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homogeneous local density regions, and to identify noises or
outliers.

One of the most widely used density-based techniques is the
Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) algorithm [5], and that goes back to the fact that
this algorithm does not require the number of clusters as input.

However, in many data mining clustering applications,
sometimes there exist some better partitions of the data that
can be as good as the best one found. Let’s have data where
some points are located in the middle of clusters such as the
distance between each point and the other cluster’s centers is
equal. In this case, many possible solutions exist regarding the
membership of those points to the nearest cluster. Therefore,
dealing with uncertainty in clustering allows one to properly
choose the most interpretable partition from an equivalent
set of partitions. Nevertheless, crisp density-based clustering
algorithms, such as DBSCAN, fail in detecting and dealing
with uncertainty. Therefore, in order to cope with unwanted
crisp boundaries, soft density-based clustering techniques have
been defined. The fuzzy extensions of DBSCAN generate
fuzzy overlapping boundaries clusters by affecting objects to
two clusters or more with different membership degrees [6]–
[8]. A survey regarding the main crisp and fuzzy density-based
methods was reported by [9]. Among these fuzzy extensions,
we cite Soft DBSCAN [10], Fuzzy core DBSCAN [11],
Scalable fuzzy neighborhood DBSCAN [12], and the Fuzzy
extensions of the DBSCAN proposed by [13].

The evidential clustering, also called credal clustering, is a
soft clustering paradigm that extends fuzzy, possibilistic, and
rough set clustering. Moreover, these later are sometimes seen
as special cases of the evidential clustering [14]. It describes
the uncertainty regarding the assignment of objects to clusters
using the framework of belief functions [15]. Furthermore, the
evidential clustering affects objects to each possible subset of
classes with a membership degree defined by a mass function
that is between 0 and 1 for each set of clusters. One of the
evidential clustering approaches that was proposed is Evclus in
[16]. There are also other methods that have been developed
within the theory of belief functions. For instance, we can
recall the Evidential C-Means (ECM) method that has been
developed to deal with vectorial data [17]. In ECM, each
object is represented by a mass of belief that is dependent on

Abstract—In later years, data have grown enormously and 
dealing with them to extract information has become a necessity. 
Data mining is a subfield of both computer science and statistics 
that aim to extract useful information in a comprehensive struc-
ture. The importance of clustering techniques in data mining has 
lead to the development of many methods in order to deal with 
data. Among these methods, we name density-based techniques, 
such as DBSCAN, that partitions data into heterogeneous shapes 
according to their local densities. DBSCAN can be suitable 
when handling big data that have noises and outliers. However, 
the classic DBSCAN method fails in identifying clusters with 
a variable density distribution and overlapping borders which 
is accurate in real-world data. In this paper, we propose an 
unsupervised learning technique in an uncertain context, that 
combines the DBSCAN method and the framework of the belief 
function theory, in order to generate clusters having overlapping 
borders. The proposed evidential clustering method, that we 
called E-DBSCAN, has the ability to handle cluster membership 
degree uncertainty of objects by using the belief function theory.
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I. INTRODUCTION

Clustering techniques have proven their importance in ma-
chine learning and data mining, also named data analysis. Data
mining is a process that extracts previously unknown patterns 
from a large quantity of data such as dependencies and groups 
of data that share close similarities. The idea of clustering 
is to regroup data into groups or clusters of objects. Objects
in one group are similar to each other but dissimilar to the
other objects in other groups. The main objective of clustering 
techniques is to maximize similarities in each cluster (the
intra−cluster) and to minimize similarities between clusters 
(the inter−cluster). Different measures of distances are used
to compare between objects such as the Manhattan distance, 
the Euclidean distance, and the Minkowski distance. These
clustering techniques are widely used in many applications
as for example marketing [1], finance [ 2], m edicine [ 3], and 
image processing [4]. However, among these applications,
some of them require the use of the density-based clustering
methods in order to partition data into different shapes and



the distance between that object and the space of prototypes.
Unlike the classic K-means and the fuzzy K-means algorithms,
in ECM prototypes are not only associated to clusters, but
also to groups or sets of clusters. The objective of the ECM
is to minimize a cost function so that each object has a high
mass that is assigned to the cluster that corresponds to the
closest prototype to that object. To deal with dissimilarity data,
a relational version of the ECM method, called Relational
Evidential C-Means (RECM), has been proposed in [18].
Specifically, in [18], a new notion regarding the Euclidean
dissimilarity matrix has been proposed in order to deal with
proximity data. Another evidential clustering method called
Ek−NNclus was later proposed in [19]. In this method, objects
are reassigned iteratively to clusters by using the Evidential
k−Nearest Neighbors (Ek−NN) rule [20], and this until a final
stable partition is obtained. Ek−NN rule is a classification
procedure, based on the nearest neighbors method, that affects
a label to an object by taking into account its distances to its
k neighbors.

All these methods mentioned above are partition-based
methods, however, in literature, there has been no density-
based method proposed within the theory of belief functions.
To this extent, we propose a soft version of the density-
based clustering method DBSCAN within the belief theory
framework in order to handle the uncertainty of the cluster
membership degrees of data.

The rest of this paper is organized as follows. Sections
2 and 3 give an overview of the classic DBSCAN and the
belief function theory respectively. Section 4 is dedicated to
the description of our method. Section 5 compares our method
to existing solutions through the experiments conducted on
various datasets. Finally, Section 6 concludes and points to
some research opportunities.

II. CLASSIC DBSCAN METHOD

Density-based spatial clustering of applications with noise
(DBSCAN), proposed in [5], is considered as one of the well-
known density-based clustering methods. Unlike hierarchical
clustering and partition-based techniques, DBSCAN can be
very efficient when dealing with arbitrary shaped clusters such
as seen in Figure 1.

DBSCAN is based on the concept of reachability that is
within a radius, how many neighbors does each point have [5].
As a result, it is easier to model clusters with arbitrary shapes.
Specifically, DBSCAN assigns each point of the feature space
to the clusters that have many points that are close to that
point, otherwise it labels them as noises or outliers if their
local densities are low, that is to say, their neighbors are below
the input radius.

A. DBSCAN parameters

Although, DBSCAN does not require a priori parameter k
as number of clusters, it requires two other parameters [5]:
• ε: radius, specifies how close two points should be one to

another in order to be considered neighbors and belong
to the same cluster.

(a) K-means

(b) DBSCAN

Fig. 1: Difference between results of K-means (a) and DB-
SCAN (b)

• MinPts: minimum number of neighbors, specifies the
minimum number of points within the ε radius in order
to form a dense region.

B. Parameter estimation

Parameter estimation had become a big problem in every
data mining task. To choose good parameters, one needs to
understand their use and to have a basic knowledge regarding
the data set that is going to be used. Several heuristic studies
have been developed to determine DBSCAN parameters. In the
following, we recall different methods in literature for MinPts
and ε estimation.
• MinPts: One heuristic approach is to use the natural

logarithm function ln(N) [5], where N is the size of
the data set of points to be clustered. Another heuristic
approach is to derive the parameter from the number of
dimensions (D) in the data set such as MinPts is higher
or equal to (D + 1).

• ε: Generally, it is preferable to choose small ε values.
One heuristic approach [5] is to choose the ε parameter
based on the distances of the dataset. Thus, the k-distance
graph is used to find it. Correspondingly, we calculate
the mean of the distances of each point to its k nearest
neighbors, where k corresponds to MinPts. Then, plot
these k-distances in an ascending order and observe a
threshold point called a “knee” or a “valley”. The value
of that knee point corresponds to the optimal ε parameter.

C. Types of points

Based on these parameters, points can be either classified
as core point, as border point, or as outlier [5]:



• Core point: is a point that has at least MinPts neighbors,
including itself, within its neighborhood with an ε radius.

• Border point: is a point that is reachable from another
point that is a core point, and within its ε-neighborhood,
there exists less than MinPts neighbors.

• Noise: is a point that is neither a core point nor a border
point.

Figure 2 is an illustration of the different types of points where
the MinPts is equal to 4. C is a core point surrounded by 4
neighbors represented in green. Blue points like B are border
points located within the ε radius of the green points. Point
N does not exist in any ε radius, thus it represents a noise.

Fig. 2: Type of points in DBSCAN method

By exploring the concepts of density connectivity and
density reachability, these parameters and these types of points
can be well understood.

D. Reachability

In terms of density, reachability considers a point as being
directly reachable from another one if it exists within an ε
distance from it [5].
• Directly density reachable: An object A is directly

density reachable from another object B if A is exists
in the ε-Neighborhood of B and B is a core object.

• Density reachable: An object A is density-reachable
from another object B if there exists a chain of objects
o1, o2. . . , on, with o1 = A and on = B such that oi+1 is
directly density-reachable from oi for all 1 <= i <= n.

E. Connectivity

Connectivity is based on a chaining-approach to decide
whether a point is located in a particular cluster [5]. For
instance, object A is density-connected to another object B if
there exists an object C such that both A and B are density-
reachable from C.

F. Algorithm

The DBSCAN algorithm works iteratively where for each
point o selected randomly and not yet visited, if the number
of its neighbors is below MinPts, it marks it as a noise,
otherwise it affects it to a new cluster and expends the cluster
with its neighbors. For each neighbor, DBSCAN checks its
ε-neighborhood and if there exists at least MinPts objects, it

expands the cluster with these objects. DBSCAN approach is
presented in Algorithms 1 and 2.

Algorithm 1: DBSCAN(D,ε,MinPts)
Input: ε: radius around a point to form a

neighborhood area
Input: MinPts: minimum number of neighbors to be

be considered as a core point
Data: D: Dataset

1 C=0
2 Clusters=∅
3 forall o ∈ D s.t. o is unvisited do

mark o as visited
neighborsPts = regionQuery(o,ε)
if sizeof(neighborsPts) <= MinPts then

Mark o as Noise
else

C = next cluster
Clusters = Clusters ∪ expandCluster(o,
neighborsPts, C, ε, MinPts)

return Clusters

Algorithm 2: expandCluster(o, neighborsPts, C, ε,
MinPts)
Input: o: the point that was just marked as visited
Input: neighborsPts: the neighborhood of point o
Input: C: the current cluster
Input: ε: radius around a point to form a

neighborhood area
Input: MinPts: minimum number of neighbors to be

be considered as a core point
1 add o to cluster C
2 forall o′ ∈ neighborsPts do

if o′ is not visited then
Mark o′ as visited
neighborsPts′ = regionQuery(o′,ε)
if sizeof(neighborsPts′) > MinPts then

neighborsPts = neighborsPts ∪
neighborsPts′

if o′ is not yet member of any cluster then
add o′ to cluster C

return C

III. BELIEF FUNCTION THEORY

Belief function theory (also referred to as evidence theory
or Dempster-Shafer theory) is a theoretical framework, like
the possibility or the probability theories, for reasoning under
uncertainty. It was first introduced by Dempster (1967) in the
statistical inference’s context [21]. After that, it was formalized
as a theory of evidence by Shafer (1976) [15]. Then, it was
developed as the Transferable Belief Model (TBM) by Smets
in the 1980’s and 1990’s [22].
In this section, we will recall the main concepts of this theory.



A. Frame of discernment

Within the framework of the evidence theory, the frame
of discernment regroups all its subsets and is denoted by 2Ω

where each element is called an event or a proposition. The
frame of discernment is defined as:

2Ω = {A,A ⊆ Ω} = {∅, {ω1} , {ω2} , ..., {ω1, ω2} , ...,Ω}
(1)

Where the empty set ∅ represents the impossible proposition,
and the set Ω represents the certain proposition.

B. Basic belief assignment

The basic belief assignment (bba), also called mass function
represents the effect of an uncertain evidence on the frame of
discernment‘s all subsets. This function is defined as 2Ω →
[0, 1] such that:

m (∅) = 0 and
∑
A⊆Ω

m (A) = 1 (2)

where the value m (A), that is named a basic belief mass
(bbm), interprets the fraction of evidence that supports exactly
the assertion that the actual event ω belongs to A (ω ∈ A) and
nothing more specific.

C. Combination rule

In belief function theory, if different information sources of
evidence are available we aggregate them using the Dempster
rule of combination [15]:

m1⊕m2(A) =


∑

B∩C=A

m1(B)m2(C)

1−
∑

B∩C=∅
m1(B)m2(C) for A 6= ∅ and A ⊆ Ω.

0 forA = ∅.
(3)

D. Decision making

In some cases, it is necessary to make a decision based
the available evidence that is modelled in bba forms. In this
context, pignistic transformation [22] has been introduced to
transform belief functions into probability measures, denoted
BetP and defined as:

BetP (A) =
∑
B⊆Ω

|A ∩B|
|B|

m(B), ∀A ⊆ Ω. (4)

E. Evidential k−Nearest Neighbors rule

Let Ω = {ω1, ..., ωc} be the set of classes or groups, and let
dij be the distance that separates the object oi to be labeled
and the object oj that belongs to the class or group ωk(j) with
k(j) ∈ {1, . . . , c}. The knowledge about the label of object
oj and the distance dij from oi to oj is taken as a piece of
evidence and can be represented, thus, by the mass function
in the following:

mij({ωk(j)}) = αij (5)

mij(Ω) = 1− αij (6)

with
αij = ϕ(dij) (7)

(a) Combination of k neigh-
bors masses

(b) Combination of all
neighbors masses within
radius ε

Fig. 3: Comparison between the use of the two parameters k
and ε in the calculation of the mass function of an object A

where ϕ is set to be a non-increasing mapping function such
that:

lim
d→+∞

ϕ (d) = 0 (8)

In [20], the author proposed to choose ϕ as:

ϕ (dij) = α0 exp (−γk(j)d
β
ij) (9)

where α0 and β are constants such that 0 < α0 < 1 and β ∈
{1, 2, ...}. The distances from object oi to the k objects are,
then, considered as k pieces of evidence, thus, mass functions
mi are combined by using Dempster’s rule in Equation 3 in
order to obtain the mass function of the object oi.

In [23], it was proposed to replace the k parameter in the
Ek−NN rule, that refers to the number of neighbors to be
considered in the combination rule, with another parameter
that refers to a radius that will represent the area to be
considered in the combination rule. Let’s have a point oi that
we would like to calculate its mass function and a given radius
parameter ε, all the points that exist within the ε area of point
oi are taken as pieces of evidence in order to calculate its mass
function. Figure 3 represents the difference between the two
constraints where in Figure 3 (a), the mass function of point A
is calculated by combining the masses of its k neighbors, while
in Figure 3 (b), the mass function of point A is calculated by
combining the masses of all the points that exist within the ε
radius.

IV. EVIDENTIAL DBSCAN

In this section, we propose our evidential version of DB-
SCAN which we call E-DBSCAN. We define it by specifying
an approximate value of the radius instead of a crisp numeric
parameter ε. The proposed method consists basically of three
steps. Firstly, we determine core points and their neighbors that
are within the εmin, and within the belief function framework,
this is the state of total certainty. Thus, we assign these points
to their clusters with the equation:

∃ωi ∈ Ω,m ({ωi}) = 1 (10)

Secondly, for each point that exists within the εmax radius
of core points, we assign its membership degree based on its



neighbors by following the principle of the Ek-NN rule [20].
These points are called soft border points. Finally, unlabelled
points or outliers that does not exist within εmax radius of any
core point will be assigned to total ignorance class.

The proposed method is described in Algorithms 3 and 4.

A. Allocation of soft border points

Soft border points that are between the εmin radius and the
εmax radius of core points can be assigned to the existing
clusters based on their neighbors and the labelled points in
the neighbourhood can be seen as a source of evidence. We
replace the k parameter of the Ek-NN rule with the εmax
radius following the approach proposed by [20]. Suppose point
oi is a soft border point. Following the principle of label
determination processing based on the Ek-NN rule and the
radius approach of [23], [24], for each neighbor oj of oi
within the εmax radius, a mass function mij representing the
membership of oj can be assigned following Equations 5 and
6. In our method, αij can be determined by the dissimilarity
between the soft border point oi and its neighbor oj , that
is to say, α is high (respectively low) when dij is small
(respectively big). Thus, α can be set as a decreasing function
of dij :

αij = exp
(
−γk(j)d

2
ij

)
(11)

where α0 from Equation 9 is set to 1 as default, β is set
to 2 as default, and γk(j) can be set to the inverse of the
mean squared distance between points belonging to class ωk(j)

heuristically.
Using the Dempster rule of combination, we can induce bor-

der points memberships to clusters by combining the bbas of
their neighbors within εmax radius. Suppose that point oi is a
soft border point in overlapping regions, the evidence provided
by its k neighbors are in the form of bbas mi1, ...,mik and
thus the bba for point oi’s cluster membership can be obtained
by combining the k pieces of evidence from neighbors.

B. Allocation of the remaining points

The remaining unlabelled points which do not belong to any
neiborhood of core points are considered as outliers or noises
and will be assigned to total ignorance class.

Figure 4 is an illustration of the E-DBSCAN method where
points G and F are core points, B, C, D, E are border points,
A is a soft border point, and red points are noisy points.
Following the Ek-NN rule, the membership degree of point A
is calculated by combining the bbas of its labelled neighbors
B, C, D, E, F and G.

V. EXPERIMENTAL STUDY

Within this section, we evaluate our proposed approach in
order to prove its effectiveness and feasibility. In subsection
A, we present the experimental framework we used and the
parameter setup of each data sat. Then, in subsection B, we
describe the results as well as a comparison between the
proposed method and other existing methods.

Fig. 4: E-DBSCAN illustration

A. Experimental setup

We first developed our proposed method E-DBSCAN using
Python 3.7, then we tested it on classical datasets from the
UCI Machine Learning Repository [25] and the ”pdfCluster”
package [26], also a synthetic dataset from the ”EVCLUST”
package [27]. The characteristics of these datasets are summa-
rized in Table I. After that, once the results of the evaluation
are established, we compared them with the following crisp
and soft methods:

• K-means which is one of the simplest crisp clustering
methods and require the number of clusters as input [28].

• DBSCAN which is a nonparametric crisp density-based
clustering method [5].

• ECM which is a soft clustering method based on the
belief function theory and require the number of clusters
as input [17].

• Ek−NNclus which is a soft clustering method based on
the belief function theory, and requires the number k of
neighbors and a scale parameter [19].

We evaluate the results using the Adjusted Rand Index
(ARI) [29] defined by:

ARI =
RI − Expected RI

max(RI)− Expected RI
(12)

where

RI =
TP + TN

TP + FP + FN + TN
(13)

That measures the similarity between partitions. When two
partitions are equal this index equals 1, and when the partitions
are completely different this index equals 0. We note that
this index only compares hard partitions, i.e., we refer to the
pignistic transformation to compare the results with the hard
clustering methods.



Algorithm 3: DBSCAN(D,ε,MinPts)
Input: εMin, εMax: soft constraint on the radius

around a point to define neighbors and border
points

Input: MinPts: minimum number of neighbors to be
be considered as a core point

Data: D: Dataset
1 C=0
2 Clusters=∅
3 forall o ∈ D s.t. o is unvisited do

mark o as visited
neighborsPts = regionQuery(o,εMin)
if sizeof(neighborsPts) <= MinPts then

Mark o as Noise
else

C = next cluster
soft-borderPts = regionQuery(o, εMax ) \
neighborsPts
Clusters = Clusters ∪ expandSoftCluster(o,
neighborsPts, soft-borderPts, C, εMin,εMa,
MinPts)
Calculate γ of the current cluster

forall noisy point o ∈ D do
m(Ω) = 1

forall classified point o ∈ D to cluster C do
m(C)=1

forall o ∈ soft-borderPts do
affect a membership degree using Equations 5, 6
and 11

return Clusters

We also used the Normalized Mutual Information (NMI)
[30] to estimate clustering quality. It is defined by:

NMI(Y,C) =
2× I(Y,C)

H(Y ) +H(C)
(14)

Where Y is the class label, C is the cluster label, H(x) is
the entropy and I(Y,C) is the Mutual Information between
Y and C such that I(Y,C) = H(Y ) − H(Y |C). This index
equals 1 for perfect correlation, and equals 0 for no mutual
information.

For each dataset, we define the values of the parameters that
we set for each algorithm in table II.

B. Experimental results

Results of the ARI measure for the proposed E-DBSCAN
and the other methods on all the datasets are shown in Table
III. For each couple of dataset and algorithm, we have given
the best result.

We can see that the E-DBSCAN method identified correctly
the number of clusters for all cases. The Ek−NNclus and the
DBSCAN method failed in detecting the correct number of
clusters in both Iris and Wine datasets. As measured by the
ARI criterion, E-DBSCAN outperformed the other method and

Algorithm 4: expandSoftCluster(o, neighborsPts, soft-
borderPts, C, εMin, εMax, MinPts)

Input: o: the point that was just marked as visited
Input: neighborsPts: the neighborhood of point o
Input: soft-borderPts: the soft border neighborhood

of point o
Input: C: the current cluster
Input: εMin εMax: soft constraint on the radius around

a point to define neighbors and border points
Input: MinPts: minimum number of neighbors to be

be considered as a core point
1 add o to cluster C
2 forall o′ ∈ neighborsPts do

if o′ is not visited then
Mark o′ as visited
neighborsPts′ = regionQuery(o′,εMin)
if sizeof(neighborsPts′) > MinPts then

neighborsPts = neighborsPts ∪
neighborsPts′

soft-borderPts′ = regionQuery(o′, εMax )
\neighborsP ts′
soft-borderPts = soft-borderPts ∪
soft-borderPts′

if o′ is not yet member of any cluster then
add o′ to cluster C

return C

TABLE I: Characteristics of the real datasets.

Name Clusters Attributes Instances
Iris 3 4 150
Wine 3 13 178
Four classes 4 2 400
Olive Oil 3 8 572
Statlog(Heart) 2 13 270

gave a better partition quality for all the datasets except the
Wine dataset. We can see that ECM gives slightly better results
for the Wine dataset, however, the algorithm was initially
provided with the correct number of partitions.

Best results of the NMI measure for the proposed E-
DBSCAN and the other methods on all the datasets are shown
in Figure 5. We can see that our proposed method gives
better results for the Iris, Olive oil and Statlog (Heart) datasets
and very close results compared to ECM for the Four-classes
dataset. However, for the Wine dataset the K-means and the
ECM gave better results and this can be explained by the fact
that the number of clusters was given as an input which is
considered as an extra knowledge regarding the correct number
of the cluster partitions.

Comparing computing time results for the soft methods,
seen in Table III, we can note that our method is signifi-
cantly faster than the other soft methods for the Iris and the
Wine dataset. However, for the Four-classes and the Olive
oil datasets, the other methods were faster, and this can be
explained by the high overlapping areas between the clusters



TABLE II: Datasets parameters

Dataset K-means ECM EK-NNclus DBSCAN E-DBSCAN

Iris 3 3
k=30 MinPts = {3, . . . , 10} MinPts = {3, . . . , 10}
q=0.9 ε = {0.3, . . . , 0.5} εMin = {0.3, . . . , 0.5}

εMax = {0.4, . . . , 0.8}

Wine 3 3
k = {40, . . . , 50} MinPts = 3 MinPts = 3
q = {0.5, . . . , 0.8} ε = {30, . . . , 50} εMin = {30, . . . , 50}

εMax = {45, . . . , 50}

Four-classes 4 4
k = {40, . . . , 60} MinPts = 20 MinPts = 20
q = {0.7, . . . , 0.9} ε = {0.7, . . . , 0.9} εMin = {0.7, . . . , 0.9}

εMax = {3.5, . . . , 4}

Olive oil 3 3
k = {100, . . . , 150} MinPts = 10 MinPts = 10
q = {0.7, . . . , 0.9} ε = {100, . . . , 130} εMin = {100, . . . , 130}

εMax = {130, . . . , 150}

Statlog(Heart) 2 2
k = {30, . . . , 50} MinPts = {5, . . . , 10} MinPts = {5, . . . , 10}
q = {0.6, . . . , 0.9} ε = {15, . . . , 25} εMin = {15, . . . , 25}

εMax = {25, . . . , 35}

TABLE III: ARI measure for the proposed E-DBSCAN and the other methods on the datasets

Dataset Result K-means DBSCAN ECM EK-NNclus E-DBSCAN

Iris
K 3 2 3 6 3

ARI 0.730 0.520 0.589 0.188 0.790
time 0.030 0.062 0.573 0.215 0.211

Wine
K 3 6 3 6 3

ARI 0.371 0.281 0.429 0.284 0.364
time 0.034 0.003 0.687 0.367 0.157

Four-classes
K 4 4 4 4 4

ARI 0.734 0.465 0.735 0.728 0.735
time 0.046 0.004 1.735 0.574 6.528

Olive oil
K 3 3 3 3 3

ARI 0.318 0.527 0.328 0.388 0.546
time 0.054 0.011 1.109 2.569 1.928

Statlog(Heart)
K 2 2 2 4 2

ARI 0.030 0.065 0.011 0.060 0.065
time 0.032 0.006 0.381 0.428 0.027

in these datasets.

VI. CONCLUSION

In this paper, we developed a new soft clustering method
for the Density-Based Spacial Clustering Application with
Noise (DBSCAN), that we called Evidential DBSCAN or E-
DBSCAN, using the framework of belief function theory. The
aim of this method is to model distinct density-based spatial
distribution of objects in the feature space. A soft constraint
was defined to specify an approximate local density around
points in order to handle the cluster membership uncertainty
problem and to generate overlapping clusters. Results of the
experimental comparison between our proposed method and
other state of the art methods over real and synthetic datasets
proved a better performance w.r.t the ARI and NMI criteria
which highlight the efficiency of our proposal. In future work,
a study on the parameter estimation for the E-DBSCAN can
be done to enhance, furthermore, its performance.
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