization term:

JC(M) = stress+
ξ

2(|ML|+ |CL|)
(JML + JCL), (10)

with

JML =
∑

(i,j)∈ML

plij(Θij) + 1− plij(Θij), (11a)

JCL =
∑

(i,j)∈CL

plij(Θij) + 1− plij(Θij), (11b)
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where ξ presents the hyper-parameter aiming at arbitrating between the stress
function and the constraints.

4.3 Step 3: Attribute maintenance

Ultimately, we reach our purpose for cases’ vocabulary maintenance through
removing noisy and redundant features, and keeping only those that are unique
and represent the different generated clusters during the previous step. As shown
in Fig. 1, this step is composed by the three following substeps:

1. Removing noisy attributes: Since the previous applied clustering method de-
votes the empty set partition for noisiness allocation, we eliminate attributes
characterized by a high belief’s assignment to the empty set partition, such
that:

Ai ∈ NA iff mi(∅) >
∑

Bj⊆Θ,Bj 6=∅

mi(Bj) (12)

where Ai represents the attribute i, and NA presents the set of all the noisy
attributes.

2. Making decision about attributes membership to clusters through the highest
pignistic probability value, using Equation 3.

3. Removing redundancy by keeping only one representative attribute for each
cluster. This idea gives an amount of flexibility to our policy towards CBR
framework: If there is a problem in selecting one representative attribute,
then we can re-select and re-flag any other attribute from the same cluster.

Example 1. Let consider some CB’s vocabulary described by four attributes A1,
A2, A3, and A4. Let us suppose, now, that the frame of discernment contains
two clusters (Θ = {cluster1, cluster2}), and the values of the credal parti-
tion M = [m1;m2;m3;m4] are given by the previous step as shown in Table
1. First, we note, from Table 1, that m2(∅) is higher than m2({cluster1}) +

Table 1. Example of credal partition values

M ∅ {cluster1} {cluster2} {cluster1, cluster2}

m1 0.05 0.75 0.15 0.05
m2 0.65 0.1 0.1 0.15
m3 0.1 0.05 0.8 0.05
m4 0.2 0.1 0.5 0.2

m2({cluster2}) +m2({cluster1, cluster2}). Then, according to Equation 12, we



10 S. Ben Ayed et al.

Table 2. Pignistic probability transformation values

cluster1 cluster2

BetP1 0.8158 0.1842
BetP2 0.5 0.5
BetP3 0.0833 0.9167
BetP4 0.25 0.75

flag A2 as a noisy attribute (A2 ∈ NA). Consequently, we update the CB’s vo-
cabulary by removing the second attribute A2. Then, we make decision about
attributes membership to clusters using BetP defined in Equation 3. Their cor-
responding pignistic probability values are shown in Table 2, from which we
can conclude that A1 belongs to cluster1, and A3 and A4 belong to cluster2.
Finally, we keep only the attribute A1 as representative of cluster1 and the at-
tribute A3 as representative of cluster2 to describe the new maintained case base
vocabulary.

5 Experimental analysis using artificial constraints

Throughout this Section, we establish our experimentation and validate our
contribution by developing two variants of our CEVM policy that differ by their
way in generating artificial constraints7.

5.1 Constraints generation strategy

Two main modes for Must-link and Cannot-link constraints generation, such in
[7], are build during our experimental analysis:

– Batch mode for constraints generation (CEVMbat): It consists at generating
simultaneously a number t of constraints (Must-link and Cannot-link). For
instance, we took t equal to 25% of the total number of attributes. We store
the list of these constraints in listConst. The activity diagram of CEVMbat

is shown in Fig. 2.

Fig. 2. Activity diagram for batch mode constraints generation

7 Calling domain-experts to generate constraints presents one among our perspectives.
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– Alternated mode for constraints generation (CEVMalt): It consists at alter-
nating between generating one constraint (Must-link or Cannot-link) and
learning, with storing each one incrementally in listConst. Similarly, the
number of constraints t is taken equal to #attributes× 25/100. Its activity
diagram is shown in Fig. 3.

Fig. 3. Activity diagram for alternate mode constraints generation

How we generate a constraint? Actually, we generate artificially a pairwise con-
straint by handling the uncertainty offered by the credal partition and the pig-
nistic probability transformation (Equation 3). The idea consists at randomly
picking two attributes Ai and Aj and behaving according to the three following
situations that may arise:

1. If ∃ a cluster ω/BetPi(ω) > Thresh and BetPj(ω) > Thresh, then generate
a Must-link constraint between the attributes Ai and Aj .

2. If ∀ clusters ωk/|BetPi(ωk)−BetPj(ωk)| > Thresh, then generate a Cannot-
link constraint between the attributes Ai and Aj .

3. Else, go back to randomly picking two attributes.

where Thresh is a threshold that aims to answer to the question: ”From which
amount of membership certainty in [0, 1], we consider that the attributes Ai and
Aj belong or not to the same cluster?”8.

5.2 Data, evaluation criteria, and experimental settings

Our new CEVM policy has been implemented using Matlab R2015a and the
default values for the different CEVCLUS [16] method’s parameters have been
taken. CEVM with its two variants have been tested on six data sets from
U.C.I Repository9 where the set of attributes are considered as the vocabulary
describing cases’ problems, and their classes refer to cases’ solutions.

In order to assess the efficiency of our new vocabulary maintenance policy,
we use the two following evaluation criteria:

8 During the experimentation, different values to set Thresh have been tested. The
best results are offered with Thresh = 0.55.

9 Sonar (SN), Ionosphere (IO), Glass (GL), BreastCancer (BC), German (GR), and
Heart (HR): https://archive.ics.uci.edu/ml/
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– The Percentage of Correct Classifications (PCC), which is defined as follows:

PCC(%) =
# Correct classifications

# Total classifications
× 100 (13)

The PCC criterion refers to the competence of CBR systems in solving new
problems.

– The Retrieval Time (RT ) Criterion, which measures the time spent to of-
fer all the solutions for the different cases instances. It may refer to the
performance of CBR systems.

To solve cases’ problems, we use the K-Nearest Neighbor (K-NN) since it presents
one among the most used machine learning techniques within the CBR frame-
work. We choose to apply 3-NN so as to avoid the effect of noisy cases during
learning. Hence, the RT criterion is exerted around that 3-NN method. To offer
the final results towards the PCC, the 10-fold cross validation technique is used.

5.3 Results and discussion

In our comparative study, as shown in Table 3, we present results offered by five
different sources where two among them present the two variants of our contri-
bution for this paper (CEVMbat and CEVMalt), and the three others present
the non maintained case base (Original-CBR), the reliefF method [11] for fea-
ture selection (ReliefF-CBR), and the non-constrained vocabulary maintenance
policy EvAttClus [8]. Results in Table 3 are offered after varying the number
of clusters, or the number of the selected attributes K, from 3 to 9. The most
convenient K for every method and every data set is chosen10.

Table 3. Accuracy and retrieval time evaluation

CB
Original-CBR ReliefF-CBR AttEvClus CEVMbat CEVMalt

PCC(%) RT(s) PCC(%) RT(s) PCC(%) RT(s) PCC(%) RT(s) PCC(%) RT(s)

1 SN 73.07 0.0642 71.15 0.0078 74.51 0.0082 74.51 0.0081 75.12 0.0079
2 IO 86.04 0.0223 84.90 0.0121 88.03 0.0085 88.03 0.0082 88.03 0.0087
3 GL 88.79 0.0141 87.38 0.0089 87.98 0.0093 88.79 0.0092 91.34 0.0081
4 BC 96.04 0.0199 96.45 0.0097 96.63 0.0097 96.63 0.0098 96.63 0.0099
5 GR 70.60 0.0319 69.60 0.0119 71.21 0.0122 71.21 0.0123 73.25 0.0121
6 HR 56.80 0.0276 59.86 0.0089 60.88 0.0081 62.78 0.0078 62.78 0.0071

In term of accuracy, both of our two variants CEVMbat and CEVMalt offer
good results comparing to the other methods as well as to the original non-
maintained case bases (Original-CBR). We note that the alternate mode for

10 ReliefF-CBR: GL and GR (K = 7); BC (K = 8); SN, IO, and HR (K = 9);
EvAttClus: IO (K = 3); HR (K = 5); BC and GR (K = 8); SN and GL (K = 9);
CEVMbat: IO (K = 3); HR (K = 4); BC and GR (K = 8); GL and SN (K = 9);
CEVMalt: IO (K = 3); HR (K = 4); GR (K = 6); GL (K = 7); SN and BC (K = 8);
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constraints generation is more efficient than the batch mode. We can conclude,
furthermore, that better results may be offered if we resort to domain experts.
In our context, both of CEVM’s variants, that are able to make use of prior
knowledge in form of constraints, have been able to maintain all the tested CBs’
vocabulary with preserving or even improving their competence in solving prob-
lems. For example, they offer PCCs equal to 88.79% and 91.34% for ”Glass” data
set, where ReliefF-CBR and AttEvClus methods offer PCCs equal to 87.38% and
87.98% respectively. These results can only be explained by CEVM strategy’s
efficiency in detecting noisy and redundant features. In term of retrieval time,
we note very competitive results offered by the four vocabulary maintaining
policies. However, a slightly higher difference in RT are noted towards Original-
CBR. For instance, ”Sonar” data set (60 attributes), moved from RT=0.0642 s
to RT=0.0079 s with CEVMalt.

6 Conclusion

In this paper, a new vocabulary maintenance method for CBR systems, called
CEVM, with two modes for artificial constraints generation (batch and alternate
mode), are proposed. In order to aid its automatic maintaining process, the pro-
posed policies CEVMbat and CEVMalt offer an ability to exploit prior knowledge
in form of pairwise constraints within a constrained clustering method. They are
also able to manage the uncertainty thanks to the framework of the belief func-
tion theory. Finally, the attribute clustering concept for feature selection makes
our new CEVM method more flexible for maintaining vocabulary within CBR
framework. During experimentation, better results are offered by CEVMalt ver-
sion than by CEVMbat.
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