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Abstract— On the Internet, web servers are often the main 
inter face between companies or  individuals and the rest of the 
wor ld. As a result they represent valuable targets for  attackers. 
Although several types of attacks are possible against web server 
we focus in this paper  on flooding based denial of service attacks. 
We explore the detection of saturation attacks against web 
servers as well as the precise identification of attack participants. 
Compared to other  approaches this model provides improved 
detection capability for  focused attacks. 
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I.  INTRODUCTION 

Over le last ten years, the Internet has become an ever-
increasing marketplace for most companies. Even if large 
companies occupy today well known locations in the Internet, 
the Internet space is also filled with a large number of smaller 
companies providing services or information to their customers 
through the Internet. As business operations are gradually 
ported to the Internet, mobsters have also turned part of their 
activities into this world. Usually these organizations take 
advantage of infected computers owned by unaware users in 
order to attack their victim. Although vulnerability based 
attacks can bring large benefits to attackers, systematic 
saturation attacks are largely employed since they are likely to 
succeed and do not require any prerequisite from the victim. 
Large companies are usually able to protect themselves from 
these threats preventively by over-dimensioning their systems, 
using replication services or when attacks occur by using 
network operator services (blackhole filtering, sinkhole...). 
These services are unfortunately often unavailable for small or 
medium companies for cost reasons.  

Today, many "in network" detection schemes are based on 
packet based or flow based measures for performance reasons 
 [2], [3], [4], [5], [6]. This often leads to coarse grain attack 
detection signatures based on network level parameters such as 
the destination address and port. Such coarse grain signatures 
are not always sufficient to block attack traffic appropriately. 
For example during the MyDoom worm attack in 2004, web 
servers of Microsoft and SCO were saturated through 
continuous HTTP requests to specific web pages from worm 
instances  [23]. Such requests could not be blocked since 
distinguishing between correct and worm generated requests 
would have required HTTP request URI analysis which was 
impossible for performance reasons.  

In this paper we restrict ourselves to the analysis of HTTP 
traffic. In  [7] we introduce a tool allowing HTTP traffic 

information to be inferred from network level measures at 
multi gigabit speeds for small and medium sized servers. In 
this paper we investigate how such a tool might be used to 
protect such servers against some of existing saturation threats 
 [21]. Compared to existing work  [16],  [17], we expect to 
improve the detection speed in the case of attacks using 
focused requests by monitoring less aggregated parameters 
when taking application level information into account. We 
also expect to improve the detection precision in the case of 
attacks using focused requests by generating precise attack 
signatures including application level descriptors allowing 
more legitimate users to be excluded from mitigation measures. 

We position ourselves in a multiplexed mitigation 
environment such as the one found in [4]. The paper is 
organized as follows: Section  II describes the architecture our 
proposal is based on. Section  III presents our overuse detection 
model. The next section presents an implementation of our 
proposal as well as tuning issues. It also provides tests results 
performed on a local web server. Finally we conclude in 
section  V. 

II. WEB TRAFFIC INFERENCE 

The core of our architecture is based on RequIn  [7]. RequIn 
is a web traffic inference tool that uses network level measures 
(flow sizes, number of packets, source and destination 
addresses and ports...) to infer application level information. 
The amount of information inferred from network level 
measures depends on the type of request performed (GET, 
HEAD, POST...) and the corresponding result code (200, 404, 
304...). These two parameters are themselves inferred from 
network level measures.  TABLE I.  provides the relation 
between inferred result code, method, URI and object size. 

TABLE I.  INFERRED HTTP HEADERS DEPENDING ON HTTP RESULT 
CODE AND METHOD. 

Result code Method URI Object Size 

GET Yes Yes 

HEAD/ 
TRACE 

No No 

200 

PUT/POST No Yes 

GET/HEAD No No 404 

PUT/POST No Yes 
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TRACE No No 

GET/HEAD/
TRACE 

No No 304 

PUT/POST No Yes 

Other Any No No 

III. OVERUSE DETECTION 

A. Detection Model 

Statistical Process Control techniques (SPC) have been 
used for decades for controlling the quality of manufacturing or 
industrial processes. Recently research on the application of 
SPC techniques for denial of service detection has been a very 
active field. For example Cumulative Sum (CUSUM) based 
techniques have been successfully used with quasi-stationary 
processes such as TCP SYN/FIN segments numbers ratio  [5] or 
the number of IP addresses in use in a network  [4] as well as 
non stationary processes (number of TCP SYN packets  [12]). 
Other SPC related techniques such as Holt-Winters forecasting 
 [16] have also proven useful.  

In this paper we investigate another commonly used SPC 
class of techniques based on the Exponentially Weighted 
Moving Average (EWMA). EWMA based techniques have 
been successfully used for computer intrusion detection by Ye 
and al.  [8]. In this paper we however investigate how EWMA 
could be used in a denial of service attacks detection context.  

EWMA charts are usually used to monitor changes in the 
mean of a process. If the data to be monitored results is a 
sequence of independently distributed observations Xt the value 
of the EWMA statistic can be computed as follows: 

1,, )1( −⋅−+= tXttX WXW λλ  

Where λ is a constant belonging to the ]0;1] interval. In that 
case upper (UCL) and lower (LCL) control limits can be 
computed. However in practice, observations are not always 
independent and uncorrelated. Several techniques exist in order 
to cope with correlated data including changing the control 
limits computation scheme or removing the correlation for the 
measured signal by modeling the correlative structure with an 
appropriate time series model  [11]. Such a task can however be 
a time consuming. When the signal follows particular models, 
approximate techniques have been developed in order avoid 
this task. For example Montgomery and al.  [9] have suggested 
using the EWMA statistic WX,t as a one step ahead predictor for 
Xt allowing the et residuals to be computed as follows.  

1, −−= tXtt WXe  

In the case of signals following an IMA(1) (First order 
Integrated Moving Average) model, the residual function is 
expected to be independently and identically distributed with 
mean zero  [9]. A moving centerline EWMA control chart can 
then be constructed combining the state of statistical control 
and process dynamics. In such a chart, control limits can be 
constructed as follows: 

etXt cWUCL σ⋅+= ',
 

etXt cWLCL σ⋅−= ',
 

Where σe is the variance of the et process and c' a positive 
constant tuning value. σe can be estimated using a smoothed 
variance. Such smoothed variance can be obtained by applying 
an EWMA to the et residual values. 
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Where α is a constant belonging to the ]0;1] interval.  [9] 
notes that even a process that is not pure IMA(1) should be 
manageable using this technique if the process mean does not 
drift too quickly.  

In order to keep detection time as short as possible, we use 
short monitoring intervals. However because of the bursty 
nature of web traffic, using direct values of the monitored 
process would lead to a large number of false detection events. 
In order to avoid this, we use a smoothed version of the 
monitored process where xt is the true monitored process and 
β a smoothing constant belonging to the ]0;1] interval. 

ttt XxX ⋅−+= )1(. ββ  

B. Monitored parameters 

Our goal is to discover attacks whether they target a 
specific type of request or use more general patterns by 
frequently changing the method, the object or the operation 
result. In order to do so we monitor fine grain parameters such 
as the number of requests performed on every object present on 
the server as well as more aggregated parameters allowing 
more diffuse attacks to be detected.  Figure 1.  describes the 
different levels of aggregation used in our detection scheme. 
As shown in  Figure 1. , URI variables are aggregated according 
to the method and result for selected values.  

As requests are often described using 2 or 3 parameters, 
several variables in  Figure 1.  can change simultaneously. 
These variables are moreover often correlated. This correlation 
can result in either false out of control detection events or lack 
of detection  [13]. Using multivariate control techniques might 
be an option to solve this problem. However the number of 
monitored variables as well as the need to identify precisely 
variables responsible for out of control events led us to choose 
an ad hoc procedure. Detection operations on correlated 
parameters are organized from the most specific parameters to 
the least specifics. We do so by checking, at each level from 
bottom to top, whether an out of control event at a given level 
can be explained by out of control events at a lower level in the 
tree. To do so we maintain aggregated attack rates associated 
with square nodes in  Figure 1.  These rates represent the sum 
of the rate of ongoing attacks on children nodes and are 
subtracted from monitored values of upper nodes for detection 
operations. Using this strategy, we should only detect attacks 
on aggregated descriptors once every more precise 
"explanation" has been considered. 

Among events observed in  Figure 1. , some happen very 
rarely. For instance, on our test server some URIs were only 
requested once over the log file in our possession. Because 
formulas presented in section  III.A would not provide us with 
any valuable bounds for such rare events, we monitor such 
events by assigning them with a fixed maximum frequency. 
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Figure 1.  Monitored variables. 

C. Volume based filtering 

When a set of requests generates an out of control detection 
event an attack event is created and associated with the 
corresponding node. This parameter called signature is used to 
aggregate future attack events with the same characteristics. 
We associate to each attack event the IP addresses of the source 
of the requests sharing the same signature. This aggregation is 
currently controlled by two parameters, the maximum number 
of aggregated attack events and the maximum aggregation 
time. 

Because attackers might perform random requests on the 
server, the attack signature might be sufficiently wide to 
encompass almost any type of requests. In such a case, any 
user performing a request is likely to share the same signature 
and be included in the list of attack sources. In order to limit 
this problem it would be desirable to sort attack sources 
according their contribution to the attack in term of number of 
requests. In order to avoid storing any possible source, we use 
an address cache with a predefined size where sources are 
maintained using a least recently used strategy. 

IV. IMPLEMENTATION AND TESTS 

A. Implementation 

For testing purposes we developed an HTTP aware monitor 
based on an extension to FreeBSD IPFilter packet filter. This 
monitor is able to export IPFIX compliant (netflow like) 
records to an IPFIX collector using the Vermont  [20] 
monitoring package. IPFIX allows data to be transported in an 
inexpensive manner by allowing records aggregation as well as 
using template/data separation. 

As represented in  Figure 2. , the detection algorithm 
presented in section  III was implemented as a part of a 
detection module  [10]. The whole configuration of the 
detection module is performed through an external 
configuration file. Initial control limits are computed at startup 
using a simplified training log file provided to the detection 
module. Within the detection module, the detection engine 
receives inferred requests from the inference engine. This 
inference is performed using IPFIX records after extracting and 
in some case translating (i.e. estimation function in  Figure 2. ) 

IPFIX record information element values. Estimation functions 
are meant to adapt the received information to the inference 
model. When an attack is detected, an IDMEF  [19] compliant 
notification is generated through a notification module. 

 

IPFIX records

Parameters
Extraction

Parameter
Estimation

Detection
Module

IDMEF events
to Policy Engine

Inference
DB

Notification
Module

Estimation
Inference
Detection
Models

Parameter
Estimation

Inference Engine

Detection
DB

Detection Engine

Estimation
DB Target

DB
Targets/
Threshold
Definition

 

Figure 2.  Detection Module Architecture. 

B. Tests 

The inferred information from the inference engine is 
passed to the detection engine for detection operations. This 
detection engine implements the moving centerline EWMA 
described earlier over 10 seconds intervals. We performed 
several series of tests using a local web server. This server 
contains roughly 20k objects and receives 7.5k requests 
everyday. During the tests a group of attackers sends attack 
requests to the server while a group of normal users sends 
normal requests. Normal requests are expected to mimic 
legitimate traffic and are generated using the server logs. For 
each test, attack and normal traffic with different characteristics 
were generated by changing : 

• The focus of the attack (ie, requests with a fixed set of 
object/operation values or requests with randomly 
chosen object/operation values). 

• The number of attack requests that were generated per 
second. (i.e. 1/2, 1, 2). 

• The duration of the attack in number of requests (i.e. 
60, 600). 

In this test, addresses are not taken into account in the 
detection step. As a result legitimate and attack requests are 
performed from a single device. The monitoring element 
currently also running the detection module acts as a router 
between the traffic generator and the server. For every attack 
we measured the number of correctly detected attack events 
(number of requests detected as belonging to the attack during 
an attack session) as well as the percentage of attack requests 
correctly detected (true positive ratio, TP). We also measured 
the number of incorrectly detected attack events (number of 
requests detected as belonging to an attack outside an attack 
session) as well as the percentage of attack requests wrongly 
detected (false positive ratio, FP). 

In order to compute the benefits and costs associated with 
using application level information we performed two kinds of 
tests. In a first step we use the change point detection strategy 



described in section  III.A but only taking the total number of 
requests into account. In a second step we test our proposal 
using application level information as previously described. 
We then compute for each scenario the difference between the 
FP and TP rates during both tests. This difference represents 
the benefit (for the TP rate) and cost (for the FP rate) 
associated with our technique. They are represented in  Figure 
3.  for parameters (β=0.15, λ=0.1, α=0.0001, c'=3). 
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Figure 3.  Benefit and costs when using application level information. 

Overall, our technique provides faster detection in all cases 
at the cost of an increase in the number of falsely detected 
attack events (between 0.1% and 0.8% on average). When 
aggregated according to the aggregation scheme described in 
section  III.C these false detection events occur on average once 
every 4.5 hours. The benefits are, as expected, much higher in 
the case of focused requests in particular for slow or short 
attacks. 

Increasing the value of the β smoothing parameter increases 
the sensitivity of the detection that translates in a higher 
number of detected attack events but also increases the number 
of false positives. In practice β values in the [0.1;0.2] range 
brought good results. Other λ and α values where tested 
without bringing better results. 

V. DISCUSSION AND CONCLUSION 

In this paper we explore the benefits that might be obtained 
by combining application level information with a well-known 
change detection algorithm. Our conclusion is that such an 
approach is mainly beneficial when focused requests are used 
by attack tools. In such a case, not only do we learn about the 
attack faster but we can also provide precise information about 
the attack. This information could be useful when addresses are 
not sufficient to identify attackers (proxies, NAT...) or as a part 
of a preventive strategy. Although a strategy of attack using 
one or a few focused requests is widespread today as witnessed 
by existing bots available functions  [21] or by some attacks 
analysis  [18], it would be easy for potential attackers to modify 
existing tools to generate random requests from a predefined 
list. In such a case our proposal provides detection results 
similar to those obtained when not taking application level 
information into account.  

A potential problem with our approach in the case of a non-
focused attack is the fact that legitimate users can, in a case of 
a largely distributed attack, generate more traffic than most 
attackers. In order to solve this problem with suggest to 
combine the approach presented here with an approach as the 
one we developed in  [22] where detection operations are no 
longer based on traffic requests volumes variations. 
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