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Abstract. Dealing with imbalanced datasets at the preprocessing level
is an efficient strategy used by many methods to re-balance the data
and improve classification performance. Specifically, SMOTE is a popu-
lar oversampling technique which modifies the training data by adding
artificial minority samples. However, SMOTE may create instances in
noisy and overlapping areas, far from safe regions. To tackle this issue,
we propose SMOTE-BFT, in which we use the belief function theory
to remove generated minority instances that are not in safe regions. Af-
ter applying SMOTE, each generated minority instance is represented by
an evidential membership structure, which provides detailed information
about class memberships. Rules based on the belief function theory are
then enforced to detect and remove generated instances that are in noisy
and overlapping regions. Experiments on noisy artificial datasets show
that our proposal significantly outperforms other popular oversampling
methods.
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1 Introduction

Learning from imbalanced data is one of the main challenges in machine learning.
In a binary classification problem, the imbalanced data issue occurs when one
class (the minority or positive class) is represented by a much smaller number
of instances than the other class (the majority or negative class). This problem
presents a crucial difficulty to many classifier learning algorithms that assume
a fairly balanced distribution of the classes [11]. The imbalanced data problem
can be translated to numerous real-world classification problems [13]. From an
application point of view, the correct classification of minority instances has
a greater importance than the reverse [4]. For example, in a medical diagnosis
problem, the cases affected by the disease are usually relatively rare as compared
with the normal population. Assuming we have 1% of disease-affected cases, a
classifier which scores correctly all negative samples (cases not affected) will get a
classification accuracy of 99% even though all positive cases remain undetected.
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Instead of accuracy, one may use the Area under the Curve (AUC-ROC) [2],
which reflects how good a model is at distinguishing between the minority and
majority class.

In coping with this issue, resampling methods have been proposed to re-
balance the data-set by adding new samples to the minority class (Oversam-
pling), removing samples from the majority class (Undersampling), or both (Hy-
brid) [9]. Traditional replication strategies (e.g. random oversampling) [9] can
cause overfitting by simply adding replicated samples to the dataset. To avoid
this issue, Chawla et al. [1] suggested the Synthetic Minority Oversampling Tech-
nique (SMOTE), which adds new synthetic minority instances by interpolating
among several minority examples that are close to each other. However, SMOTE
produces synthetic samples without being aware of its surroundings which may
potentially amplify the noise and overlap present in the data as illustrated in
Figure 1, whereas, studies have shown that generated instances in safe positions
improve classifier’s performance [3].

Several extensions have been proposed to deal with those problems. To name
a few, BorderlineSMOTE [10] was introduced to strengthen the decision bound-
aries of classifiers, by replacing SMOTE’s random selection of minority sam-
ples with a directed selection of examples that are close to the class border.
ADASYN [12], another oversampling method which decides the number of ex-
amples to generate based on density distribution. Other hybrid methods like
SMOTE-RSB* [15] (based on rough set theory) and SMOTE-IPF [16] (based on
iterative partitioning filter) uses SMOTE and undersampling to clean generated
minority examples and noise already present in the dataset.

In our work, we present another improvement of SMOTE based on the belief
function theory. After applying SMOTE, a cleaning procedure is executed to
improve SMOTE’s oversampling, that is, we use the belief function theory as
a way to extract information on the surroundings of each synthetic minority
instance, by assigning a soft label regarding class memberships. Three rules based
on belief function theory are then imposed to identify and eliminate synthetic
minority instances which are not in safe regions. It is important to note that our
proposal is a purely oversampling method, meaning that only generated minority
instances can be removed.

The remaining of the paper is structured as follows. In Section 2, we introduce
the belief function theory. Section 3 presents our proposal in details. In section
4, we define the experimental framework and we analyze the results.

2 Belief Function theory

Belief function theory [6,17,18], also known as evidence theory or the Dempster-
Shafer theory is a well-founded and efficient framework for the representation
and combination of a range of uncertain information. Let Ω = {w1, w2, ..., wM}
be a frame of discernment representing a finite set of M events. A basic belief
assignment (BBA) represents the belief committed to the elements of 2Ω by a
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Fig. 1. SMOTE limitations (noise generation and introduction of more overlapping)

given source of evidence is a mapping function m : 2Ω → [0, 1] such that:∑
A∈2Ω

m(A) = 1 (1)

Belief and plausibility functions are defined by Shafer [17] as follows:

Bel(A) =
∑
B⊆A

m(B) and P l(A) =
∑

B∩A 6=∅

m(B), ∀ A ∈ 2Ω (2)

Bel(A) represents the precise support for A and its subsets, whereas Pl(A) repre-
sents the total possible support forA and its subsets. The interval [Bel(A), P l(A)]
reflects the lower and upper bounds of support to A.

To combine several BBAs, Dempster ’s rule [6] is a popular choice. Let m1 and
m2 two BBAs defined on the same frame of discernment Ω, their combination
based on Dempster ’s rule gives the following BBA:

m1 ⊕m2(A) =


∑

B∩C=A

m1(B)m2(C)

1−
∑

B∩C=∅
m1(B)m2(C) for A 6= ∅ and A ∈ 2Ω .

0 for A = ∅.
(3)

3 Combining SMOTE and belief function theory

We focus our method on binary classification. For multi-class cases, we can
apply it by decomposing the multi-class problem into two-class sub-problems [5].
SMOTE-BFT consists of 3 main steps: First, we apply SMOTE to generate
synthetic minority examples. Second, we compute for each generated instance
an evidential soft label (BBA) using its nearest neighbors. Finally, 3 rules based
on plausibility and belief functions are enforced in order to identify synthetic
minority instances that are generated in noisy regions, overlapping regions, or
majority class regions. This elimination procedure is repeated until a user-set
minimum balance ratio Brmin is reached. Each step will be detailed in the
remaining of this section.
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3.1 Step 1: Applying SMOTE

Synthetic minority instances are firstly created by randomly selecting minority

sample −→a . Second, it searches for its k nearest minority neighbors
−→
b . Finally,

the algorithm chooses one of the neighbors and creates a synthetic point −→s
anywhere on the line joining the selected sample and its chosen neighbor:

−→s = −→a + w ∗ (
−→
b −−→a ) , w ∈ [0, 1] (4)

For this paper, we use the original version of SMOTE [1] to simplify the com-
parisons. However, one can use any other variant of SMOTE, since our proposal
has a modular structure.

3.2 Step 2: Creating BBAs

To assign BBA’s, we use the same evidential modeling defined by Denoeux in
the Evidential KNN [8]. Let xi be a synthetic minority instance obtained at
Step 1. Each of its k neighbors (k is defined by the user) represents a piece of
evidence to the evidential membership of the instance. For each neighbor xj , a

mass function mj
i is calculated regarding the class membership of xi as:
mj
i ({wq} |xj) = αφq(dij)

mj
i (Ω|xj) = 1− αφq(dij)

mj
i (A|xj) = 0 ∀A ∈ 2Ω \ {{wq} , Ω}

(5)

where dij denotes the euclidean distance between xi and xj , wq is the class label
of xj , and α is a parameter such that 0 < α < 1. A recommended value of
α = 0.95 can be used to obtain good results on average, and a good choice for φq
is φq(d) = exp(−γqd2) where γq can be set to the inverse of the mean squared
distance between training samples belonging to class wq heuristically.

The BBAs for each neighbor xj are then combined using the Dempster’s rule
defined in eq (3). As a result, each synthetic minority example xi has three masses
namely: mi({ω1}) degree of membership for the majority class, mi({ω2}) for the
minority class and mi(Ω) regarding both classes. Using these masses, it is now
possible to compute plausibility and belief functions defined in eq (2).

3.3 Step 3: Eliminating synthetic examples

In order to perform the cleaning, we use overlap and noise rules that were intro-
duced in [8] in addition to a misclassification rule. Each rule targets a specific
type of synthetic points that are problematic to the classification task.

Overlap threshold rule: This situation typically arises when the synthetic
minority sample is situated in a region where there is strong overlap between
classes. In the belief function framework, this case is characterized by a BBA
that is uniformly distributed between the two classes. As a result, the maximum
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plausibility Plmax = maxω∈ΩPli({ω}) will have a relatively low value. Thus,
imposing a threshold to the maximum plausibility will reject synthetic instances
in strong overlap regions. The sample will be rejected if:

Plmax < βPl, βPl ∈ [0, 1] (6)

where βPl a threshold that is set by the user. The higher this parameter is, the
more synthetic instances are removed.

Noise threshold rule: This situation represents synthetic points which are
suspected of belonging to a class which is not represented in the training set. In
the belief function framework, most of the mass values will be concentrated on
the whole frame of discernment Ω. As a consequence, the maximum credibility
Belmax = maxω∈ΩBeli({ω}) will take on a small value. As the distance between
the synthetic point and its closest neighbors goes to infinity, Belmax goes to zero.
Thus, the generated sample will be rejected if:

Belmax < βBel, βBel ∈ [0, 1] (7)

where βBel a threshold which is reasonably fixed to the minimum value of Belmax
across original minority samples.

Misclassifcation rule: This situation represents synthetic samples which are
more likely to be misclassified after oversampling, meaning that they are located
in the majority class region. Using BBAs, one way to make a decision about
what class a sample belongs to is the maximum plausibility. In our situation, we
want generated examples to be belonging to the minority class. Let w1 be the
majority class and w2 be the minority one. The synthetic minority xi example
will be rejected if:

Pli({ω1}) > Pli({ω2}) (8)

The cleaning phase is iterated over synthetic examples until the data reach a
minimum balance ratio Brmin set by the user.

4 Experimental study

In this section, we discuss the evaluation of our proposal in details. Section 4.1
presents the experimental setup. Section 4.2 shows the results and analysis.

4.1 Experimental setup

To evaluate our contribution, we use synthetic imbalanced datasets with noisy
and borderline examples selected from the KEEL repository [14]. All datasets are
binary classification problems with combinations of two imbalance ratios (IR), 5
levels of disturbance ratios DR (reflects the amout of overlap) and three types of
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non-linear shapes of minority examples: Clover, which shapes a flower with five
elliptic petals, paw, which shapes three elliptic subareas of minority examples,
and subclus, which has 3 rectangles of minority instances.

Results are averaged through a ten-fold stratified cross validation to avoid in-
consistencies. To compare different oversamplers, we use CART for classification
and the AUC-ROC as an evaluation measure. Statistical comparisons are also
performed using the Wilcoxon’s signed ranks test [7] to compare the results.

We compare our proposal, SMOTE-BFT, with popular oversampling tech-
niques: the original SMOTE [1], Borderline-SMOTE [10] and ADASYN [12].
In addition to the evaluation against no oversampling performed. For the ex-
periments, we consider the following parameters for SMOTE-BFT: number of
nearest neighbors for SMOTE and the creation of BBAs fixed to 5, minimum
plausibility threshold βPl is set to 0.7, and minimum imbalance ratio Brmin is
fixed to 0.8.

4.2 Results analysis

Table 1 presents AUC obtained by CART on each dataset after oversampling.
The best scores are marked in bold. We can observe that oversampling techniques
improve the performance of the CART classifier in almost all cases.

The proposed SMOTE-BFT achieves the best AUC scores in 13 out of 30
datasets and obtains close to the best scores in the other cases. Even though
CART performance worsens with higher DR, we can notice that our method
performed relatively better especially when the dataset presents high percentage
of DR. This shows that our method successfully identified and eliminated the
noise and overlap generated by SMOTE.

In order to compare AUC results, statistical analysis was performed using the
Wilcoxon’s signed ranks test, which is a non-parametric pairwise test used to
identify significant differences in performance of two methods [7]. In our study,
we use this test to compare the performance obtained by SMOTE-BFT against
other oversamplers. R+ represents the sum of ranks in favor of SMOTE-BFT,
R−, the sum of ranks in favor of the other compared methods, and p-values are
obtained for each comparison. As seen in Table 2, all p-values for Wilcoxon’s test
are lower than 0.05, which shows that SMOTE-BFT outperforms all compared
methods at a significance level of α = 0.05.

5 Conclusions

In this paper, we have proposed a new extension to SMOTE aiming at improving
the quality of oversampling. Rules have been developed using the belief function
theory to remove synthetic minority examples which are added in noisy, over-
lapping or majority class regions. Results from the experimental analysis show
that SMOTE-BFT obtains significantly better results than compared methods,
specifically on datasets with high disturbance ratios. Future work can include
developing heuristic methods in order to automatically determine parameters
such as the plausibility threshold βPl and the minimum balance ratio Brmin.
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Table 1. AUC results of CART on synthetic datasets oversampled by different meth-
ods.

Datasets NONE SMOTE BorderSM ADASYN SMOTE-BFT

paw(S=600,IR=5,DR=0%) 0.962 0.964 0.952 0.972 0.97

paw(S=600,IR=5,DR=30%) 0.79 0.817 0.844 0.844 0.835

paw(S=600,IR=5,DR=50%) 0.747 0.77 0.796 0.794 0.798

paw(S=600,IR=5,DR=60%) 0.679 0.731 0.714 0.742 0.766

paw(S=600,IR=5,DR=70%) 0.69 0.721 0.771 0.754 0.778

paw(S=800,IR=7,DR=0%) 0.94 0.952 0.957 0.948 0.943

paw(S=800,IR=7,DR=30%) 0.805 0.819 0.836 0.830 0.837

paw(S=800,IR=7,DR=50%) 0.749 0.778 0.752 0.757 0.795

paw(S=800,IR=7,DR=60%) 0.693 0.762 0.733 0.731 0.739

paw(S=800,IR=7,DR=70%) 0.634 0.721 0.767 0.718 0.745

clover(S=600,IR=5,DR=0%) 0.859 0.909 0.889 0.91 0.862

clover(S=600,IR=5,DR=30%) 0.755 0.814 0.824 0.817 0.823

clover(S=600,IR=5,DR=50%) 0.69 0.744 0.738 0.787 0.79

clover(S=600,IR=5,DR=60%) 0.696 0.728 0.705 0.744 0.744

clover(S=600,IR=5,DR=70%) 0.646 0.739 0.72 0.734 0.753

clover(S=800,IR=7,DR=0%) 0.845 0.905 0.869 0.923 0.92

clover(S=800,IR=7,DR=30%) 0.766 0.836 0.825 0.835 0.832

clover(S=800,IR=7,DR=50%) 0.704 0.749 0.757 0.765 0.763

clover(S=800,IR=7,DR=60%) 0.668 0.712 0.704 0.743 0.737

clover(S=800,IR=7,DR=70%) 0.659 0.727 0.725 0.724 0.747

subcl(S=600,IR=5,DR=0%) 0.976 0.942 0.955 0.952 0.954

subcl(S=600,IR=5,DR=30%) 0.822 0.811 0.82 0.801 0.826

subcl(S=600,IR=5,DR=50%) 0.715 0.728 0.734 0.741 0.738

subcl(S=600,IR=5,DR=60%) 0.671 0.728 0.736 0.729 0.731

subcl(S=600,IR=5,DR=70%) 0.688 0.746 0.718 0.71 0.757

subcl(S=800,IR=7,DR=0%) 0.978 0.955 0.963 0.972 0.968

subcl(S=800,IR=7,DR=30%) 0.793 0.842 0.797 0.811 0.810

subcl(S=800,IR=7,DR=50%) 0.702 0.753 0.756 0.722 0.739

subcl(S=800,IR=7,DR=60%) 0.702 0.724 0.742 0.739 0.763

subcl(S=800,IR=7,DR=70%) 0.605 0.716 0.699 0.704 0.72

Table 2. Wilcoxon’s signed rank test results comparing SMOTE-BFT (R+) with other
oversampling methods (R-).

Comparisons R+ R- P-value

SMOTE-BFT vs NONE 453.0 12.0 < 0.00001

SMOTE-BFT vs SMOTE 370.0 95 0.00467

SMOTE-BFT vs BorderSM 368.0 97 0.00530

SMOTE-BFT vs ADASYN 352.5 112.5 0.02307
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