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Abstract. The life cycle of Case-Based Reasoning (CBR) systems im-
plies the maintenance of their knowledge containers for reasons of effi-
ciency and competence. However, two main issues occur. First, knowl-
edge within such systems is full of uncertainty and imprecision since they
involve real-world experiences. Second, it is not obvious to choose from
the wealth of maintenance policies, available in the literature, the most
adequate one to preserve the competence towards problems’ solving. In
fact, this competence is so difficult to be actually estimated due to the
diversity of influencing factors within CBR systems. For that reasons,
we propose, in this work, an entire evaluating process that allows to as-
sess Case Base Maintenance (CBM) policies using information coming
from both a statistical measure and a competence model under the belief
function theory.

Keywords: Case-Based Reasoning · Case-Base Maintenance · Compe-
tence Evaluation · Uncertainty · Belief Function Theory · Combination

1 Introduction

Case-Based Reasoning (CBR) is a methodology of problem solving that reuses
past experiences to solve new problems according to their similarities [1]. Ev-
ery new solved problem by a CBR system is retained in a memory structure
called a Case Base (CB) to serve for future problems resolution. Although the
incremental learning of CBR systems presents a strong point, it is not free of
drawbacks. In fact, this evolution can be uncontrollable, caused by the reten-
tion of redundant and noisy cases which conduct to the degradation of systems’
problem-solving competence and performance. For those reasons, the Case Base
Maintenance (CBM) field presents the key factor’s success of CBR systems. As
has been defined in [2], ”Case-base maintenance implements policies for revising
the organization or contents (representation, domain contents, accounting infor-
mation, or implementation) of the case base in order to facilitate future reasoning
for a particular set of performance objectives”. During the last five decades [4],
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a wide range of CBM policies have been proposed, even in Machine Learning or
CBR communities, that aim to update CBs content in such a way to be per-
former and more competent to make high quality decisions. Different attempts
to classify them have been proposed in different papers [5, 6, 9, 10]. One of the
simplest categorizations consists at regrouping CBM policies by their ability for
uncertainty management (hard and soft). Condensed Nearest Neighbor (CNN)
[11] and Reduced Nearest Neighbor (RNN) [12] present the baseline of the CB
maintenance task. For the soft CBM policies, less work have been proposed,
where two are implemented within the framework of the belief function theory
which are Evidential Clustering and case Types Detection for CBM (ECTD) [6]
and Dynamic policy for CBM (DETD) [13].

After performing a maintenance task, the question that arises is whether
the original CBR is better, tantamount, or worse than the maintained one. The
intuitive answer to this question is to measure the competence of the CB before
and after maintenance. Therefore, this allows us to estimate the support degree
of the CBM policy as well as its adequacy to be applied. However, estimating the
real competence of a given CBR system in problem-solving is a very complex task
since this competence depends on many affecting factors, such as statistical and
problem solving properties [3]. To deal with these problems, available research
are even measuring the accuracy of the CBR system using a statistical measure
[6, 7] or estimating their competence using a competence model [8, 3]. Some of
them are aware of the great importance of managing uncertainty within such
knowledge since they reflect real-world situations. Consequently, we aim, in this
work, to evaluate CBM policies by offering a support/adequacy degree through
combining information coming from an accuracy measure and a competence
model. To offer high quality aggregation with managing conflict within both
sources’ information, and to deal with uncertainty within case knowledge, we
use one among the most powerful tools for uncertainty management called the
belief function theory.

The rest of the paper is organized as follows. In the next Section, we overview
the key factors that affect CBs competence and the two used ways for CBR
evaluation. Section 3 presents, then, the basics of the belief function theory,
as well as the used tools. Throughout Section 4, our CBM evaluating process
is detailed to indicate the adequacy of the used CBM policy and estimate its
support degree. In Section 5, we elaborate the experimental study on different
CBM policies and using different CBs. Finally, Section 6 concludes the paper
and proposes some future work.

2 Case Base Competence Evaluation

The competence (or coverage) of a CBR system presents the range of problems
that it can successfully solve [3]. Actually, this criterion cannot be well estimated
when we use a simple metric due to the diversity of influencing factors (Subsec-
tion 2.1). In the literature, this competence is even estimated using statistical
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measure such as the accuracy (Subsection 2.2), or using some competence model
such as CEC-Model [14] (Subsection 2.3).

2.1 Key factors affecting CBs competence

Estimating the competence of a CBR system needs an awareness regarding the
set of elements that may affect it. Actually, we note that the statistical properties
of cases within a CB is highly influencing its ability in covering the problem
space. Besides, problem-solving properties are an intuitive influencing factor of
CBR systems competence. As done in [3, 14], we can enumerate these factors
as follows: CB size∗, cases distribution∗, density of cases∗, cases vocabulary∗,
Similarity∗, and adaptation knowledge3.

2.2 Statistical Measures for CBR evaluation

Some works mention that the precision or the accuracy presents a kind of true
competence [3] with some limitations. Actually, the competence of a CBR system
can be recognized as input problem solving capability with the right solutions.
The most common and straightforward practice consists at using a test set from
the original CB and applying a classification algorithm4 to solve problems. By
this way, we can estimate the competence of the CBR system using statistical
measures such as the accuracy as the percentage of correct classifications, the
specificity as the true negative rate, and others [15].

Actually this kind of measures have to be taken into account when measuring
the competence of a CB. However, it is not sufficient since it does not cover
several affected factors. Hence, competence models are also used for this matter.

2.3 Competence Models for CBR evaluation

Various competence models have been proposed to take into account different in-
fluencing factors. For instance, we find Case Competence Categories Model [16]
which consists at dividing cases into four types so as to fix a maintenance strat-
egy to be followed. However, it is not able to tangibly and mathematically quan-
tify the global competence of the entire CB. Besides, we find Coverage model
based on Mahalanobis Distance and clustering [17], that uses a density-based
clustering method to distinguish three types of cases on which the overall CB
competence depends. However, we cannot well estimate this competence with-
out deeply studying the relation between cases. Although Smyth & McKenna
model [3] is able to deal with different influencing factors, it suffers from its dis-
ability to manage the uncertainty within the real stored situations. Hence, the
Coverage & Evidential Clustering based Model (CEC-Model) [14] has been pro-
posed in a preliminary work to tackle the problem of uncertainty management
while regrouping cases and measuring similarities. Its entire cycle is described
in Figure 1. By this way, we use the latter mentioned CEC-Model [14], and the

3 The factors identified with a star (∗) are taken into account in the current work.
4 The (k-NN) classifier is the most used within the CBR community.
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Fig. 1. CEC-Model’s process

accuracy measure, during our proposed CBM evaluation process, where both of
knowledge uncertainty and information fusion are taken into account under the
belief function theory framework.

3 Belief Function Theory: Basic concepts

The belief function theory [18, 19], called also Evidence theory, is a mathematical
framework for reasoning under partial and unreliable knowledge. This model is
basically defined by a frame of discernment Ω which represents a set of a finite
elementary events. The major strength of this theory is its ability to model all
levels of uncertainty, from the complete ignorance to the total certainty, on a
power set 2Ω which contains all the possible subsets of Ω.

The key point of this theory is the basic belief assignment (bba) m which is
defined as follows:

m : 2Ω → [0, 1]

A 7→ m(A)
(1)

with m is satisfying the following constraint:∑
A⊆Ω

m(A) = 1 (2)

It aims at allocating to every set A ∈ 2Ω a degree of belief to represent the
partial knowledge about the actual value of y defined on Ω. A mass function is
normalized if it assigns to the empty set partition null degree of belief (m(∅) = 0).
Contrariwise, the assigned amount of belief to the empty set reflects the flexibility
to consider that the value of y may not belong to Ω. The latter situation has
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usually been used during the evidential clustering to identify noisy instances [20,
21], where the frame of discernment Ω defines the set of clusters.

Actually, we often need to calculate the distance between two mass functions
defined in the same frame of discernment. To do so, Jousselme Distance [22]
presents one among the most used tools to measure distances between two pieces
of evidence. It is defined as follows:

d(m1,m2) =

√
1

2
(−→m1 −−→m2)TD (−→m1 −−→m2) (3)

where D is a square matrix of size 2K (K = |Ω|), and its elements are calculated
such that:

D(A,B) =

{
1 if A = B = ∅
|A∩B|
|A∪B| otherwise

(4)

In the framework of belief function theory, various combination rules of evi-
dence have been proposed. The conjunctive rule of combination [23] is one of the
most used ones to combine two pieces of evidence induced from two independent
and reliable sources of information. When the normality constraint (m(∅) = 0)
is imposed, we may use the Dempster’s rule of combination [18].

Ultimately, to make decision under the belief function theory, we may use
the pignistic probability transformation, denoted BetP , which is considered as
one of the best ways for decision making. If the mass function is normalized,
then BetP is defined as follows:

BetP (y) =
∑
x∈A

m(A)

|A|
(5)

where y ∈ Ω and A ⊆ Ω contains y. Since m is normalized, BetP (y) is in-
dependent of of the set A that contains y. Otherwise, a preprocessing step of
normalization should be applied [23].

4 Evidential CBM Evaluating Process

In this Section, we propose an evaluation method for Case Base Maintenance
policies that aims to estimate their support/adequacy degree for a given CBR
system. Its main idea consists at combining two mass functions reflecting their
adequacy. These mass functions are deduced from the improvement degree of
competence, extracted respectively from the CEC-Model [14] and the accuracy
criterion before and after applying the CBM policy. For the sake of clarity, a
general depict of the proposed evaluating method is shown in Figure 2.

4.1 Two-level original CBR evaluation

First of all, we aim at measuring the competence of the original non-maintained
CBR system using both the evidential competence model CEC-Model [14] to
provide CompO and the accuracy criterion to provide AccO.
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Fig. 2. The proposed CBM evaluating process

CompO estimation: The original CB denoted CBRO presents the input of
CEC-Model. As shown in Figure 1, it applies the Evidential C-Means (ECM)
[20] for cases clustering, Jousselme Distance [22] (Equations 3 and 4) for similar-
ity calculation, and pignistic probability transformation (Equation 5) for cases
membership decision. Finally, groups coverage and CB competence are estimated
through the density and size properties. The output result is bounded in [0, 1],
where the more it is near to 1 the more CBRO is considered as competent in
solving problems.

AccO estimation: The accuracy criterion is studied using 10-fold cross valida-
tion and the k-NN as a classifier (we chose to take k = 1). To be measured,
the original CB is divided into training set (Tr = 0.8 × CB) and test set
(Ts = 0.2 × CB), where Tr plays the role of the entire CB and Ts contains
the set of input problems to be solved from Tr. AccO is therefore calculated as
follows:

AccO =
#Correct Classifications on Ts

Size of Ts
(6)

4.2 Case Base Maintenance application

After measuring the Original CB competence through the two previous identified
sources (competence model and accuracy criterion), we perform on CBRO the
CBM policy to be evaluated. Actually, the main purpose of CBM policies is to
detect the subset of cases that let a high problem-solving capability. In this step,
we may consider the applied policy as a black box and we only focus on its
input (CBRO) and output, which is the maintained CB (CBRM ). By this way,
any CBM policy, in the literature, may be applied at the aim to be evaluated,
thereafter, by our evaluating process.
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4.3 Two-level maintained CBR evaluation

Once the CBM policy completes its execution, our next step consists at measur-
ing the edited CB competence using the same tools and settings as the first step
to generate CompM and AccM values.

CompM estimation: As previously done, we evaluate the CB using the CEC-
Model, whereas that time it is applied to assess the maintained CB (CBRM )
and provide CompM between 0 and 1.

AccM estimation: The testing strategy of the accuracy after the maintenance
task consists at dividing CBRO into training set Tr and test set Ts. Then, the
used CBM policy is applied on Tr to generate an edited training set TrM . Using
1-NN, the accuracy is measured through classifying Ts using TrM . Finally, AccM
is obtained by averaging ten trials values using 10-fold cross validation.

4.4 Extracting CBM adequacy knowledge from statistical measure
and competence model independently

Up to now, we have four different competence estimation values (in [0, 1]) that
come from two sources: CEC-Model and Accuracy measure. The first is measur-
ing the competence of CBRO, and the second assesses the quality of the applied
CBM task through CBRM . During this step, we highlight the improvement of
CBRO against CBRM , in terms of both competence and accuracy. Therefore,
we define these two improvements (ImpComp and ImpAcc) as follows:

ImpComp = CompM − CompO (7)

and
ImpAcc = AccM −AccO (8)

Knowing that their offered values are in [−1, 1], three distinguished situations
arise regarding Impx, where x replaces even Comp or Acc terms:

– If Impx ' 1, then a high degree of adequacy is assigned to the applied CBM
policy for the CBR system.

– If Impx ' −1, then the used CBM policy is not adequate at all for the CBR
system.

– If Impx ' 0, then we have no preference regarding the maintenance task.

4.5 Knowledge combination under the belief function theory

Based on the situations mentioned above, we build two mass functions on the
same frame of discernment which contains two events. The first consists at indi-
cating that the CBM policy is adequate to be applied on a given CBR system,
and the second presents its complementary event. Hence, this frame is defined
as follows:

Ω = {Adequate,Adequate} (9)
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By this way, the mass functions, defined on Ω, indicates the evaluation of
the CBM policy. The first mComp describes the knowledge coming from the im-
provement in terms of competence, and the second mAcc informs the knowledge
originated by the improvement in terms of accuracy. Consequently, we similarly
define them as follows:

mComp



mComp(∅) = 0

mComp(Adequate) =

{
ImpComp If ImpComp ≥ 0
0 Otherwise

mComp(Adequate) =

{
|ImpComp| If ImpComp < 0
0 Otherwise

mComp(Ω) = 1− |ImpComp|

(10)

and

mAcc



mAcc(∅) = 0

mAcc(Adequate) =

{
ImpAcc If ImpAcc ≥ 0
0 Otherwise

mAcc(Adequate) =

{
|ImpAcc| If ImpAcc < 0
0 Otherwise

mAcc(Ω) = 1− |ImpAcc|

(11)

Obviously, knowledge obtained from each source is not perfect. Hence, their
aggregation presents an interesting solution to reach more relevant information.
For that reason, we opt to synthesize the knowledge obtained in mComp and mAcc

by combining them using tools offered within the evidence theory. Since mComp

and mAcc present normalized mass functions that are defined in the same frame
of discernment Ω and induced from two distinct information sources, which are
considered to be reliable, we use the conjunctive rule of combination defined in
[23] as follows:

(mComp ∩ mAcc)(C) =


∑

A∩B=C

mComp(A)mAcc(B) If C 6= ∅,∀A,B ∈ Ω

0 Otherwise
(12)

In the current work, we are not interested in making decision regarding
whether the applied CBM policy is adequate or not, but we aim to estimate
the adequacy support degree for the applied maintenance task. To do, we inter-
pret this rate as the pignistic probability of the event ”Adequate”. Consequently,
we measure this probability using Equation 5 in such a way that:

CBM support degree = BetP (Adequate) (13)
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5 Experimentation

The following experiments aim at projecting our proposal on the maintenance
field within CBR systems and use it to evaluate this CBM policies adequacy. In
this Section, we present used data and the followed settings during implementa-
tion and tests (Subsection 5.1). Offered results and discussion are then provided
in Subsection 5.2.

5.1 Experimental setup

Our proposed evaluating process of the current work have been tested on five case
bases from UCI Machine Learning Repository5 to assess CBM policies available
in the literature. These datasets are described in Table 1 in term of size, number
of problems attributes, and number of classes or solutions.

Table 1. Case bases description

Case base # instances # attributes # solutions

1 Breast Cancer 569 32 2

2 Glass 214 9 6

3 Ionosphere 351 34 2

4 Indian 583 10 2

5 Sonar 208 60 2

For every CB, we estimate the support maintenance degree of four CBM
policies. We have chosen CNN [11] and RNN [12] as the most widely used CBM
algorithms, as well as ECTD [6] and DETD [13] as the two existing CBM policies
under the belief function theory. These methods have been developed according
to their default settings as described in their referenced papers.

5.2 Results and discussion

As regards to the study of results offered, in Table 2, by our proposed evaluating
process, some particular situations should be pointed out. If the offered support
degree is equal to 50%, then the applied CBM method was able to retain exactly
the initial competence of the CBR system. The amount above 50 represents the
capability rate of the CBM policy to improve that competence. Therefore, the
higher this value, the more the CBM policy is adequate to be applied. On the
contrary, the amount below 50 reflects the amount of competence degradation
after maintenance. In Table 2, we note that almost all the offered CBM support
degrees are in [40, 60], which means that performed CBM policies slightly reduce
or improve the CBR competence in problem-solving. Nevertheless, we remark
that CNN and RNN algorithms are not adequate to be applied on some CBs

5 https://archive.ics.uci.edu/ml/
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such as ”Ionosphere” and ”Glass” datasets (25.74% and 29.98% with CNN,
and 17.95% and 29.98% with RNN). In our sense, we may tolerate values in
[45, 50] if other evaluation criteria are improved such as CBR performance and
response time6. Ultimately, we note that the ECTD policy is the most supported

Table 2. Support degree results of some CBM policies applied on some CBs

CB CBM CompO (%) CompM (%) AccO (%) AccM (%) CBM support degree (%)

C
a
n
ce

r CNN 83.44 81.52 59.39 71.45 55.08
RNN 83.44 82.11 59.39 71.45 55.37
ECTD 83.44 83.12 59.39 74.25 57.27
DETD 83.44 83.06 59.39 70.12 55.18

G
la

ss

CNN 55.86 54.24 87.38 48.33 29.98
RNN 55.86 54.24 87.38 48.33 29.98
ECTD 55.86 55.18 87.38 89.75 50.84
DETD 55.86 54.26 87.38 73.81 42.52

Io
n
o
sp

h
er

e CNN 93.86 69.74 86.61 54.46 25.74
RNN 93.86 68.88 86.61 34.46 17.95
ECTD 93.86 89.17 86.61 86.61 47.66
DETD 93.86 88.72 86.61 77.53 43.12

In
d
ia

n

CNN 74.22 72.12 65.26 61.88 47.30
RNN 74.22 71.03 65.26 61.75 46.71
ECTD 74.22 73.68 65.26 67.15 50.68
DETD 74.22 70.13 65.26 59.87 47.05

S
o
n
a
r

CNN 78.11 73.87 81.28 64.22 39.71
RNN 78.11 72.96 81.28 62.85 39.63
ECTD 78.11 76.32 81.28 84.62 50.78
DETD 78.11 76.01 81.28 78.55 47.31

CBM method to be applied on the different tested CBs, where it offers support
values equal to 57.27% with ”Breast Cancer”, 50.84% with ”Glass”, 47.66% with
”Ionosphere”, 50.68% with ”Indian”, and 50.78% with ”Sonar”. These values
indicate that maintenance task applied by ECTD improves the performance of
almost all the original tested CBs.

6 Conclusion

In this paper, a process for evaluating Case Base Maintenance policies is pro-
posed. Its main idea consists at applying a given CBM policy and measuring the
CB competence before and after maintenance using both of an evidential com-
petence model and the statistical accuracy measure. The output of these two
sources are modeled and aggregated within the belief function framework to of-
fer a high-quality CBM support degree estimation. During the experimentation,

6 Forthcoming research work will carry out with other evaluation criteria.



Evidential CBM evaluation process 11

this process has been performed on different CBM policies and using different
datasets. As future work, we opt to intervene on the opposite sense by setting
parameters of some CBM policies at the aim of maximizing the support degree
offered by the proposed evaluation process.

References

1. Aamodt. A., Plaza. E.: Case-based reasoning: Foundational issues, methodological
variations, and system approaches. In Artificial Intelligence Communications, pp.
39-52 (1994)

2. Leake. D., Wilson. D.: Categorizing case-base maintenance: dimensions and direc-
tions, In Advances in Case-Based Reasoning, pp. 196-207 (1998)

3. Smyth, B., McKenna, E.: Modelling the competence of case-bases. In: Smyth, B.,
Cunningham, P. (eds.) EWCBR. LNCS, vol. 1488, pp. 208-220. Springer (1998)

4. Juarez, J. M., Craw, S., Lopez-Delgado, J. R., Campos, M.: Maintenance of case
bases: current algorithms after fifty years. In proceedings of the International Joint
Conferences on Artificial Intelligence, pp. 5458-5463 (2018)

5. Smiti, A., Elouedi, Z.: Overview of Maintenance for Case based Reasoning Systems.
In International Journal of Computer Applications, pp.49-56 (2011)

6. Ben Ayed. S., Elouedi. Z., Lefevre. E.: ECTD: Evidential Clustering and case Types
Detection for case base maintenance. In proceedings of the 14th International Con-
ference on Computer Systems and Applications (AICCSA), pp. 1462-1469, IEEE
(2017)

7. Ben Ayed. S., Elouedi. Z., Lefevre. E.: Exploiting Domain-Experts Knowledge
Within an Evidential Process for Case Base Maintenance. In proceedings of the
International Conference on Belief Functions, pp. 22-30, Springer, Cham (2018)

8. Smiti, A., Elouedi, Z. SCBM: soft case base maintenance method based on compe-
tence model. In Journal of Computational Science, 25, pp. 221-227 (2018)

9. Lupiani, E., Juarez, J. M., Palma, J.: Evaluating case-base maintenance algorithms.
In Knowledge-Based Systems, 67, pp. 180-194 (2014)

10. Chebel-Morello, B., Haouchine, M. K., Zerhouni, N.: Case-based maintenance:
Structuring and incrementing the case base. In Knowledge-Based Systems, 88, pp.
165-183 (2015)

11. Hart, P.: The condensed nearest neighbor rule. IEEE transactions on information
theory, 14(3), pp. 515-516 (1968)

12. Gates, G.: The reduced nearest neighbor rule. IEEE transactions on information
theory 18 (3), pp. 431-433 (1972)

13. Ben Ayed, S., Elouedi, Z., Lefevre, E.: DETD: Dynamic Policy for Case Base Main-
tenance Based on EK-NNclus Algorithm and Case Types Detection. In proceedings
of the International Conference on Information Processing and Management of Un-
certainty in Knowledge-Based Systems, pp. 370-382. Springer (2018)

14. Ben Ayed, S., Elouedi, Z., Lefevre, E.: CEC-Model: A New Competence Model for
CBR Systems Based on the Belief Function Theory. In International Conference on
Case-Based Reasoning, pp. 28-44, Springer, Cham (2018)

15. Mosqueira-Rey, E., Moret-Bonillo. V.: Validation of intelligent systems: a critical
study and a tool. In Expert Systems with Applications 18 (1), pp. 1-16 (2000)

16. Smyth, B., Keane, M.T.: Remembering to forget: a competence-preserving deletion
policy for CBR systems. The Thirteenth International Joint Conference on Artificial
Intelligence, pp. 377-382 (1995)



12 S. Ben Ayed et al.

17. Smiti, A., Elouedi, Z.: Modeling competence for case based reasoning systems using
clustering. In proceedings of the 26th International FLAIRS Conference, the Florida
Artificial Intelligence Research Society, pp. 399-404 (2013)

18. Dempster. A. P.: Upper and lower probabilities induced by a multivalued mapping.
Ann. Math. Stat. 38, pp. 325-339 (1967)

19. Shafer. G.: A Mathematical Theory of Evidence. Princeton University Press,
Princeton (1976)

20. Masson, M. H., Denœux, T.: ECM: an evidential version of the fuzzy c-means
algorithm. Pattern Recognition 41 (4), pp. 1384-1397 (2008)

21. Antoine, V., Quost, B., Masson, H. M., Denœux, T.: CECM: Constrained evidential
c-means algorithm. Computational Statistics & Data Analysis, pp. 894-914 (2012)
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