
HAL Id: hal-03643641
https://hal.science/hal-03643641v1

Submitted on 16 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improving web traffic inference using page level
embedding information

Olivier Paul

To cite this version:
Olivier Paul. Improving web traffic inference using page level embedding information. IEEE Workshop
on Monitoring, Attack Detection and Mitigation, Nov 2007, Toulouse, France. �hal-03643641�

https://hal.science/hal-03643641v1
https://hal.archives-ouvertes.fr

Improving web traffic inference using page level
embedding information†

Olivier Paul
GET/INT

9 rue Charles Fourier
Evry, France

Olivier.Paul@int-evry.fr

1 This work was funded through the FP6 IST DIADEM Project

Abstract—This paper presents a new technique to improve the
accuracy of a web traffic analysis tool. This technique is based on
embedding relations existing between objects in a web site. We
show how such relations can be used to improve the
understanding a tool can get from network level measures.

Keywords: Trafic analysis.

I. INTRODUCTION
Over the past few years, there has been a growing interest

in techniques allowing application level information to be
obtained from network level measures ([1], [2], [3]). These
techniques usually associate the usage of application level
protocols or application level operations with network level
signatures in order to recognize such events without requiring
expensive changes in existing network devices. In [4] we
present a tool called RequIn, allowing such analysis to be
carried on web traffic. In this paper we present an improvement
to this tool allowing an improved accuracy in the recognition of
operations. The paper is organized as follows. Section II
presents RequIn as well as its limitations. Section III presents
our proposal. Section IV presents its implementation as well as
some preliminary test results. Section V compares our proposal
to existing alternatives. Finally section VI concludes this paper.

II. WEB TRAFFIC INFERENCE
The core of our architecture is based on RequIn [4]. RequIn

is a web traffic inference tool that uses network level measures
on flows (timestamps, number of bytes exchanged in both
directions, number of packets, source and destination addresses
and ports) to infer application level information.

The amount of information inferred from network level
measures depends on the type of request performed (GET,
HEAD, POST...) and the corresponding result code (200, 404,
304...). These two parameters are themselves inferred from
network level measures. TABLE I. provides the relation
between inferred result code, method, URI and object size.

As described in [4], RequIn suffers from a few limitations.
For example since URI inference is partly based on the volume
of information transferred URI information can only be
obtained when objects are actually transferred from the server

to the client. As a result requests generating erroneous (404) or
unmodified (304) responses cannot be analyzed as precisely as
correct (200) answers. Another limitation is the proportion of
correctly inferred requests which is around 70% for a medium
size web server.

TABLE I. INFERRED HTTP HEADERS DEPENDING ON HTTP RESULT
CODE AND METHOD.

Result code Method URI Object Size
GET Yes Yes
HEAD/
TRACE

No No
200

PUT/POST No Yes
GET/HEAD No No
PUT/POST No Yes

404

TRACE No No
GET/HEAD/
TRACE

No No 304

PUT/POST No Yes
Other Any No No

III. USING PAGE LEVEL INFORMATION
The idea behind our proposal is simple and based on the

notion of page.
Individual object requests are often performed to web

servers as a part of a page request. Each page includes a root
document to which a set of objects (e.g. images, sounds, other
html documents ...) are connected. Connected objects are most
of the time downloaded automatically by browsers when the
root document is received. The transfer of this set of objects
(including the root and connected objects) is usually called a
page transfer ([5], [6]). A browsing session usually includes a
set of page transfers from the time a user starts browsing a web
site until he stops for a significant amount of time. Page
transfers are separated from each other by a minimum amount

of thinking time. A typical minimum value for this thinking
time is one second ([5], [6]).

By taking into account the notion of page, we can learn
about embedding relations between objects. We believe these
relations can be used to improve or correct inference operations
performed in [4]. For example assuming request to a page
constructed as presented in Figure 1. and assuming that
"Image2.gif" is already in the browser cache (because it was
downloaded through a different page some time ago), the
server would answer with a "304" (not modified) response thus
preventing our inference software from obtaining the identity
of the requested object. If we use page level information and
are able to guess that "Page_T" was the page requested during
browsing operations, we would be therefore able to associate
this "304" response with the appropriate object.

FIGURE 1. PAGE COMPOSITION EXAMPLE

Root.html

Image1.gifImage2.gifFrame.html

Image3.gif Page_T

In a second scenario, let's assume that the request for

"Frame.html" was incorrectly guessed as "Doc.txt" by our
inference software. If we succeed to guess that this request was
part of a request to the "Page_T" page we can deduce that
"Doc.txt" was unlikely to be transferred while downloading
this page. This could help us switching from "Doc.txt" to a
more likely answer.

Obtaining information about embedding relations can be
performed by analyzing server logs using clients addresses and
timing information (as well as reference information when the
server is configured to record it). It can also be done by
analyzing servers using page analysis tools. Both approaches
have advantages and drawbacks as each might miss some kind
of relations. For instance server logs might not include
references to pages that have never been requested by a user
while automated analysis tools can miss pages that are
unconnected to other objects. The first approach was selected
in this paper due to its easy implementation.

Using embedding relations is however not very easy. As
mentioned earlier due to objects missing or already in cache,
any member of the "Page_T" transfer might be missing
including the root document. Additionally because browsers
often employ multiple TCP connections to transfer objects,
request and responses might be received in any order. Finally
objects embedded in one page might also be embedded in other
documents as represented in Figure 2.

Our inference page level technique is a based on a few
heuristics that we explain using the page example presented in
 Figure 2. As presented in this diagram the root Ok,1 of page Pk

refers to several objects among which a few objects are also
referred by roots belonging to other pages.

FIGURE 2. RELATIONS BETWEEN OBJECTS

Ok,1

Ok,5Ok,4Ok,2

Ok,3

Om,1On,1

Pk

When a request to page Pk(Ok,1,Ok,2,...,Ok,p(k)) is performed, a set of flow records F=(F1,...,Ff) representing the transfers of objects between the server and the web client is received by

our inference software. A general objective for our page level
inference technique is to match these flow records to existing
objects. In order to do so we use the inference function
developed in [4]. This function, in accordance with the
restrictions mentioned in TABLE I. provides us for each flow
(or object request) Fi with:

- The operation performed (Ci).
- The result code (Ri).
- A set of possible object identifiers with their respective

likelihood S = ((O'i,1; Pi,1), (O'i,2; Pi,2)... (O'i,n(i); Pi,n(i))).
Using object identifiers we would like to find the page

Pk(Ok,1,Ok,2,...,Ok,p(k)) that generated F: a set of objects/ likelihood couples (O'i,j; Pi,j) such that:

(1)
lkji OO

kplltkk
injjfii

,,

'/
)(1,;1,
);(1,;1,

=
≤≤∃≤≤∃
≤≤∃≤≤∀

(2)∑ =

f
i jiP1 , is maximized.

However a straightforward implementation of (1) and (2)
would not work well for several reasons: Since the inference
function provides probabilistic results an inferred object (O'i,j; Pi,j) might not match any requested object Ok,l. Reciprocally a requested object Ok,l might not match any inferred object (O'i,j; Pi,j) for example when such object is in a cache. Moreover a
naïve implementation of such a scheme would require on
average O(pntf ⋅⋅⋅) comparisons for each page request
where n and p represent respectively the average number of
inferred objects per flow and the average number of objects
embedded in a page. This can result in a slow implementation.

Consequently we propose a different procedure based on a
heuristic where we attribute scores to potential objects
generated through a request. Points are attributed to an object
Oi,j in two main cases.

- (Oi,j; Pi,j) has been inferred (i.e. (Oi,j; Pi,j) ∈ S).

- Oi,j is a referrer for an inferred object (O'i',j'; P'i',j') (i.e.
(O'i',j'; P'i',j') ∈ S is referred by Oi,j). This second case is meant to solve the situation where the root would be
missing, would have been incorrectly inferred or would
have been inferred with a low likelihood score.

The number of points attributed depends on the likelihood
Pi,j (or P'i',j'). In addition to these points an object can get additional points when the number of referred objects matches
the number of flows generated by a client or when the object is
a root node (refers other objects). Our assumption is that when
a sufficient number of referred objects are received, the score
of the root will increase in such a way that it will become easily
distinguishable from other potential roots.

Once a root object is identified we can match referred
objects to existing flows using flow sizes, operations and
response code results as clues. Requests to standalone objects
(e.g. pdf/zipped/MS word files) can be treated the same way,
the only difference being that only the direct likelihood is used.

Since several page requests can be performed to a server by
a single client over a period of one second (our minimum
thinking time interval). This process might have to be executed
several times until every flow is matched to an object.

In order to simplify computations, points are maintained
using a table indexed using objects identifiers. Using such a
table points attributions necessitate on average O(nrf ⋅⋅)
computations per page request. This is usually much better than
the naïve O(pntf ⋅⋅⋅) as tr << .

IV. IMPLEMENTATION AND EARLY RESULTS
Page level operations act as an additional module to the

software that was developed in [4] and uses existing object
level inference functions and flows and output management
modules as shown in Figure 3.

FIGURE 3. TOOL ARCHITECTURE

Object
Level

Inference

Page
Level

Inference

Clients
management

Flows management

Output Management

When request/response records are received, they are

gathered according to their source IP address by the clients
management module. The list of clients that have not generated
any requests for more than the chosen thinking time is obtained
regularly and passed to the page level inference module which
sequentially examines the set of flows generated by each client.
To do so, this module implements the scheme mentioned in
section III. Once every flow is matched to an object it is passed
to the output management module which formats the results.

In order to test our module we obtained logs from an
existing departmental server including roughly 15k objects.

The logs, including 309k entries, were divided in a training set
consisting of 240k entries and two testing sets. The first one
(Set1) was made of 10k entries randomly selected and a second
testing set (Set2) was made including one page request for
every page found in the remainder of the 70k entries log file.
The training set was used to build the information used by the
object level inference and page level inference processes.
Testing records were used to generate a script automatically
downloading pages using a widely used commercial browser
with a few seconds interval between downloads. After running
the script, the web server log file was recovered and new
request records were extracted (server logs #2). The inferred
results provided by the output management were stored in
another file (inference results).

Test results are presented in TABLE II. The correctly
inferred column indicates the proportion of requests found in
the “server logs #2” file that could also be found in the
“inference results” file at the time the request was performed.
Reversely, the incorrectly inferred column indicates the
proportion of requests found in the “server logs #2” file that
could not be found in the “inference results”. In both cases we
consider that two requests match when they apply the same
operation to the same object.

Jaccard based results which are based on an alternative
approach presented in [8] will be explained in the next section.
Overall the page level approach improves significantly
inference results.

Performances were measured in both cases on a Pentium
xeon 2.6Ghz with 1Gb of memory. Results are given in
 TABLE II. Overall the performance is 5 to 10 times slower. In
its current state, our software is able to analyze between 50k
and 100k requests per second. The difference in term of
performance between Set1 and Set2 is mainly explained by the
composition of the two sets in term of proportion of pages and
standalone objects. The identity of a standalone object can be
obtained much faster than the identities of objects belonging to
pages since no referal relation needs to be used.

TABLE II. INFERENCE AND PERFORMANCE RESULTS
Method, Set Correctly

Inferred
Incorrectly
Inferred

Time per
request

Jaccard Based, Set1 49%-71% 51%-29% /
Object Based,Set1 64% 36% 1.9us
Page Based,Set1 82% 18% 9.7us
Jaccard Based, Set2 45%-63% 55%-37% /
Object Based,Set2 57% 43% 2.0us
Page Based,Set2 81% 19% 21us

V. RELATED WORK
As of today, web traffic analysis is mostly performed using

HTTP proxies or using web server logs. Although both
approaches are able to provide accurate results they also carry a
few drawbacks. HTTP proxies are usually only able to serve a
few thousands requests per second making them expensive to

deploy in an operator network if one wishes to analyze any
possible exchange. Moreover proxies can sometimes be
insufficiently transparent in particular in the case encrypted
traffic or when cookies are used. On the other hand using web
server logs requires cooperation between the monitor and the
server monitored. It also assumes that server logs cannot be
tampered with.

Web traffic analysis using packet level measures has been
an active field for some time. Hernández-Campos and al. ([10],
 [5]) introduces the idea of using packet trains to delimitate
HTTP operations. The paper also introduces a set of rules to
classify HTTP result codes based on the size of packet trains.
In [4] we build on this seminal work and introduce a technique
to identify individual objects from flow records using a more
complex statistical model based on a Bayesian network. Such
model allows using a larger number of flow descriptors to
obtain more accurate inference results than those that might
have been obtained solely using server responses sizes.

After submitting this paper we found a couple of papers
([7] [8]) using an idea somehow similar to ours in order to
perform TLS/SSL encrypted web traffic analysis. In both
papers the influence of SSL is considered as a constant
overhead and traffic analysis tests were carried over non SSL
traffic. A main difference between our approach and theirs is
that they do not attempt to use individual objects identities but
instead use the notion of group of requests sizes. As a result
objects to pages relationships cannot be exploited.

More precisely, in [8] the authors only distinguish between
the root document request and the set of requests used to gather
referenced objects. They use the amount of data transported
from the server to the client for both type of requests to build
signatures that can later be matched to packet trains. In [7]
Qixiang and al. identify individual objects transfers using a
technique similar to the one in [10]. They later use the sizes of
individual objects transfers to create a set of sizes for each page
request. These sets are used as signatures to identify page
transfers from web servers. Signatures and transfers are
matched using a similarity measure based on the Jaccard
coefficient. The Jaccard coefficient of two sets U and V is
defined as:

VUVUVUJ ∪∩= /),(.
Performance comparison with these approaches is not

obvious. Both exhibit results that are similar to our proposal.
However the content of the testing sets can have a large impact
on results. For instance servers used in [8] only include a few
hundreds pages when ours includes a few thousands. In [7] the
authors use a testing set of 100k pages originating from several
web sites. However the median number of objects referenced
per page in their testing set is 11 when ours is 5. Finally both
proposals do not take into account the effect of aging on the
composition of pages which might affect inference accuracy
defavorably as shown in [4]. As [8] appears to be the most
complete proposal, we implemented the matching technique
used in [8] in order to perform a comparison using a single

testing set. We however did not compare the time per request
as we did not try to optimize the similarity comparison
implementation. Results are the first set of numbers reported in
the "Jaccard based" line in TABLE II. Overall our
implementation performs significantly better. Apart from the
differences mentionned above another explanation could be
that [8] does not try very hard to obtain correct object sizes by
only considering the number of bytes transported in packets
(the authors claim a small difference does not have a large
impact on inference results). Instead we perform [4] additional
computations based on the expected sizes of HTTP headers.
However even when using these additional computations the
method proposed in [8] provided results that were still lower
(15% on average) than our page based proposal (Results are the
second set of numbers reported in the "Jaccard based" line in
 TABLE II.).

VI. CONCLUSION
In this paper we show how page level relations can be used

to significantly improve the accuracy of our web traffic
analysis software. We believe this work can impact two
different fields. One of them is network management as the
ability to infer users' activities can provide network operators
with tools to differentiate traffics more accurately. The other
field is the privacy of communications. As shown here, even
synthetic, flow based information can lead to a good
understanding of operations performed by users. Interestingly,
as demonstrated in [7], [8] as well as more recent work [9],
TLS/SSL encryption might not provide much help in term of
privacy for web exchanges.

VII. REFERENCES
[1] T Karagiannis & al., BLINC: Multilevel traffic classification in the dark,

ACM SIGCOMM 2005 conference, 2005.
[2] Kuai Xu & al., Profiling Internet Backbone Traffic: Behavior Models

and Applications, ACM SIGCOMM 2005 conference, 2005.
[3] J. Herman, al., Internet Traffic Identification using Machine Learning,

IEEE GLOBECOM 2006 conference, 2006.
[4] Olivier Paul, Jean Etienne Kiba. RequIn, a tool for fast web traffic

inference, IEEE GLOBECOM 2005 conference, 2005.
[5] Félix Hernández-Campos & al., Tracking the Evolution of Web Traffic:

1995-2003, ACM/IEEE MASCOTS 03 conference, 2003.
[6] P. Barford and M. E. Crovella, Generating Representative Web

Workloads for Network and Server Performance Evaluation, ACM
SIGMETRICS ’98 conference, 1998.

[7] Statistical Identification of Encrypted Web Browsing Traffic, Qixiang
Sun, Daniel R. Simon, Yi-Min Wang, Will Russell, Venkata N.
Padmanabhan, Lili Qiu, In Proceedings of IEEE Symposium on Security
and Privacy, Oakland, CA, USA, May 2002.

[8] Traffic analysis of SSL encrypted Web Browsing, Heyning Cheng and
Ron Avnur, 1998.

[9] sMonitor: A Non-Intrusive Client-Perceived End-to-End Performance
Monitor of Secured Internet Services, Jianbin Wei and Cheng-Zhong
Xu, USENIX Annual Technical Conference, 2006.

[10] What TCP/IP Protocol Headers Can Tell Us About the Web, F.
Donelson Smith, Felix Hernandez-Campos, Kevin Jeffay, David Ott,
ACM SIGMETRICS/Performance, 2001.

