
HAL Id: hal-03643642
https://hal.science/hal-03643642

Submitted on 16 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improving web servers focused DoS attacks detection
Olivier Paul

To cite this version:
Olivier Paul. Improving web servers focused DoS attacks detection. IEEE Workshop on Monitoring,
Attack Detection and Mitigation, Sep 2006, Tuebingen, Germany. �hal-03643642�

https://hal.science/hal-03643642
https://hal.archives-ouvertes.fr

Improving web servers focused DoS attacks detection

Olivier Paul
GET/INT

9 rue Charles Fourier
Evry, France

Olivier.Paul@int-evry.fr

Abstract— On the Internet, web servers are often the main
inter face between companies or individuals and the rest of the
wor ld. As a result they represent valuable targets for attackers.
Although several types of attacks are possible against web server
we focus in this paper on flooding based denial of service attacks.
We explore the detection of saturation attacks against web
servers as well as the precise identification of attack participants.
Compared to other approaches this model provides improved
detection capability for focused attacks.

Keywords: DoS.

I. INTRODUCTION

Over le last ten years, the Internet has become an ever-
increasing marketplace for most companies. Even if large
companies occupy today well known locations in the Internet,
the Internet space is also filled with a large number of smaller
companies providing services or information to their customers
through the Internet. As business operations are gradually
ported to the Internet, mobsters have also turned part of their
activities into this world. Usually these organizations take
advantage of infected computers owned by unaware users in
order to attack their victim. Although vulnerability based
attacks can bring large benefits to attackers, systematic
saturation attacks are largely employed since they are likely to
succeed and do not require any prerequisite from the victim.
Large companies are usually able to protect themselves from
these threats preventively by over-dimensioning their systems,
using replication services or when attacks occur by using
network operator services (blackhole filtering, sinkhole...).
These services are unfortunately often unavailable for small or
medium companies for cost reasons.

Today, many "in network" detection schemes are based on
packet based or flow based measures for performance reasons
 [2], [3], [4], [5], [6]. This often leads to coarse grain attack
detection signatures based on network level parameters such as
the destination address and port. Such coarse grain signatures
are not always sufficient to block attack traffic appropriately.
For example during the MyDoom worm attack in 2004, web
servers of Microsoft and SCO were saturated through
continuous HTTP requests to specific web pages from worm
instances [23]. Such requests could not be blocked since
distinguishing between correct and worm generated requests
would have required HTTP request URI analysis which was
impossible for performance reasons.

In this paper we restrict ourselves to the analysis of HTTP
traffic. In [7] we introduce a tool allowing HTTP traffic

information to be inferred from network level measures at
multi gigabit speeds for small and medium sized servers. In
this paper we investigate how such a tool might be used to
protect such servers against some of existing saturation threats
 [21]. Compared to existing work [16], [17], we expect to
improve the detection speed in the case of attacks using
focused requests by monitoring less aggregated parameters
when taking application level information into account. We
also expect to improve the detection precision in the case of
attacks using focused requests by generating precise attack
signatures including application level descriptors allowing
more legitimate users to be excluded from mitigation measures.

We position ourselves in a multiplexed mitigation
environment such as the one found in [4]. The paper is
organized as follows: Section II describes the architecture our
proposal is based on. Section III presents our overuse detection
model. The next section presents an implementation of our
proposal as well as tuning issues. It also provides tests results
performed on a local web server. Finally we conclude in
section V.

II. WEB TRAFFIC INFERENCE

The core of our architecture is based on RequIn [7]. RequIn
is a web traffic inference tool that uses network level measures
(flow sizes, number of packets, source and destination
addresses and ports...) to infer application level information.
The amount of information inferred from network level
measures depends on the type of request performed (GET,
HEAD, POST...) and the corresponding result code (200, 404,
304...). These two parameters are themselves inferred from
network level measures. TABLE I. provides the relation
between inferred result code, method, URI and object size.

TABLE I. INFERRED HTTP HEADERS DEPENDING ON HTTP RESULT
CODE AND METHOD.

Result code Method URI Object Size

GET Yes Yes

HEAD/
TRACE

No No

200

PUT/POST No Yes

GET/HEAD No No 404

PUT/POST No Yes

This work is funded through the IST DIADEM Firewall project.

TRACE No No

GET/HEAD/
TRACE

No No 304

PUT/POST No Yes

Other Any No No

III. OVERUSE DETECTION

A. Detection Model

Statistical Process Control techniques (SPC) have been
used for decades for controlling the quality of manufacturing or
industrial processes. Recently research on the application of
SPC techniques for denial of service detection has been a very
active field. For example Cumulative Sum (CUSUM) based
techniques have been successfully used with quasi-stationary
processes such as TCP SYN/FIN segments numbers ratio [5] or
the number of IP addresses in use in a network [4] as well as
non stationary processes (number of TCP SYN packets [12]).
Other SPC related techniques such as Holt-Winters forecasting
 [16] have also proven useful.

In this paper we investigate another commonly used SPC
class of techniques based on the Exponentially Weighted
Moving Average (EWMA). EWMA based techniques have
been successfully used for computer intrusion detection by Ye
and al. [8]. In this paper we however investigate how EWMA
could be used in a denial of service attacks detection context.

EWMA charts are usually used to monitor changes in the
mean of a process. If the data to be monitored results is a
sequence of independently distributed observations Xt the value
of the EWMA statistic can be computed as follows:

1,,)1(−⋅−+= tXttX WXW λλ

Where λ is a constant belonging to the]0;1] interval. In that
case upper (UCL) and lower (LCL) control limits can be
computed. However in practice, observations are not always
independent and uncorrelated. Several techniques exist in order
to cope with correlated data including changing the control
limits computation scheme or removing the correlation for the
measured signal by modeling the correlative structure with an
appropriate time series model [11]. Such a task can however be
a time consuming. When the signal follows particular models,
approximate techniques have been developed in order avoid
this task. For example Montgomery and al. [9] have suggested
using the EWMA statistic WX,t as a one step ahead predictor for
Xt allowing the et residuals to be computed as follows.

1, −−= tXtt WXe

In the case of signals following an IMA(1) (First order
Integrated Moving Average) model, the residual function is
expected to be independently and identically distributed with
mean zero [9]. A moving centerline EWMA control chart can
then be constructed combining the state of statistical control
and process dynamics. In such a chart, control limits can be
constructed as follows:

etXt cWUCL σ⋅+= ',

etXt cWLCL σ⋅−= ',

Where σe is the variance of the et process and c' a positive
constant tuning value. σe can be estimated using a smoothed
variance. Such smoothed variance can be obtained by applying
an EWMA to the et residual values.

2
1,

22
,)1(−⋅−+⋅= tette e σαασ

Where α is a constant belonging to the]0;1] interval. [9]
notes that even a process that is not pure IMA(1) should be
manageable using this technique if the process mean does not
drift too quickly.

In order to keep detection time as short as possible, we use
short monitoring intervals. However because of the bursty
nature of web traffic, using direct values of the monitored
process would lead to a large number of false detection events.
In order to avoid this, we use a smoothed version of the
monitored process where xt is the true monitored process and
β a smoothing constant belonging to the]0;1] interval.

ttt XxX ⋅−+=)1(. ββ

B. Monitored parameters

Our goal is to discover attacks whether they target a
specific type of request or use more general patterns by
frequently changing the method, the object or the operation
result. In order to do so we monitor fine grain parameters such
as the number of requests performed on every object present on
the server as well as more aggregated parameters allowing
more diffuse attacks to be detected. Figure 1. describes the
different levels of aggregation used in our detection scheme.
As shown in Figure 1. , URI variables are aggregated according
to the method and result for selected values.

As requests are often described using 2 or 3 parameters,
several variables in Figure 1. can change simultaneously.
These variables are moreover often correlated. This correlation
can result in either false out of control detection events or lack
of detection [13]. Using multivariate control techniques might
be an option to solve this problem. However the number of
monitored variables as well as the need to identify precisely
variables responsible for out of control events led us to choose
an ad hoc procedure. Detection operations on correlated
parameters are organized from the most specific parameters to
the least specifics. We do so by checking, at each level from
bottom to top, whether an out of control event at a given level
can be explained by out of control events at a lower level in the
tree. To do so we maintain aggregated attack rates associated
with square nodes in Figure 1. These rates represent the sum
of the rate of ongoing attacks on children nodes and are
subtracted from monitored values of upper nodes for detection
operations. Using this strategy, we should only detect attacks
on aggregated descriptors once every more precise
"explanation" has been considered.

Among events observed in Figure 1. , some happen very
rarely. For instance, on our test server some URIs were only
requested once over the log file in our possession. Because
formulas presented in section III.A would not provide us with
any valuable bounds for such rare events, we monitor such
events by assigning them with a fixed maximum frequency.

Total

GET

Method

PUT HEAD TRACE

URIs

1 xxxx

Result

200 304 404 XXX

Figure 1. Monitored variables.

C. Volume based filtering

When a set of requests generates an out of control detection
event an attack event is created and associated with the
corresponding node. This parameter called signature is used to
aggregate future attack events with the same characteristics.
We associate to each attack event the IP addresses of the source
of the requests sharing the same signature. This aggregation is
currently controlled by two parameters, the maximum number
of aggregated attack events and the maximum aggregation
time.

Because attackers might perform random requests on the
server, the attack signature might be sufficiently wide to
encompass almost any type of requests. In such a case, any
user performing a request is likely to share the same signature
and be included in the list of attack sources. In order to limit
this problem it would be desirable to sort attack sources
according their contribution to the attack in term of number of
requests. In order to avoid storing any possible source, we use
an address cache with a predefined size where sources are
maintained using a least recently used strategy.

IV. IMPLEMENTATION AND TESTS

A. Implementation

For testing purposes we developed an HTTP aware monitor
based on an extension to FreeBSD IPFilter packet filter. This
monitor is able to export IPFIX compliant (netflow like)
records to an IPFIX collector using the Vermont [20]
monitoring package. IPFIX allows data to be transported in an
inexpensive manner by allowing records aggregation as well as
using template/data separation.

As represented in Figure 2. , the detection algorithm
presented in section III was implemented as a part of a
detection module [10]. The whole configuration of the
detection module is performed through an external
configuration file. Initial control limits are computed at startup
using a simplified training log file provided to the detection
module. Within the detection module, the detection engine
receives inferred requests from the inference engine. This
inference is performed using IPFIX records after extracting and
in some case translating (i.e. estimation function in Figure 2.)

IPFIX record information element values. Estimation functions
are meant to adapt the received information to the inference
model. When an attack is detected, an IDMEF [19] compliant
notification is generated through a notification module.

IPFIX records

Parameters
Extraction

Parameter
Estimation

Detection
Module

IDMEF events
to Policy Engine

Inference
DB

Notification
Module

Estimation
Inference
Detection
Models

Parameter
Estimation

Inference Engine

Detection
DB

Detection Engine

Estimation
DB Target

DB
Targets/
Threshold
Definition

Figure 2. Detection Module Architecture.

B. Tests

The inferred information from the inference engine is
passed to the detection engine for detection operations. This
detection engine implements the moving centerline EWMA
described earlier over 10 seconds intervals. We performed
several series of tests using a local web server. This server
contains roughly 20k objects and receives 7.5k requests
everyday. During the tests a group of attackers sends attack
requests to the server while a group of normal users sends
normal requests. Normal requests are expected to mimic
legitimate traffic and are generated using the server logs. For
each test, attack and normal traffic with different characteristics
were generated by changing :

• The focus of the attack (ie, requests with a fixed set of
object/operation values or requests with randomly
chosen object/operation values).

• The number of attack requests that were generated per
second. (i.e. 1/2, 1, 2).

• The duration of the attack in number of requests (i.e.
60, 600).

In this test, addresses are not taken into account in the
detection step. As a result legitimate and attack requests are
performed from a single device. The monitoring element
currently also running the detection module acts as a router
between the traffic generator and the server. For every attack
we measured the number of correctly detected attack events
(number of requests detected as belonging to the attack during
an attack session) as well as the percentage of attack requests
correctly detected (true positive ratio, TP). We also measured
the number of incorrectly detected attack events (number of
requests detected as belonging to an attack outside an attack
session) as well as the percentage of attack requests wrongly
detected (false positive ratio, FP).

In order to compute the benefits and costs associated with
using application level information we performed two kinds of
tests. In a first step we use the change point detection strategy

described in section III.A but only taking the total number of
requests into account. In a second step we test our proposal
using application level information as previously described.
We then compute for each scenario the difference between the
FP and TP rates during both tests. This difference represents
the benefit (for the TP rate) and cost (for the FP rate)
associated with our technique. They are represented in Figure
3. for parameters (β=0.15, λ=0.1, α=0.0001, c'=3).

0.01

0.1

1

10

100
0.5 1 2 4

Attack Requests/s

%
 g

ai
n

ed
 (

T
P

)/
lo

st
 (

F
P

)

TP, Fixed, 60 FP, Fixed, 60 TP, Fixed, 600 FP, Fixed, 600
TP, Random, 60 FP, Random, 60 TP, Random, 600 FP, Random, 600

Figure 3. Benefit and costs when using application level information.

Overall, our technique provides faster detection in all cases
at the cost of an increase in the number of falsely detected
attack events (between 0.1% and 0.8% on average). When
aggregated according to the aggregation scheme described in
section III.C these false detection events occur on average once
every 4.5 hours. The benefits are, as expected, much higher in
the case of focused requests in particular for slow or short
attacks.

Increasing the value of the β smoothing parameter increases
the sensitivity of the detection that translates in a higher
number of detected attack events but also increases the number
of false positives. In practice β values in the [0.1;0.2] range
brought good results. Other λ and α values where tested
without bringing better results.

V. DISCUSSION AND CONCLUSION

In this paper we explore the benefits that might be obtained
by combining application level information with a well-known
change detection algorithm. Our conclusion is that such an
approach is mainly beneficial when focused requests are used
by attack tools. In such a case, not only do we learn about the
attack faster but we can also provide precise information about
the attack. This information could be useful when addresses are
not sufficient to identify attackers (proxies, NAT...) or as a part
of a preventive strategy. Although a strategy of attack using
one or a few focused requests is widespread today as witnessed
by existing bots available functions [21] or by some attacks
analysis [18], it would be easy for potential attackers to modify
existing tools to generate random requests from a predefined
list. In such a case our proposal provides detection results
similar to those obtained when not taking application level
information into account.

A potential problem with our approach in the case of a non-
focused attack is the fact that legitimate users can, in a case of
a largely distributed attack, generate more traffic than most
attackers. In order to solve this problem with suggest to
combine the approach presented here with an approach as the
one we developed in [22] where detection operations are no
longer based on traffic requests volumes variations.

VI. REFERENCES
[1] Real-Time Mitigation Of Denial Of Service Attacks Now Available

With AT&T Internet Protect. ATT news release, June 2004. Available
at: http://www.att.com/news/2004/06/01-13096.

[2] T.M. Gil, M. Poleto, MULTOPS: a data-structure for bandwidth attack
detection, in: Proceedings of 10th Usenix Security Symposium, August
13-17, 2001.

[3] Polly Huang and al. A Non-intrusive, Wavelet-based Approach to
Detecting Network Performance Problems. ACM SIGCOMM Internet
Measurement Workshop 2001. November 2001.

[4] T. Peng, and al. Protection from Distributed Denial of Service Attack
Using History-based IP Filtering. IEEE ICC 2003. May 2003.

[5] Haining Wang and al. Detecting SYN flooding attacks. IEEE
INFOCOM '2002. February 2002.

[6] Chen-Mou Cheng, H.T. Kung, Koan-Sin Tan. Use of Spectral Analysis
in Defense Against DoS Attacks. GLOBECOM 2002. November 2002.

[7] Olivier Paul, Jean Etienne Kiba. Tradeoffs for Web Communications
Fast Analysis. In proceedings of the 2005 IFIP Networking conference.
May 2005.

[8] Nong Ye and al. Computer Intrusion Detection Through EWMA for
Autocorrelated and Uncorrelated Data. IEEE Transactions on
Reliability, Vol. 52, No. 1, March 2003.

[9] D. C. Montgomery and C. M. Mastrangelo, Some statistical process
control methods for autocorrelated data, J. Qual. Technol, Vol 23, No. 3,
1991.

[10] G. Münz, O. Paul, F. Dressler, "Initial Violation Detection Prototype,"
DIADEM Technical Report D9, July 2005.

[11] Jakob Edo Wieringa. Statistical Process Control for Serially Correlated
Data, PhD Thesis, Groningen University, 1999.

[12] Vasil ios A. Siris and Fotini Papagalou. Application of Anomaly
Detection Algorithms for Detecting SYN Flooding Attacks. In
proceedings of GLOBECOM 2004. December 2004.

[13] D. C. Montgomery, Introduction to Statistical Quality Control. Wiley
and Sons Editors. 1996.

[14] Cisco systems, Cisco IOS NetFlow Overview, May 2005.

[15] Félix Hernández-Campos & al., Tracking the Evolution of Web Traffic:
1995-2003, In proceedings of MASCOTS 03, October 2003.

[16] Jake Brutlag, Aberrant Behavior Detection in Time Series for Network
Monitoring, 14th USENIX Systems Administration Conference, 2000.

[17] Frank Kargl and al. Protecting Web Servers from Distributed Denial of
Service Attacks. In proc. 9th Intl. WWW Conference, pages 514--524,
2001.

[18] Jaeyeon Jung and al. Flash Crowds and Denial of Service Attacks:
Characterization and Implications for CDNs and Web Sites. In proc.
10th Intl. WWW Conference, May 7-11, 2002, Honolulu, Hawaii, USA.

[19] H. Debar and al., The Intrusion Detection Message Exchange Format,
draft-ietf-idwg-idmef-xml-14, work in progress, January 2005.

[20] VERsatile MONitoring Toolkit, available at http://vermont.berlios.de/.
2005.

[21] LURHQ Threat Intelligence Group. Phatbot Trojan Analysis. Available
at www.lurhq.com/phatbot.html. March 2004.

[22] Olivier Paul, Scalable fine grain monitoring against web servers
overuses. Submitted for publication.

[23] LURHQ Threat Intelligence Group. MyDoom.C Analysis. Available at
www.lurhq.com/mydoom-c.html. February 2004.

