
HAL Id: hal-03643484
https://hal.science/hal-03643484

Submitted on 22 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Development and digital twin of an experimental
opto-electrothermal bench in the perspective of thin

films thermal characterization
Sébastien Peillon, Petru Notingher, Christophe Rodiet

To cite this version:
Sébastien Peillon, Petru Notingher, Christophe Rodiet. Development and digital twin of an exper-
imental opto-electrothermal bench in the perspective of thin films thermal characterization. Inter-
national Journal of Thermal Sciences, 2022, 178, pp.107549. �10.1016/j.ijthermalsci.2022.107549�.
�hal-03643484�

https://hal.science/hal-03643484
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


 

 1

Development and digital twin of an experimental opto-electrothermal 

bench in the perspective of thin films thermal characterization 

 

Sébastien PEILLON1,2, Christophe RODIET3 and Petru NOTINGHER2. 

 
1EPF, 21 Boulevard Berthelot, 34000 Montpellier, France 

2IES, Univ Montpellier, CNRS, Montpellier, France 

3Université de Reims Champagne Ardenne, ITheMM EA 7548, 51097 Reims, France 

Corresponding authors: sebastien.peillon@epfedu.fr; christophe.rodiet@univ-reims.fr   

 

Abstract – This work aims to widen the application of the front Flash methods to dielectric 

materials with thermal conduction times ranging from seconds to a few tens of nanoseconds. 

In this perspective, the design and characteristics of an experimental opto-electrothermal 

bench are presented here: its principle is based on the Flash methods (short optical excitation) 

however combined with an electrothermal measurement. The development of direct models 

acting as digital twins of the bench is also described. They allow considering its 

electrothermal behaviour, by taking into account the 1D thermal diffusion in a multilayer 

sample and the non-ideal frequency response of the acquisition chain (signal conditioner and 

the measuring devices) according to the sample thermal dynamics – which is little discussed 

in the literature to the authors’ knowledge. The methodology proposed here for the sizing and 

consideration of the acquisition chain can be applicable to other electrothermal measurements 

methods such as the 3� methods. 

 

Keywords: differential measurements, digital twin, Flash methods, opto-electrothermal 

bench, thermal characterization, thin films. 

 

Nomenclature: 

� thermal diffusivity (�/(��	)), ��. ��� � thermal conductivity, �.���. ��� 
� electric capacitance, � � heat flux density, �.��� �	 specific heat capacity, �. ����. ��� � heat flux density in the Laplace domain 
� battery voltage, � � density, ��.��� �� effusivity (����	), �. ��. ���. ���/� � standard deviation 

  thickness, � !"#$%& laser pulse duration, � � frequency, '( !)* thermal conduction time ( �/�), � + conductance, Ω�� - temperature in the Laplace domain .� imaginary part Subscript and superscript / imaginary unit 0 initial 
L Laplace transform �1� admissible 
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�2  mean � capacitive (model) or cable (resistance, 

inductance, conductance or 

capacitance) 
34 number of time points 5 power, � 6 Laplace variable ��7� calculated 8 energy, � �9�6 compensation (capacitance) : electrical resistor, Ω  ; equivalent < reflectance, %  >6 experimental :  real part  31 last (value) ? surface, �� � Sample/layer (film) to characterize @ temperature, °� B index of elements 4 time, � B34 internal (resistance) C, � electric voltages, � 7�� E laser F electric voltage in the Laplace domain � mean (model) or maximum (value) 

��E variance 9�� oscilloscope (device) 

G angular frequency (2I�), E�1  6 common value of the Wheatstone 

bridge resistors (:J, :�, :�, :K) L sensitivity M electric impedance in Laplace domain E transducer (sensor/strip) 
Greeks symbols � shunt (resistance) N thermal coefficient, ��� �B semi-infinite (model) O parameter 4P theoretical Q emissivity R variable S#T$ absolute error ∗ reduced value S&%" relative error, % |	| absolute value or modulus (for 

complex numbers) S&%",X#Y maximum relative error, %  
Λ mean free path, � bold: vector 

 

1. Introduction 

Flash methods are widely used for the thermal characterization of materials ([1]–[4]). Yet, 

they are commonly restricted to ~0.1	�  thick materials ([5], [6]), thus limiting the 

characterization of low conduction times ones. To face this issue, it is required adjusting the 

characteristic times of both the excitation pulse (Dirac condition in time) and the temperature 

sensor (rapidity/delay), which is typically an infrared one to benefit from the non-invasive 

nature of optical methods. However, the use of optical sensors does not necessarily imply 

non-invasive measurements anymore for the characterization of thin films: their possible 

semi-transparency properties often require the use of an opaque coating to absorb and 

transmit the optical excitation [7]. Moreover, thin films short thermal time responses are a 

challenging issue that involves measuring high-frequency signals. Those high frequencies can 

then degrade the behaviour and sensitivity of the measuring systems (electronic components), 

which can result in a modification of the signal time slope or a low signal-to-noise ratio. All 

these aspects lead to the use of specific methods adapted to thin film thermal characterization 

[5]: either electrothermal ones such as the 3� methods ([8], [9]) or optical ones like the 

FDTR/TDTR (Frequency/Time Domain ThermoReflectance) ([10]–[12]), both requiring a 

metal deposit. 
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This work aims to further develop a “hybrid” method still little documented ([13]–[16]). Its 

principle is based on the Flash methods (short optical excitation), however combined here 

with an electrothermal measurement of a thin metallic film. It therefore benefits from some 

advantages of the Flash methods: in particular, the simplicity of the thermal models to 

implement (a mere 1D diffusion model can be considered) and covering a wide range of 

thermal conduction times and conductivities. Two main objectives are pursued in this paper.  

The first objective is to present the design and characteristics of the experimental opto-

electrothermal bench designed to extend the applicability of the front Flash methods to 

dielectric materials with thermal conduction times ranging from seconds to a few tens of 

nanoseconds. Therefore, it has the potential to cover a wider range of conduction times that 

the methods mentioned earlier. It includes low thermal conductivity materials, such as 

polyethylene (thermal conductivity of about 0.5	�.���. ���, [17]–[19]) or glass (thermal 

conductivity of about 1	�.���. ��� ), but also high thermal conductivity ones such as 

aluminium nitride (AlN, thermal conductivity of around 100	�.���. ���  with the 

possibility to exceed 250	�.���. ���, [9], [20]–[22]) or diamond (thermal conductivity of 

around 2000	�.���. ��� ). In this paper, the focus is on the intermediate range of 

1	�.���. ��� to ~100	�.���. ��� corresponding to the study of glass and AlN samples. 

The second objective is to develop direct models that can act as digital twins of the developed 

bench and allow considering its electrothermal behaviour (thermal diffusion of the sample 

and non-ideal frequency response of the acquisition chain to its thermal dynamic). The 

resulting models will be useful for the subsequent implementation of the parameter 

estimation procedure (as simulation and inversion models for the characterization of an 

effective thermal conductivity or diffusivity). In this paper, thermal models are deliberately 

simplified for the benefit of a first approach in considering and identifying the impact of the 

acquisition chain on the measured signal – which is little discussed in the literature to the 

authors’ knowledge. The development of these thermal models will be the subject of 

subsequent studies (with due consideration to interface thermal resistances [6], [23]). Note 

that the methodology exposed here to obtain the electrothermal models can be extended to 

other electrothermal measurement methods. 

This work will therefore address the following aspects. First, the proposed setup of the 

characterization bench is exposed ([13], [16]) with its associated acquisition chain. An idea of 

the frequency range held by the signals to be measured is also given, as a correct sizing of the 

bench depends on it (section 2). The frequency response of the acquisition chain is indeed 

dependent on the thermal dynamic of the sample. Thus, the implementation of simplified 

thermal models is studied. The spatial characteristics of the laser (optical excitation) are first 
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investigated to aim for the validation of a 1D thermal diffusion in multilayer samples. The 

introduction of simplified 1D models follows, based on a quadripolar formulation and 

considering the experimental time shape of the laser excitation (section 3). It is then possible 

to establish the electrothermal models related to the previously introduced acquisition chain, 

while justifying its design. A sensitivity study of the Wheatstone bridge is proposed in respect 

with the involved transducer to determine the optimal configuration of measurement. 

Furthermore, the use of a differential probe and its frequency response is discussed afterward 

in comparison with pseudo-differential measurements methods. To do so, the distortions 

occurring on the measured signal are implemented in the thermal modelling, resulting in 

electrothermal models adapted to various measuring devices (section 4). First experimental 

results are finally proposed on a glass sample to illustrate in first approximation the non-

idealities of the acquisition chain (section 5). 

 

2. Experimental bench and associated issues  

To determine the effective thermal conductivity �^ of a (thin) sample, an inverse method is 

coupled with measurements over time of the temperature of an opaque metallic layer (in our 

case, aluminium – Al). This layer, used as a transducer, is deposited on top of the dielectric 

thin sample to be characterized (which can be on a substrate), resulting in a multilayer 

system. Studies conducted on this paper consider materials with either a low (glass – Sample 

n°1) or high (AlN – Sample n°2) thermal conductivity value, as the latter have a wider 

frequency spectrum (see later in this section) that can affect the acquisition chain.  

Parameters used for numerical studies are given in Table 1. 

 

 
� _�.���. ���` ��	 _�.���. ���` � _��. ���`   _a�` !)* _�` 

Transducer - 
Al 

120 ([11], 

[24])	
2.4 ⋅ 10d	

5 ⋅ 10�e	 0.2	 (f 10Λ [25])	 0.8 ⋅ 10�h	
Sample n°1 – 

Glass 1	 6 ⋅ 10�j	 1000	 1.7	
Sample n°2 - 

AlN 
92 [20]	 3.8 ⋅ 10�e	 5000	 0.7	

Table 1. Properties of studied materials. � m �/(��	), !)* m  �/�. 

The metallic layer (transducer) is an element of a balanced Wheatstone bridge where it is 

acting as an electric resistor (see Figure 1). Various shapes of aluminium metallic transducers 

are proposed in Figure 2 to tend to respect 1D thermal diffusion assumption in the sample 

(width larger than the thickness, weakly intrusive with regard to its conduction time, …) and 
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electrical constraints (admissible power, bridge sensibility, …) further exposed respectively 

in sections 3 and 4.1. After heating with a short (~10	3�) laser pulse, the thermoresistive 

effect of the transducer is used to determine its thermal evolution Δ@& induced by diffusion in 

the sample. Main characteristics of devices used (including the laser [26]) are displayed in 

Figure 3. 

 
Figure 1. Schematic of the experimental opto-

electrothermal method setup (a differential probe 

acts as the measuring device, but will be 

compared to other devices in section 4.2) 

 
Figure 2. (a) Schematic of a bilayer 

sample (serpentine transducer shape). 

(b) Proposed transducer shapes (from 

left to right: serpentine, serpentine disc, 

disc, square inscribed in the disc) 

 
Figure 3. References of some of the developed opto-electrothermal bench devices  

 

Measurements of the time-varying Wheatstone bridge voltage Cop(4) , designated as 

�qrs	rs(4) at the oscilloscope (see Figure 1), allow to obtain the electrical resistance of the 

metallic strip :&(@&) , and then its temperature variations Δ@&(4) . Indeed, the following 

relation can be used as a first approximation (for Δ@&,X#Y ≤ 10	°�): 

:&(@&) m :J(1 + N&Δ@&) m :J + Δ:&(@&)      (1) 
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where Δ@&(4) m @&(4) − @&(4J)  and with N& f 3.7 ⋅ 10��	���  (the aluminium thermal 

coefficient value used for simulations [27]). 

Temporal evolution of the measured signal �qrs	rs(4) depends for one part on the thermal 

diffusion in the sample (section 3). In this aspect, the temporal shape of the laser excitation is 

of importance due to its significant influence on the diffusion during the pulse duration, as 

highlighted in Figure 4 for an AlN sample. Heat flux modelling used for this example are 

fittings of the experimental time shape of the laser excitation measured by a photodiode [28], 

based on several expressions presented in section 3.2 (with the parameters values used). In 

the case where the heat flux time-shape is not precisely known (i.e. not measured), it may be 

necessary to study the performance of various modelling of this heat flux in the perspective 

of a model reduction (involving a reduced number of parameters, thus reducing numerical 

instabilities for instance – see section 4.2.2). 

It is pointed out in Figure 5 that the time of maximum temperature is influenced by the heat 

flux time shape, including when pulse duration is rigorously of the same length (!"#$%& m
10	3� for all heat flux modelling in Figure 5), as well as by the sample conduction time 

(illustration for glass and AlN samples whose conduction times !)* are indicated in Table 1).  

 
Figure 4. Influence of the experimental heat 

flux modelling on the thermal diffusion of an 

AlN sample (Sample n°2, “@X$w" model, see 

eq. (9) in section 3.3) 

 
Figure 5. Heat flux time shape influence on 

the time of the maximum temperature (heat 

flux duration !"#$%& m 10	3�, "@X$w" model) 

 

Furthermore, the measured signal �qrs	rs(4) is also affected by the acquisition chain (section 

4), which includes a modification of the time of the maximum temperature previously 

mentioned. Indeed, the thermal response dynamic of the sample measured through the 

acquisition chain is experimentally altered by non-idealities of electronic components 

performances at high frequencies [29]. 

It is then useful to evaluate an upper limit of those frequencies for a proper sizing of the 

acquisition chain. In this perspective, a Discrete Cosine Transform decomposition (DCT) is 

conducted on the thermal response of an AlN thin sample (material with the highest thermal 

dynamic among the two studied, see section 3.3). In this example, a semi-infinite monolayer 
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behaviour of the sample is considered: this model provides the highest spectral composition 

as later highlighted in Table 3, while being representative of the limit (ideal) case where the 

transducer influence tends to be negligible – by reducing its thickness and/or enhancing its 

conductivity. The experimentally collected temporal shape of the laser excitation is used for 

this illustration (fitted using a 4-slopes expression detailed in section 3.2). The results are 

displayed in Figure 6: the highest frequency �X allowing a good reconstruction of the signal 

is found in the frequency range of ~600	y'( , with a maximum relative error 

zS&%",X#Yz m 	max ~� ����(s)
X#Y(��)�� ≤ 1	% , where S#T$(4)  is the difference between the full-

spectrum reconstructed signal and the filtered one from the frequency �X . The associated 

reconstructed signal is displayed in Figure 7. A comparison with the DCT of the AlN sample 

while considering the Al transducer influence (thus resulting in a bilayer system) is also 

provided in Figure 6 (see section 3.3 for the thermal modelling used) and later discussed in 

this section. 

 
Figure 6. DCT of an AlN semi-infinite 

monolayer thermal signal (AlN – Sample 

n°2, experimentally fitted 4-slopes heat flux 

shape). A comparison with the DCT of an 

AlN semi-infinite signal considering the 

transducer contribution (bilayer model, "@X$w") is provided. 

 
Figure 7. Temporal signal of an AlN semi-

infinite monolayer thermal signal (AlN – 

Sample n°2, experimentally fitted 4-slopes 

heat flux shape), reconstructed by inverse 

DCT 

 

Maximum relative error zS&%",X#Yz  committed on the reconstruction for given maximum 

frequencies �X are given in Table 2. Those frequencies correspond to visible bounces on the 

spectral decomposition of the monolayer thermal signal in Figure 6.  

 

�X	_y'(` zS&%",X#Yz	_%` 
~30 ~60 ~150 ~10 ~300 ~3 

Table 2. zS&%",X#Yz obtained on the reconstructed signal after DCT for given frequencies �X 

(complete signal of an AlN semi-infinite monolayer with a 4-slopes heat flux, see Figure 6 



 

 8

and Figure 7) 

 

Comparison with a - semi-infinite monolayer - glass sample is also given in Table 3 and 

shows a slightly lower �X (~550	y'( compared to ~600	y'( previously). However, this 

frequency is further reduced when the contribution of the transducer to the thermal diffusion 

is considered (bilayer system with transducer on sample), as highlighted in Figure 6 (for the 

AlN sample) and Table 3 (see section 3.3 for the thermal modelling used). It is also reduced 

when only considering the relaxation phase (i.e. cooling phase) of the signal. This last aspect, 

highlighted in Figure 7 by observing lower values of S&%"(4) in the cooling phase of the signal 

(4 ∈ _4X; 1	μ�`), suggests lower distortions caused by the acquisition chain on this part, as it 

will be highlighted in section 4.2. 

 

Conditions Material �X	_y'(` 
Complete signal 

�X	_y'(` 
Relaxation phase 

4-slopes heat flux, 

semi-infinite monolayer 
Glass ~550 ~300 
AlN ~600 ~300 

4-slopes heat flux, 

bilayer ("@X$w" model) 
Glass ~250 ~150 
AlN ~400 ~300 

Table 3. Frequency �X  allowing a good reconstruction ( zS&%",X#Yz ≤ 1	% ) of either the 

complete signal or its relaxation/cooling phase after DCT  

Those frequency ranges are to be considered for a proper sizing of the measuring bench 

(especially of the measuring devices) to avoid frequency-dependent distortions.  

The reliability of the experimental set-up is also to be considered to minimize variability on 

the measurements (section 5). For differential measurements (Cop(4)), methods using a 

differential probe are often more expensive than pseudo-differential ones (where a 

mathematical difference between two measurements signals is performed). In return, it 

provides a better reliability of measurements by limiting the number of devices, connections 

and cables lengths, while usually benefitting of higher performances at high frequencies (see 

section 4.2 and [30], [31]). 

Some assumptions are made throughout this work. Variations in the bridge resistors ohmic 

values (other than the metallic transducer) are considered negligible due to their low self-

heating by Joule effect (maximum temperature coefficient of a resistor is 80	66�/°� [32]) 

and their low tolerance value (1% [32]). They can also be assumed non-inductive and non-

capacitive thanks to their design, contrarily to the measuring device (oscilloscope by itself or 

measuring probes) which presents a frequency-dependent behaviour. It is also assumed that 

initial stability of the acquisition chain is reached at the starting time of experiment 4J	_�` 
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corresponding to the time of laser impulse (probes and circuit are under voltage and heating 

temperature of the transducer after Joule effect – due to circuit powering up - is attained). 

 

3. Thermal modelling 

The behaviour of the measured electrothermal signal displayed on the oscilloscope depends 

on the thermal diffusion in the sample (Δ@&, see eq. (1)), which interacts with the frequency 

response of the measurement chain. Thus, it is important to use a direct model that can 

accurately describe the thermal evolution of the sample, while potentially involving a 

minimum number of parameters (parsimony principle). 

In this regard, uniformity of the thermal excitation provided by the laser must be 

experimentally checked (section 3.1). Indeed, in addition to the use of a transducer whose 

width (1	��, i.e. the impact diameter of the laser pulse) is much larger than its thickness 

(200	3�, see Figure 2 (b)) and a short study time range (1	μ�), it permits considering a 1D 

transient heat transfer (section 3.3). It should be noted that the transducer thickness is about 

10Λ, with Λ the mean free path of the heat carriers (see reference [25] for aluminium), to stay 

in a diffusive regime. 

Moreover, time-shape distribution of the laser is experimentally retrieved (section 3.2). This 

thermal excitation appears in the Laplace domain as a factor of a transfer function in the 

thermal models used (section 3.3). Therefore, it directly impacts the dynamic of the thermal 

signal (see Figure 4 and Figure 5). 

 

3.1. Heat flux spatial distribution 

Since an average heat temperature measurement is performed on the transducer, it is sought 

to ensure that the average 1D transfer can be considered identical to the global 1D transfer 

and does not require additional considerations of heat sink terms due to edge effects (non-

homogenous boundary conditions due to potential non-negligible lateral losses compared to 

the in-thickness heat transfer) or to local non-linearities caused by a strong spatial non-

homogeneity of the excitation. In that regard, a spatial uniformity check of the laser 

excitation is performed with a Gentec-EO Beamage-4M Profiler, whose spectral range is 

adapted to the laser wavelength of 1064	3� [26]. 

3D and 2D profiles are displayed at the top and bottom of Figure 8, respectively. Figure 9 

shows 1D profiles along the two lines (black and dotted red) displayed in the 2D profile of 

Figure 8.  
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Figure 8. 3D (top) and 2D 

(bottom) spatial distribution 

profiles of the laser excitation 

 
Figure 9. 1D spatial distribution profiles of the laser 

excitation along the two lines (black and dotted red) 

displayed in the bottom image of Figure 8 

 

Spatial distribution at the centre of the excitation can be considered globally uniform (flat 

front laser). In addition to the previously presented hypothesis (study time, transducer 

design), this tends to allow the use of 1D thermal models. 

 

3.2. Heat flux time shape  

The thermal diffusion of the sample being affected by the temporal shape of the laser 

excitation �"#$%&(4) (see Figure 4 and Figure 5), it must be experimentally retrieved and 

properly modelled to be considered with the transfer function of the thermal diffusion 

modelling (developed in section 3.3).  

The experimental laser time shape is thus collected with a Newport 818-BB-35F (fibre) 

photodetector [28] and represented in solid black line in Figure 10. A voltage plateau 

attributed to a malfunction of the photodiode is observed from ~10	3� to ~30	3�: this was 

confirmed by subsequent new, but noisier, measurements (lower experimental signal to noise 

ratio) performed with photodetectors of similar performances – Newport 818-BB-35 [33] and 

EOT ET-3600 [34] – that did not exhibit this behaviour. The signal is thus manually arranged 

here (for illustrative purposes only) to correct this distortion, resulting in the blue signal 

displayed in Figure 10. A new photodiode will be needed for the characterization procedure. 

The tendency of the reduced “corrected” signal (C"#$%&∗ (4) m C"#$%&(4)/max�C"#$%&(4)�) is 

then fitted with a least square method associated with a regularized Levenberg-Marquardt 

descent algorithm [35]. Various functions, expressed either in temporal or Laplace domain, 

are tested to find a simple yet accurate modelling of the heat flux temporal signal involving a 

minimum of parameters (and thus preventing as much as possible the appearance of potential 

numerical instabilities).  

Figure 11 displays fittings realized in the temporal domain with a gaussian function (red 

0 0.2 0.4 0.6 0.8 1 1.2

Distance along profile [cm]

0

50

100

150
Profile 1 (black)

Profile 2 (red)

Laser diameter: ~1 cm
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curve, described by eq. (2)) and a 400-terms real Fourier series (blue curve, described by 

eq. (3)). This last fitting was realized with a “Simple real Fourier series approximation” 

algorithm [36]. 

Gaussian: C"#$%&,�#r$$(4) m � �(���)�
���        (2) 

with � m �
�√��, where � m 1.6	3� and a m 4.5	3� are respectively the standard deviation and 

the mathematical expectation estimated simultaneously with � m 3.5 ⋅ 10�h  (amplitude 

coefficient, see Figure 11).  

Fourier series: C"#$%&,�qr&w%&(4) m o�
� + ∑ (�� cos(�4) + �� sin(�4))KJJ�¢�    (3) 

where �� , �� , and �J  are the fitted coefficients of the Fourier series [36]. Once these 

coefficients are obtained, it is possible to freely reconstruct the fitted signal on the time of the 

experiment by using eq. (3). However, it is necessary to remove any sinusoidal variations 

appearing after !"#$%& (highlighted in Figure 11) due to the periodic behaviour of the Fourier 

series. 

If the gaussian function allows a good approximation of the heat flux temporal behaviour, the 

Fourier series is the most accurate of the two. 

 
Figure 10. Experimental laser time-shape 

signal collected with a photodiode and 

proposed correction of distortions 

 
Figure 11. Fitted functions on the reduced 

laser time-shape signal, expressed in the 

temporal domain (zoomed) 

 

A quadrupole formulation being used for the thermal models developed in section 3.3, tests 

are carried out with functions expressed in the Laplace domain (F"#$%&(6) mℒ�C"#$%&(4)�, 

see eq. (8) in section 3.3 for the Laplace transform definition). It will result in simpler 

expression of the thermal and electrothermal models developed later in this paper.  

Figure 12 displays fittings performed with two functions: a triangle function (red curve 

described by eq. (4), implying three introduced parameters), which seems to be the global 

tendency of the heat flux behaviour, and a rectangular function (blue curve described by eq. 
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(5)), one of the usual functions in Laplace domain benefitting from very few (two) 

parameters to introduce. The inverse Laplace transform is carried out thanks to a numerical 

De Hoog algorithm [37]. Note that the Laplace transform of the Gaussian expression is not 

used here as it does not converge easily in the time domain when 4 → 0	� (as highlighted in 

[38]). 

Triangle: F"#$%&,s&(6) m ¤¥
¦¥	� (1 −  �¦¥	) + ¤¥

(¦¥�¦§��¨©)	� ( �¦¥	 −  �¦§��¨©	)   (4) 

where CX m 0.84, !X m 4.45	3� and !"#$%& m 8.69	3� are estimated (see Figure 12). 

Rectangular: F"#$%&,&%)(6) m ¤¥
	 (1	 −	 �¦§��¨©		)     (5) 

where CX m 0.44 and !"#$%& m 7.87	3� are estimated (see Figure 12). 

While the rectangular function is clearly not adapted to describe the heat flux temporal 

behaviour, it is not so obvious for the triangle function. A more accurate model based on a 4-

slopes interpolation function is thus proposed in comparison in Figure 13. Its expression is of 

the following form: 

4-slopes: F"#$%&,K$"q	%$(6) m ¤ª
¦ª	� (1 −  �¦ª	) + ¤ª�¤¥

(¦ª�¦¥)	� ( �¦ª	 −  �¦¥	) −
¤��¤¥

(¦¥�¦�)	� ( �¦¥	 −  �¦�	) + ¤�
(¦��¦§��¨©)	� ( �¦�	 −  �¦§��¨©	)    (6) 

where estimated values are indicated in Figure 13. 

 
Figure 12. Fitted functions on the reduced 

laser time-shape signal, expressed in the 

Laplace domain (zoomed) 

 
Figure 13. Fitted 4-slopes interpolation 

function expressed in the Laplace domain on 

the reduced laser time-shape signal (zoomed) 

 

This 4-slopes expression is clearly more adapted that the triangle one to describe the heat flux 

behaviour. In addition, using temporal domain heat flux expressions will imply to perform 

multiple convolutions to obtain the thermal and electrothermal signals (see eq. (9) to eq. (14) 

and eq. (23) to eq. (26)). The choice is thus made to use this Laplace domain 4-slopes 

expression, using the values indicated in Figure 13 for the next numerical studies.  
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Influence of this heat flux temporal shape compared to the Fourier series fitted one 

(presenting fewer differences with the collected signal, see Figure 11) is highlighted in 

section 3.3 on the thermal diffusion of a glass and an AlN sample. A good agreement is 

observed over the whole thermal signal (zS&%",X#Yz ≤ 1.6%), indicating a fine performance of 

the 4-slopes fitting. 

However, this expression involves many parameters (seven parameters) to introduce, which 

can generate numerical instabilities (see section 4.2.2). In those cases, the triangle function, 

presenting fewer parameters (three parameters), is appealing to continue working in the 

Laplace domain. The influence of these two heat flux expressions (4-slopes and triangle) on 

the thermal diffusion is compared in the context of the materials studied in this paper in 

section 3.3. It will be shown that using any of these expressions only lead to a small 

difference between the two thermal signals while focusing on their relaxation phase 

(zS&%",X#Yz ≤ 3	%). 

Finally, the expression of �"#$%&(6) in the Laplace domain can be obtained as follows: 

�"#$%&(6) m 8�1 − <(�7)�F"#$%&∗ (6)/? ≡ �XF"#$%&∗ (6)     (7) 

with 8 the incident energy, <(�7) the reflectivity of the aluminium (Al) transducer at 1064 

nm and where �X represents the power absorbed by the aluminium transducer per surface 

unit. 

Experimentally, the time shape of the laser impulse is measured during each experiment by 

deflecting part of the laser beam using an optical beam routing. 

 

3.3. Sample thermal modelling 

Now as spatial uniformity is assessed and as the heat flux time shape is recovered, a 

comparison of two different 1D models is proposed in this section to determine the evolution 

of the metallic strip temperature Δ@&(4).  
The first one considers temperature changes according to the metallic transducer thickness 

and then its mean temperature (eq. (9)) [16]. The second model, more valid as the transducer 

is thin and sufficiently good thermal conductor, considers it as an isothermal layer (eq. (10)). 

Unlike the first model, it does not imply the knowledge of the transducer conductivity 

property (which can be thickness-dependent) and will therefore simplify the use of the model 

for the first tests on experimental data (see section 5). Its validity is checked in first 

approximation in this section. 

As for the sample, it can be considered as a semi-infinite layer thanks to the short study time 
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(1	μ�) compared to the materials conduction times !)* (indicated in Table 1, section 2). It is 

pointed out that interface thermal resistance between the transducer and the sample (existing 

due to the lattice mismatch, rugosity, interstitial third body, …) is not considered here and 

will be the subject of subsequent studies. 

Furthermore, thermal exchanges with the surroundings can be neglected thanks to a weak 

emissivity of the metallic transducer (Q& < 0.1), temperature rise (Δ@ ≤ 10	°�) and short-

time measurement (1	μ�). 

The problem can then be modelled using a quadrupole expression [39] expressed in the 

Laplace domain, whose transform is defined as: 

-w(6) m L		(@w(4) − @­)(6) m ® (@w(4) − @­) �	s14¯­
J                     (8) 

In the case of a “mean temperature” transducer (see Figure 14), the Laplace transform of the 

difference between the transducer and the surrounding medium temperatures -&(6)  (see 

eq. (1)) can be written as: 

°±²³ 	model: -&(6) m o©¯p©´µ,¶
·©¯´µ,¶¸© �"#$%&(6)      (9) 

with �"#$%&(6) m �XF"#$%&∗ (6) (see section 3.2). Coefficients in eq. (9) are detailed in Figure 

14. 

 

Figure 14. Quadrupole schematic of the heat diffusion in a bilayer medium (the "mean 

temperature" of the transducer is considered [16] on a semi-infinite sample) 

 

By modelling the transducer as a capacitive medium (isothermal layer, see Figure 15), the 

diffusion can be modelled by the following quadrupole form: 
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Figure 15. Quadrupole schematic of the heat diffusion in a bilayer medium (a capacitive 

modelling of the transducer is considered on a semi-infinite sample) 

The model then degenerates into: 

°¹²³	model: -&(6) m �
·©¯´µ,¶ �"#$%&(6)                    (10) 

with �"#$%&(6) m �XF"#$%&∗ (6)  (see section 3.2). Coefficients in eq. (10) are detailed in 

Figure 15. 

By applying a numerical inverse Laplace transform [37] on eq. (9) and eq. (10), thermal 

models “@X$w” and “@)$w” models are respectively obtained in the temporal domain. 
Figure 16 thus displays the thermograms of the investigated materials (see Table 1 in section 

2) obtained using those thermal models (capacitive “@)$w” or “mean temperature” “@X$w”) until 

1	μ�. The greater dynamic response of the AlN signal is clearly distinguished. Also, the bias 

on the aluminium transducer modelling increases as the conductivity of the sample is higher, 

as highlighted in Figure 17. It is thus not very pregnant for the low conductivity glass sample 

(zS&%",X#Y)qX	"%s%z f 2	%), contrarily to the AlN one (zS&%",X#Y)qX	"%s%z f 21	%). However, this bias is 

reduced when focusing on the relaxation phase (zS&%",X#Y&%"#Y#swqºz f 0.5	% for the glass sample 

and zS&%",X#Y&%"#Y#swqºz f 12	% for the AlN one). It will allow (in first approximation) the use of a 

capacitive modelling of the transducer to reduce the number of parameters in first 

experimental tests on experimental signals conducted on glass samples in section 5. It is 

pointed out that the relative maximum error is reduced such that zS&%",X#Y&%"#Y#swqºz ≤ 1	% for the 

AlN sample when 4 ≥ 36.5	3�. 

Deposited energy was adjusted in all studied cases to attain a 10	°� temperature elevation. 
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Figure 16. Thermograms of studied materials 

(time study of 1	μ�) 

 
Figure 17. Biases on the thermal modelling 

of the transducer (zoomed) 

 

In addition, the influence of the heat flux time shape modelling on the dynamics of the 

thermal signals is highlighted for the glass sample in Figure 18 and the AlN sample in Figure 

19 for the "@X$w" model: from the most accurate to the least accurate heat flux modelling, the 

thermal signals based on a Fourier series (resulting from the convolution of eq. (3) with the 

transfer function of eq. (9) multiplied by the factor �X described in eq. (7)), a 4-slopes (see 

eq. (6)) and a triangle (see eq. (4)) heat flux expressions are thus compared here.  

To do so, the relative error S&%"	(4) m S#T$(4)/max(¼@)	 is computed in each case, where 

S#T$(4) is the difference between the thermal signal considering the most accurate heat flux 

modelling and that considering the least one, and max(Δ@) is the maximum temperature of 

the signal with the most accurate heat flux modelling. A higher maximum relative error 

|S&%",X#Y| is systematically observed during the heating phase, as reported in Table 4. Thus, 

the triangle heat flux modelling can be considered in first approximation on the relaxation 

phase of the signal, including when compared to the Fourier series heat flux modelling (in 

both cases, zS&%",X#Yz ≤ 0.6	% for the glass sample and zS&%",X#Yz ≤ 3	% for the AlN one). 

Finally, the small differences between the complete signals based on the 4-slopes and the 

Fourier series heat flux modelling can be noted (zS&%",X#Yz < 2	% for both materials) and 

indicate in first approximation a good reliability of the 4-slopes modelling. 

Similar results were found with the "@)$w"  model in the same configurations. It is also 

reminded that the influence of the others modelling of the heat flux time shape on the 

thermograms (gaussian and rectangular expressions proposed in section 3.2) is illustrated in 

Figure 4 on the thermal diffusion of an AlN sample.  
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Figure 18. Comparison of heat flux time 

shape influence on the thermal signal of a 

glass sample (Sample n°1) 

 
Figure 19. Comparison of heat flux time 

shape influence on the thermal signal of an 

AlN sample (Sample n°2) 

 

Signals based  
on a … 

Material 
zS&%",X#Yz 

Complete signal 
zS&%",X#Yz 

Relaxation phase 
4-slopes heat flux 

compared to  
triangle heat flux 

Glass 9.3	% 0.6	% 

AlN 12.8	% 3	% 
triangle heat flux 

compared to  
Fourier series heat flux 

Glass 9.3	% 0.5	% 

AlN 13	% 2.7	% 

4-slopes heat flux 

compared to  
Fourier series heat flux 

Glass 1.2	% 0.7	% 

AlN 1.7	% 1.5	% 

Table 4. Comparison of thermograms based on the "@X$w" model using several heat flux time 

shape modellings introduced in section 3.2. Similar results are obtained with the "@)$w" model 

4. Acquisition chain sizing 

4.1. Optimization of the Wheatstone bridge 

4.1.1. Bridge sensitivity 

Experimentally, the variation of the transducer temperature Δ@& (see section 3.3) is provided 

by the variation of the - out of balance - voltage of a balanced Wheatstone bridge. Several 

advantages come from the use of differential measurements methods. As such, it is possible 

to cancel out the offset voltage – thus obtaining a full scale on the oscilloscope – and to 

minimize signal saturation and clipping problems. Moreover, effects of non-ideal behaviour 

of resistors (capacitive and inductive) due to high frequencies are reduced. Some influencing 

factors are also compensated, like variations of the power supply (potentially unstable at high 

frequency and sensitive to electromagnetic noise, generated by the laser impulse for instance) 

– this effect is illustrated later in this section. 

Several measurement methods exist for measuring the bridge differential voltage Cop(4) 
[31], resulting in various expressions of this voltage. Two methods are investigated in this 
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paper and illustrated in Figure 20, where � is the generator (or battery) voltage and :wºs its 

internal equivalent series resistance whose influence is studied in section 4.1.2.  

The first method is a “differential probe measurements” technique (involving a differential 

probe, see Figure 20 (a)), while the second one is a pseudo-differential measurements (also 

called an “A Minus B”) method where a mathematical difference between a first (��) and a 

second (��) signal voltage is computed (by the oscilloscope or post-measurements). This last 

pseudo-differential method is performed either with two passive single-ended probes (with 

each probe ground lead referenced to ground points y� and y�, see Figure 20 (b)) or, in a 

downgraded way, with two direct cable connections from the oscilloscope to the bridge 

circuit (see Figure 20 (c)). Other options are possible but not investigated here (one of them is 

the use of active probes [40]). 

 
Figure 20. Schematics of the Wheatstone bridge differential voltage measurement, using a 

differential probe (a), two passive measurement probes (b) or two direct connections to the 

oscilloscope (c). The last two cases are studied examples of the so-called pseudo-

differential measurement methods (mathematical subtraction of two signals). Note that �qrs	rs, �� and �� are distinguished from respectively Cop, �o and �p 

 

In comparison with the differential probe method, pseudo-differential methods are affordable 

(i.e. cheaper than differential ones) and easy-to-access approaches that, however, can only 

provide good results if probes, ground leads, cables and oscilloscope channels are well 

matched to maximize the common mode rejection ratio [30]. In this aspect, differential probe 

measurements are often more reliable by providing a better common mode rejection ratio at 

higher frequencies, as it will be highlighted on the experimental measurements (see section 

5).  

In both cases, special care must be given to the probes characteristics (bandwidth, input 

capacitance and resistance, …, see section 4.2) in accordance to the expected frequency 

spectrum of the signal to be measured (as shown in section 2) to minimize the influence of 

the acquisition chain on the measurements. 

In the case of differential probe measurements (Figure 20 (a)), the voltage Cop(4) can be 

defined in the Laplace domain by: 
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Fop(6) m ½	¾�(	)(¿À¾©(	)�¿Á¿�)
Ɣ(	).(¿À¯¿Á)(¾©(	)¯¿�)¯¿ÃÄ�Å¾�(	)(¾©(	)¯¿�¯¿À¯¿Á)¯�¿Á¯¾©(	)�(¿À¯¿�)Æ                   (11) 

where Ɣ(6) m M$(6) + ¿À¿Á
¿À¯¿Á + ¾©(	)¿�

¾©(	)¯¿�  and M&(6) m ℒ �:&(4)� m :J + ℒ �Δ:(4)�  is the 

transducer impedance (“Sample with transducer” in the schematics in Figure 20, see eq. (1)). 

M$(6) is the input impedance of the measuring device, whose impact and modelling are 

further studied in section 4.2.1 (consideration of the connection to the oscilloscope by a 50	Ω 

termination is overlooked in this expression due to its low value compared to probe 

impedance value ~100	�Ω, see section 4.2.1): 

M$(6) m ¿�
�¯¿�·�	                      (12) 

In the case of pseudo-differential measurements (Figure 20 (b) and (c)), the voltage Cop(4) m
�o(4) − �p(4) is expressed in Laplace domain by another expression: 

Fop(6) m ¾©(	)Å¿Ç(	)�½�ÈÉ,��¯¿Á�ÈÉ,ª�ÈÉ,��Æ�¿Ê(	)¿Á�½�ÈÉ,ª�¯¿ÃÄ��ÈÉ,ª�ÈÉ,��(¾©(	)¯¿Á)
¾©(	)(¿Ç(	)¯¿Á)¯¿Ê(	)�¿Á¯¿Ç(	)�¯¿ÃÄ��¿Ç(	)¯¿Ê(	)¯¿Á¯¾©(	)�           (13) 

where :o(6) m ¿À¾�,ª(	)
¿À¯¾�,ª(	)  and :p(6) m ¿�¾�,�(	)

¿�¯¾�,�(	) , with M$,�(6)  and M$,�(6)  the input 

impedance of the channel 1 (��) and channel 2 (��) respectively: when using passive probes, 

it includes their impedance and their connection to the oscilloscope (see Figure 20 (b) and 

eq. (18) in section 4.2.1), or in the case of direct connections to the oscilloscope, the 

impedance of the cables and their connection to the oscilloscope (see Figure 20 (c) and 

eq. (17) in section 4.2.1). Further details are given on how electric connections to the 

oscilloscope are realized in section 4.2.1. �Ë,�  and �Ë,�  are respectively the ground leads 

voltages of the channel 1 and channel 2 passive probes which, in theory, are of the same 

value and null.  

When using direct connection cables, it is pointed out that the ground used is the internal 

reference of the oscilloscope (grid-related ground), which can differ of the ground circuit 

[30]. 

Assuming that passive probes (or direct connection cables) are well matched (same model 

device or connection cables, i.e. M$,�(6) f M$,�(6) f M$(6) , described by eq. (17) and 

eq. (18)) as well as ground leads voltages (meaning that ground lead cables type, length, 

connection and positioning are similar, i.e. �Ë,� f �Ë,� f 0	� ), this expression can be 

simplified as follows:  
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Fop(6) m ½	¾�(	)_¾�(	)(¿À¾©(	)�¿Á¿�)¯¿�¿À(¾©(	)�¿Á)`
_¿À¿Á¯¾�(	)(¿À¯¿Á)`_¾©(	)¿�¯¾�(	)(¾©(	)¯¿�)`¯¿ÃÄ�_¿�¿À(¾©(	)¯¿Á)¯¾�(	)¿Ì(	)`               (14) 

where :·(6) m (:� + :�)(M&(6) + :K) + 2:�:� + M$(6)(M&(6) + :� + :� + :K).  
This expression will be used in the paper’s continuation, as some parameters of eq. (13) are 

unknown (�Ë,�, �Ë,�, M$,�(6), M$,�(6)). Their influence is reduced by experimentally using 

the same measuring device on each channel (see section 4.2). 

Additionally, it is reminded that bridge compensation, allowing nullifying the initial offset 

(Cop(4J) m 0	�), is achieved if the following relation is verified at the initial time 4J: 

:�:&(4J) − :K:� m 0                        (15) 

This bridge compensation effect on symmetrical voltage variations (i.e. variations on each 

branch) is illustrated in Figure 21. The differential voltage Cop(4) is computed in two cases. 

The first one considers a balanced bridge (i.e. ∀B	 ∈ Î2; 3; 4Ï, :w m :&(4J) m :	 , thus 

satisfying eq. (15)) while using differential probe measurements (blue signal, see eq. (11)) or 

pseudo-differential measurements (dotted brown signal, see eq. (14)). The second case 

considers an unbalanced bridge (in the given example, :Î�;�;KÏ ≠ :&(4J)), thus displaying an 

initial voltage offset for differential probe measurements (red signal, see eq. (11)) and 

pseudo-differential measurements (dotted blue signal, see eq. (14)). The generator voltage � 

(green signal) is also represented. It is defined here as a direct (constant) voltage (�*) m 1	�) 

with added variations �#)(4)  that simulates unstable behaviour of the power supply (or 

approximately cables lead effects) at a given frequency ( �	 m 	�*) + 	�#)(4) m �*) +
 �s/¦ sin(2I�4), with here ! m 10�j	� a time constant and the frequency � m 57	y'().  

This behaviour can be induced by an external noise (laser electromagnetic noise) or cables 

exhibiting transmission lines conduct (ringing noise, see [31], [41], [42]). Note that M$ and 

:wºs are set for this study such that they do not influence the differential measurement (large 

shunt impedance compared to the bridge resistors, i.e. M$ → +∞, and :wºs m 0	Ω).  

It then appears that the differential voltage stays cleared from distortions with a balanced 

bridge. It is not the case of an unbalanced bridge configuration, which highlights the 

importance of the initial balance of the bridge to reduce the effects of such voltage variations. 

It should be noted that in the unbalanced bridge case, amplitude of the distortions depends on 

the values of the resistors and is further reduced while the initial balancing difference tends 

towards zero (i.e. (:�:&(4J) − :K:�) → 0). 

Next, it might be important to optimize the sensitivity of the bridge to improve the 

experimental signal-to-noise ratio. The bridge sensitivity to the transducer resistance 
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variation defined by LÒ¿(4) m 	 Ó¤ÇÊ(s)
ÓÒ¿  is thus studied in Figure 22, for several configurations 

presented in Figure 23 with respect to the expressions of Cop(4) established in eq. (11) and 

eq. (14). :Ô stands for the resistors whose values are changed for this numerical study and 

� m 1	� (direct voltage) is merely acting as a sensitivity multiplier. Again, M$ is supposed to 

be an infinitely large impedance in comparison to the other resistors (influence highlighted in 

section 4.2) and :wºs m 0	Ω (see section 4.1.2) to remove their contribution. In this case, 

sensitivity curves shown in Figure 22 are identical whether the measurement is performed 

with a differential (eq. (11)) or a pseudo-differential technique (eq. (14)) 

(S#T$,X#Y < 	10�e	�). Therefore, they are represented only once for readability; However, it 

will be highlighted that those sensitivities differ with respect to the input impedance M$(6). 

 
Figure 21. Influence of the generator 

voltage variations on the differential voltage 

 
Figure 22. Bridge sensitivity L�¿(4) to ¼: , 

for both differential probe and pseudo-

differential measurements methods 

 
Figure 23. Studied bridge resistors configurations (configurations 1 to 3) - :&  and :Ô 

resistors are here respectively fixed (r) and variable (v) values 

 

Figure 22 highlights that an optimum sensitivity is found when all bridge resistors (i.e. :	) 

are of the same value (:	 m :&, noted as local maxima in the figure) and maximized when 

:	 → 0 . However, this does not consider the limited power provided by the generator 

(5	 m 	��/:	), as well as the – low [32] - self-heating of the resistors.  

Moreover, the bridge resistors can withstand a limited power (admissible power 

5#*X	 ≤ 	30	� for resistors other than the transducer [32]). A minimum value of :	 must 

therefore be observed and can be determined using the following inequality:  

:	 ≥ ½�
KÕ�Ö¥                      (16) 
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In addition, the generator voltage � must be limited due to several considerations: by the 

measurement device input voltage limits (for instance, �#*X < 10	�  with the TDP3500 

differential probe – see section 4.2 - to respect its maximum admissible common mode 

voltage [43]) or by the current intensity supported by the sample with transducer - and its 

connections).  

If it appears beneficial to decrease the global value of the resistors to enhance the bridge 

sensitivity, thermal considerations limit this possibility, imposed by the heat transfer 

modelling (exposed in section 3.3) which requires that the transducer respects some 

constraints: metallic material, very low thermal conduction time !)*,& , large width to the 

thickness ratio and thicknesses  & ≪  ̂ , such that the transducer is weakly intrusive for the 

measurement and for the 1D assumption. Its geometry is then fixed (proposed geometries are 

presented in Figure 2 (b)) and consequently its initial resistance :&(4J) m :J (see eq. (1)).  

Studies not presented here (with electrothermal finite element simulations and 4-wire type 

electrical measurements) allow envisaging :J values ranging from 10	Ω to 100	Ω. Thus, this 

range holds in the cases investigated in this paper, with the Wheatstone bridge resistors in 

configuration 1 (i.e. :	 m :&, see Figure 23 (1)) to provide an optimal bridge sensitivity to 

transducer resistance variations Δ:.  

 

4.1.2. Influence of the internal resistance of the generator 

Furthermore, the bridge sensitivity is deteriorated by two more points: the measuring device 

influence (M$, investigated in the next section 4.2) and the internal resistance of the generator 

:wºs.  
As the latter increases, sensitivity of the bridge is reduced, as displayed in Figure 24 for 

discrete values of :wºs. It is pointed out that the influence of :wºs on the bridge sensitivity 

LÒ¿  is similar whether the measurements are performed with differential or pseudo-

differential techniques, which is highlighted by the overlapping of the corresponding curves 

in Figure 25). This sensibility decrease should be investigated. Indeed, if a 6	� Yuasa lead-

acid battery (characteristics in Figure 3 and [44]) displays an internal impedance value of 

~8	�Ω at 1	�'(, this value increases with respect to frequency [45]. A linear extrapolation 

of the behaviour exposed in the reference [45] would lead to a value of ~600	Ω at 600	y'( 

(see Figure 6 and Figure 7 in section 2). In this case, it greatly influences the sensibility of the 

Wheatstone bridge.  

It is shown in Figure 25 that the degradation due to :wºs can be considered negligible if the 

:	/:wºs  ratio exceeds 20 . This ratio should be maintained throughout all the time of 
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measurement of the signal.  

In the paper’s continuation, influence of :wºs will be neglected due to the lack of accurate 

data in its high frequency-dependent behaviour (in low frequency, its influence can be 

overlooked). 

 
Figure 24. :wºs  impact on the bridge 

sensibility for � m 6	�  (Yuasa battery 

voltage) and M$ → +∞  in Configuration 1 

(∀B, :w m :	)  

 
Figure 25. Influence of the ratios :	/:wºs 
and :	/M$  on the bridge sensibility L�¿ 

attainable in Configuration 1 (∀B, :w m :	). 100%  is equivalent to Configuration 1 

sensibility with :wºs m 0	Ø and M$ → +∞ 

 

4.2. Measuring device influence 

4.2.1. Modelling and influence of the measuring devices 

The bridge sensibility is further diminished by the influence of the measuring device 

impedance M$. Therefore, it is necessary to model its impact when acquiring the differential 

(measured) signal �qrs	rs displayed at the oscilloscope (see Figure 20).  

Ideally, M$  must be large (infinite) in comparison to the bridge resistors in order to avoid 

causing signal source loading and thus interfering with the measurements: :	/M$ ratio should 

be smaller than 10��  when performing differential probe measurements (eq. (11)) and 

9. 10�� with a pseudo-differential technique (eq. (14)) to reach at least 90	% of the bridge 

sensibility without any source loading effects, as indicated in Figure 25.  

Furthermore, this input impedance M$  can be further modelled by eq. (12) in the case of 

measurement probes, using :$ and �$ – respectively the equivalent resistance and capacitance 

of the measuring device, usually given by the manufacturer. Low values of resistance :$ can 

affect the amplitude of the measured signal while the capacitance �$, particularly important 

for high frequency signals, affects its rise time (it will be highlighted later in this section) 

([29], [41]).  

Moreover, these probes are connected to the oscilloscope, resulting in an additional influence 

to consider. The connection is usually performed either through a 50	Ω  (when using a 

differential probe) or a 1	yΩ  input termination (with passive probes or a direct cable 
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connection) and allows minimizing signal distortions caused by parasitic effects such as 

reflected signals (due to impedance mismatch, [41], [46]).  

It results in three equivalent circuits for the measurements methods studied in this paper 

([40], [47]). A schematic of these circuits is provided in Figure 26 for differential probes 

measurements and Figure 27 for pseudo-differential techniques, either with passive probes 

(Figure 27 (a)) or direct connections to the oscilloscope (Figure 27 (b)). :q$) and �q$) values, 

respectively the equivalent resistance and capacitance of the oscilloscope, are usually given 

by the manufacturer.   

 
Figure 26. Schematic of the equivalent electrical circuit of the input impedance of a 

differential probe. The impedance matching is done via the probe cable (characteristic 

impedance of 50	Ø). Based on [40] 

 

 
Figure 27. Schematics of the equivalent electrical circuit of the input impedance of one 

passive probe (a) and one direct cable connection to the oscilloscope (b). Based on [47] 

 

Note that probes display an attenuation factor �*  due to the voltage divider thus realized 

(�� ≠ �o for instance in Figure 27 (a)), allowing measuring signals of higher amplitude. The 

oscilloscope usually compensates this factor on the display. When using passive probes, it is 

determined - at low frequencies and approximately - by the voltage divider composed of the 

probe resistance :$  and that of the oscilloscope (:q$) f 1	yΩ, see next paragraph). This 

implies that 10:1 probes usually show larger resistance values than 1:1 probes and thus cause 

less source loading issues. In the differential probe case, it is done through the differential 

gain of the amplifier (see Figure 26). 

When considering the connection to the oscilloscope and the cable presence (which can 

possibly behave as transmission lines at high frequencies [42]), a new equivalent input 

impedance M$,w(6) can be expressed for pseudo-differential measurements, where B refers to 

the oscilloscope channel used (channels 1 and 2, B m Î1; 2Ï, see eq. (13)).  

When using the oscilloscope directly with cables, this expression is: 
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M$,w(6) m M)#T"%,w(6) + Mq$)(6) m ¾Ù��§¨,Ã(	)(�¯¿Ú�Ù·Ú�Ù	)¯¿Ú�Ù
�¯¿Ú�Ù·Ú�Ù	                  (17) 

where Mq$)(6) m ¿Ú�Ù
�¯¿Ú�Ù·Ú�Ù	. 

In the case of passive probes, it becomes: 

M$,w(6) m ¿�,Ã
�¯¿�,Ã·�,Ã	 + M)#T"%,w(6) + Mq$)(6) + M"%#*,w(6)                    (18) 

where Mq$)(6) m ¿Ú�Ù
�¯¿Ú�Ù�·Ú�Ù¯·ÙÚ¥Û,Ã�	 and M"%#*,w(6) is the impedance of the passive probe 

ground lead wire. �)qX	,w is a variable capacitance adjusted by the oscilloscope during the 

probe calibration procedure usually performed - for each channel - prior to the measurements 

with a square wave of frequency � m 1	�'(  (i.e. G m 2I ⋅ 10�	E�1 ). In particular, it 

compensates for the introduction of the probe capacitance (contrarily to the uncompensated 

cable capacitance when using a direct connection to the oscilloscope) by providing the 

suitable attenuation factor �*,w ([41], [47]).  

Indeed, assuming that 6 m /G, �)qX	,w is defined at the 1	�'( frequency such that: 

.� Ü¾Ú�Ù(ÝÞ)
¾�,Ã(ÝÞ) ß m 0                      (19) 

It results in Mq$)(/G)/M$,w(/G) the voltage divider transfer function - involved in eq. (25) and 

eq. (26) - a real number at this frequency.  

The passive probe attenuation factor is then defined by: 

�*,w m à¾Ú�Ù(ÝÞ)
¾�,Ã(ÝÞ) à                      (20) 

This factor is compensated by the oscilloscope with the attenuation value defined at 1	�'( 

such that �*,w�	�áâ m �*,w(G m 2I ⋅ 10�).  
As illustrated in Figure 28 for a Tektronix TPP1000 passive probe (see later this section, 

�*,w f 1/10), this factor is the same for all frequencies when cable M)#T"%,w(/G) and ground 

lead M"%#*,w(/G) impedances have little to no influence (i.e. low frequency measurements, see 

blue curve). However, this is no longer the case at high frequency when an impedance of 

these elements is considered (see red curve with the example of a 50	Ω lossless cable); It 

results in an imperfect compensation – by the oscilloscope - of the attenuation factor at these 

frequencies.  

To provide an example of these calculations in the simplified case when cable and ground 
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lead impedances are overlooked (i.e. M)#T"%,w(/G) m M"%#*,w(/G) m 0), �)qX	,w and �*,w�	�áâ can 

be defined by �)qX	,w m − ¿Ú�Ù·Ú�Ù�¿�,Ã·�,Ã
¿Ú�Ù  and 

�*,w�	�áâ m 	:q$)
ã�¯�·ÙÚ¥Û,Ã¯·�,Ã¯·Ú�Ù��¿�,ÃÞªäåæ��·�,Ãç¿Ú�Ù¯¿�,Ã

ã�¯�·ÙÚ¥Û,Ã¯·�,Ã¯·Ú�Ù���¿�,ÃÞªäåæ��ç¿Ú�Ù� ¯�¿Ú�Ù¿�,Ã¯¿�,Ã�
; with G��áâ m 2I ⋅ 10�	E�1. 

In this paper, the frequency-dependent behaviour of cables for the differential and passive 

probes measurements is overlooked due to the lack of accurate data on the technical 

description of the probes (thus M)#T"%(6) m 0). Consequently, it is assumed that values given 

by the manufacturer already include the probe cable input resistance and capacitance and that 

these are properly compensated at high frequencies (lossless cables at high frequencies). It is 

also assumed that the ground lead wire impedance of the passive probes is properly 

compensated (M"%#*,w(6) m 0).  

However, for the method using direct connections to the oscilloscope which can be 

performed with commercial BNC cables (for instance), the behaviour of a 1	� coaxial cable 

is modelled, either as a M)#T"%,w(6) m 50	Ω  (for B m Î1; 2Ï ) resistive impedance (lossless 

cable) or a transmission line [42].  

In this last case, Mq$)(6) is defined in eq. (17) as: 

Mq$)(6) m ¿Ú�Ù
�¯¿Ú�Ù_´Ù¯(·Ú�Ù¯·Ù)	`                    (21) 

with �) f 100	6� and +) f 7 ⋅ 10���	Ω�� respectively the capacitance of the coaxial cable 

and the conductance of the cable dielectric insulation.  

As for M)#T"%,w(6), it is defined as: 

M)#T"%,w(6) m :) + è)6                     (22) 

with :) f 17	�Ω  and è) f 253	3'  respectively the resistance and the inductance of the 

cable.  

The electric schematic of the equivalent input impedance in this case is given in Figure 29. 
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Figure 28. Influence of M)#T"%,w(/G)  on the 

frequency dependent value of the attenuation 

factor �*,w  realized by the voltage divider 

(TPP1000 passive probe). The oscilloscope 

compensates the value �*,w�	�áâ (set at 1	�'() 

at all frequencies 

 

Figure 29. Schematic of the equivalent 

electrical circuit of the input impedance of 

one direct coaxial cable connection to the 

oscilloscope modelled as a transmission line 

[42] 

 

With the modelling of M$  exposed, the choice of the measuring device to perform the 

differential measurement can now be discussed. It is done here by comparing a differential 

probe (Tektronix TDP3500 [43]), adapted to high frequency until 3.5	+'( , to pseudo-

differential measurements, either with two passive measuring probes (Tektronix TPP1000 

[48]) dedicated to high frequencies until 1	+'(  or with a high frequency ( 2	+'( ) 

oscilloscope used on its own with direct connections by coaxial cables (example of the 

Tektronix MSO5 [49]).  

Differentiation between these devices, other than their respective initial equivalent resistance 

and capacitance values (characteristics in Figure 3), depends on their bandwidth, hence on the 

deterioration of their characteristics at high frequencies. This deterioration is highlighted for 

their input impedance values, digitalized from their data sheet (black curves) in Figure 30 for 

the differential TDP3500 probe and Figure 31 for the passive TPP1000 probe. Resulting 

curves from manufacturer equivalent resistance and capacitance values are given (blue 

curves) along with the (red) curve resulting from the estimation of their values with a least-

squares method [35]. A better fitting being obtained for the TDP3500 probe, a new value of 

capacitance �$ for this probe is chosen (�$ m 0.49	6� instead of the manufacturer value �$ m
0.3	6�). 
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Figure 30. Frequency-dependent behaviour 

of the input impedance of the TDP3500 

differential probe. Extracted data from [43]. 

 
Figure 31. Frequency-dependent behaviour 

of the input impedance of the TPP1000 

passive probe. Extracted data from [49].  

 

Measuring devices also contribute to the amplification of the common mode voltage. Added 

to the differential voltage Cop(4)  (see eq. (11) and eq. (14)), this parasitic voltage is 

eliminated to a greater or lesser extent depending on the device used and its bandwidth in the 

case of a differential probe (see section 4.2.2).  

Thus, in the case of the differential probe, the voltage �qrs	rs(4) measured by the measuring 

device is expressed in the Laplace domain as: 

�qrs	rs(6) m �*é (6)Fop(6) ~1 + �
·Ë¿¿(	)

FÙ¥(	)
FÇÊ(	)�                   (23) 

with Fop(6) described by eq. (11) in section 4.1 - involving the input impedance of the 

differential probe M$(6) (see eq. (12)) -, �y::(6) the common mode rejection ratio of the 

probe (a frequency-dependent performance given by the manufacturer, further investigated in 

section 4.2.2) and the coefficient �*é (6) m ¾Ú�Ù(	)
¾Ù��§¨(	)¯¾Ú�Ù(	)�* (�* is the differential gain of 

the differential probe and Mq$)(6) m 50	Ω, see Figure 26), expressed in the Laplace domain.  

The coefficient �′*(6)  is compensated by the oscilloscope through proper probe 

compensation procedure at 1	�'( such that �′*(6) m �′* m 1. It is reminded that improper 

compensation of this attenuation at high frequency (similar to passive probes compensation 

procedure exposed earlier, see Figure 28) is not studied in this paper due to the lack of 

accurate data concerning the probes cable (modelling of M)#T"%,w(6)). An illustration of this 

effect influence is however provided for passive probes later in this section.   

As for the common mode voltage, it can be expressed in the Laplace domain as F)X(6) by: 

F)X(6) m ½_¾�(	)(¿À¾©(	)¯¿�¿Á)¯�¿À¿�¿Ç(	)`
�¾©(	)_¾�(	)¿Á¯¿À¿Ê(	)`¯�¿�Å�¾�(	)¯¾©(	)�¿Á¯¿À¿Ç(	)Æ¯�¿ÃÄ�_¿Ç(	)(¿À¯¿�)¯¾�(	)¿Ì(	)`         (24) 

where :o(6) m M$(6) + :K + M&(6) ; :p(6) m M$(6) + :K  and :·(6) m M&(6) + :K . M$(6) 
is described by eq. (12) defined in section 4.1. 
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In the case of pseudo-differential measurements, this common voltage existing on both bridge 

branches is theoretically suppressed by the mathematical difference (“A Minus B”) when the 

assembly is perfectly symmetrical: bridge symmetry, mismatch of ground leads lengths and 

positioning - which can result in a potential voltage difference of each probe grounds 

references (see eq. (13) with �Ë,�(6) ≠ �Ë,�(6)) - or the non-ideal symmetry of the two 

passive probes frequency performances ( M$,�(6) ≠ M$,�(6)  in eq. (13)) are factors that 

contribute to the amplification of the common mode voltage.  

It is difficult to quantify the quality of the common mode rejection in the pseudo-differential 

case. It depends on many unknown parameters such as ground leads cables composition (for 

transmission lines effects), their position (impacting values of �Ë,�(6)  and �Ë,�(6) ), 

frequency-dependent performances and mismatch of each of the two passive probes, ... ([30], 

[42]). The voltage �qrs	rs(4) m ��(4) − ��(4) in the Laplace domain is thus expressed here 

without consideration of this parasitic voltage for the pseudo-differential methods as: 

�qrs	rs(6) m �*,�é (6) �½¿Ç(	)¯ÈÉ,ª¿Á��¾©(	)¯¿Ê(	)�¯¿ÃÄ�¿ÁÅÈÉ,ª�¿Ê(	)¯¿Á¯¾©(	)�¯ÈÉ,�¿Ç(	))Æ
�¾©(	)¯¿Ê(	)��¿Á¯¿Ç(	)�¯¿ÃÄ��¾©(	)¯¿Á¯¿Ç(	)¯¿Ê(	)� 	−

�*,�é (6) ~½¿Ê(	)¯ÈÉ,�¾©(	)��¿Á¯¿Ç(	)�¯¿ÃÄ�ÅÈÉ,��¿Ç(	)¯¿Á¯¾©(	)�¯ÈÉ,ª¿Ê(	))Æ
�¾©(	)¯¿Ê(	)��¿Á¯¿Ç(	)�¯¿ÃÄ��¾©(	)¯¿Á¯¿Ç(	)¯¿Ê(	)�                     (25) 

with :o(6) m ¿À¾�,ª(	)
¿À¯¾�,ª(	); :p(6) m ¿�¾�,�(	)

¿�¯¾�,�(	)  and �*,wé (6) m �
oÖ,Ãª	äåæ

¾Ú�Ù(	)
¾�,Ã(	)  (Mq$)(6)  and M$,w(6) 

are detailed in eq. (17) for the direct connections to the oscilloscope method and eq. (18) for 

passive probes measurements). �*,w�	�áâ is the compensated attenuation factor of the TPP1000 

passive probe defined at the 1	�'(frequency of the probe compensation procedure square 

wave (see compensation procedure associated to eq. (19) and eq. (20)). In the case of direct 

connections to the oscilloscope, the voltage divider attenuation Mq$)(6)/M$,w(6)  is not 

compensated, thus �*,w�	�áâ m 1. 

With the assumption that passive probes or direct connection cables are well matched 

(M$,�(6) f M$,�(6) f M$(6) ) as well as ground leads voltages (�Ë,� f �Ë,� f 0	� ), the 

expression of eq. (25) can be simplified as follows: 

�qrs	rs(6) m �*é (6)Fop(6)                             (26) 

with Fop(6)  described by eq. (14) in section 4.1 and �*é (6) m �
oÖª	äåæ

¾Ú�Ù(	)
¾�(	)  (Mq$)(6)  and 

M$(6) are still detailed in eq. (17) for the direct connections to the oscilloscope method and 

eq. (18) for passive probes measurements). 
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A numerical inversion of Laplace transforms using the De Hoog algorithm [37] applied to 

eq. (23) for the TDP3500 differential probe and to eq. (26) for pseudo-differential 

measurements gives the measured voltage �qrs	rs(4) . Figure 32 and Figure 33 show, 

respectively for :	 m 10	Ω  and :	 m 100	Ω , the distortions of the electrothermal signal 

according to the measuring device for a glass sample. Results on an AlN sample (material 

with the highest dynamic response, see Figure 16 in section 3.3) are displayed in the same 

conditions in Figure 34 and Figure 35. In each case, a comparison with a TDP3500 

differential probe signal fully rejecting the common mode voltage (“perfect CMRR”) is 

provided (F)X(6)/�y::(6) m 0  in eq. (23)). It is reminded that a cable impedance 

M)#T"%(6) m 50	Ω is considered for the oscilloscope used on its own measurement case.  

A bilayer model “@X$w” (eq. (9) in section 3.3) is used for these simulations. The signal 

without distortions refers to the differential voltage Fop(6) (see eq. (11)) with M$(6) as an 

infinite impedance (no probe loading effects). 

 

 
Figure 32. �qrs	rs  measured by various 

devices, for a glass sample (Sample n°1). :	 m 10	Ø, “@X$w” model, � m 6	� . Insert: 

zoom on maximal voltage 

 
Figure 33. �qrs	rs  measured by various 

devices, for a glass sample (Sample n°1). :	 m 100	Ø, “@X$w” model, � m 6	�. Insert: 

zoom on maximal voltage 

 
Figure 34. �qrs	rs  measured by various 

devices, for an AlN sample (Sample n°2). :	 	m 10	Ø , "@X$w"  model, � m 6	� . Insert: 

zoom on maximal voltage 

 
Figure 35. �qrs	rs  measured by various 

devices, for an AlN sample (Sample n°2). :	 	m 	100	Ø, "@X$w" model, � m 6	�. Insert: 

zoom on maximal voltage 

 

Table 5 summarizes the maximum relative errors zS&%",X#Yz m max ëì ����(s)
X#Y~ÈÚí�Ûí�,(ª)(s)�ìî 
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obtained by comparing each signal affected by a measuring device with the signal without 

distortions, where max ~�qrs	rs,�(4)� is the maximum voltage value of the undistorted signal 

and S#T$(4) the difference between this signal and the signal affected by the device. 

Use of higher bridge resistors values contributes to a more distorted signal (:	/M$  ratio, 

illustrated in Figure 25, is higher), especially when the signal dynamic is important (case of 

the AlN sample). This leads to a preference for low resistors values, as shown in the bridge 

sensitivity study (Figure 22). Limits discussed on this occasion are still valid though 

(electrical and thermal ones).  

Measurements realized with the TDP3500 differential probe show more discrepancies with 

the signal without distortions than passive probes pseudo-differential measurements. It is 

mostly due to the additional consideration of the common mode rejection (modelling of this 

effect for the TDP3500 probe is addressed in section 4.2.2 while the impact of its non-ideality 

is highlighted in Table 5 with results obtained for a perfect rejection of this voltage). Still, 

pseudo-differential measurements realized with the oscilloscope used on its own - which also 

does not consider the common mode influence in this paper - show even more discrepancies, 

making it the measurement method providing the most distorted signal.  

On the contrary, when neglecting this common mode additional voltage, 1	+'(  passive 

probes appear to be adapted to the frequencies of the measured signals (zS&%",X#Yz ≤ 0.8	%) 

and stand even more when compared to the oscilloscope used on its own (zS&%",X#Yz ≤
28	%). They also seem to provide a slightly less distorted signal than the differential probe 

signal with perfect CMRR (zS&%",X#Yz ≤ 2	%), which is consistent with the observation in 

Figure 25 that the influence of the input impedance M$  is slightly lower for pseudo-

differential measurements. However, it will be shown experimentally that the measurements 

carried out with TPP1000 passive probes show more noise than TDP3500 differential probe 

measurements, but also that the differential probe setup is more robust when it comes to 

signal distortions through a better rejection of the common mode voltage and lower 

sensitivity to introduced transmission lines (by probes cables and ground leads, see section 

5).  

Finally, devices non-idealities alter the time of the maximum voltage and delay it (see inserts 

in Figure 32 to Figure 35) due to their equivalent input capacitance, along with its amplitude 

due to their equivalent input resistance. In the case of the oscilloscope used on its own, the 

improper attenuation factor is also influencing the measurements (M)#T"%(6) m 50	Ω).  

Nevertheless, all parasitic effects are reduced during the relaxation phase (4 > 20	3�); The 

signals end up overlapping, indicating weaker electrothermal distortions on this portion of the 
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signal, as predicted by the initial study in section 2 of the frequency spectra of the concerned 

materials. It leads to a preference for the relaxation phase of the signal for its exploitation. 

 

 
:	 _Ω` 

Glass �^ m 1	�.�� . ��� 
AlN �^ m 92	�.���. ��� 

Portion of signal: complete relaxation complete relaxation 
|S&%",X#Y| 
TDP 3500 

10 5.6	%	 0.6	%	 13.0	%	 1.3	%	
100 7.0	%	 0.7	%	 22.7	%	 1.6	%	|S&%",X#Y| 

TDP 3500 

(perfect CMRR) 

10 0.2	%	 0.0	%	 0.2	%	 0.0	%	
100 1.5	%	 0.1	%	 2.0	%	 0.4	%	

|S&%",X#Y| 
TPP 1000 

10 0.3	%	 0.1	%	 0.2	%	 0.2	%	
100 0.4%	 0.1	%	 0.8	%	 0.4	%	|S&%",X#Y| 

MSO5 
10 18.6	%	 1.7	%	 23.8	%	 7.9	%	

100 21.4	%	 2.7	%	 27.5	%	 8.8	%	
Table 5. Comparisons between the electrothermal models considering the measuring devices 

influence and the reference signal without distortions 

In addition, effect of the probe cable modelling by a resistive impedance (M)#T"%(6) m 50	Ω, 

i.e. lossless cables with high bandwidth) is illustrated for the passive TPP1000 probes in 

Figure 36 on an AlN sample (for :	 m 100	Ω). Additional distortions come from the cable 

impedance not compensated at high frequencies (see Figure 28), resulting in a different 

attenuation factor realized by the voltage divider for those frequencies. The impact of this 

effect, difficult to estimate due to the lack of precision in the consideration of the cable 

impedance in device datasheet, is reduced with respect to frequency, thus further encouraging 

to focus on the signal relaxation for its exploitation.  

Also, the behaviour of cables modelled as transmission lines (coaxial cables, see Figure 29 

and eq. (17) where Mq$)(6) is defined in eq. (21) and M)#T"%(6) in eq. (22)) is illustrated in 

Figure 37 in the case of the oscilloscope used on its own.  
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Figure 36. Impact of a resistive cable 

impedance on the signal measured with 

passive TPP1000 probes (AlN – Sample n°2, :	 m 100	Ø, 4-slopes heat flux excitation) 

 
Figure 37. Impact on the signal considering 

transmission lines connections to the MSO5 

oscilloscope (AlN - Sample n°2, :	 m 100	Ø, 

4-slopes heat flux excitation). The 

transmission lines modelling is available in 

Figure 29 

 

A sinusoidal behaviour is exhibited and experimentally observed if no attention is paid to the 

connections and cable lengths used (for the bridge, power supply, …) regardless of the 

measuring device (see experimental signal in Figure 38 measured with a TDP3500 

differential probe on a glass sample).This problematic also affects the signal slope and the 

time of the signal maximum, as highlighted in Figure 39 for experimental measurements 

conducted with various length of cables connecting the transducer to the Wheatstone bridge 

(measurements performed with TPP1000 passive probes). It is particularly noticeable when 

comparing the black curve (maximum cables length) to the other two (with reduced cables 

lengths). 

 
Figure 38. Experimental signal exhibiting a 

transmission line behaviour obtained with a 

TDP3500 differential probe on a 1 mm thick 

glass sample  

 
Figure 39. Experimental signals obtained 

with TPP1000 passive probes on a 1 mm 

thick glass sample for various length of the 

cables connecting the transducer to the 

Wheatstone bridge 

 

4.2.2. Differential probe: modelling of the Common Mode Rejection Ratio 

While it is difficult to quantify the contribution of the common mode for pseudo-differential 

measurements, the frequency-dependent rejection of the common mode voltage (CMRR) by 

a differential probe (see eq. (23) and eq. (24)) is usually provided by its manufacturer. Thus, 
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the typical CMRR available on the data sheet of the TDP3500 [43] was digitalized (see 

Figure 40, black curve) and modelled by a first-order low-pass filter such as: 

�y::(6) m �
�¯ ª

�ð¶Ù,ª	
                     (27) 

where � m 90 and the cut-off frequency �),� can be estimated by a least square method [35]. 

As the estimated curve shown in Figure 40 (blue curve) is “optimistic” in regard to the cut-off 

frequency (�),� f 48	y'(), two other modelling, still using eq. (27) but with lower cut-off 

frequencies values, are compared and displayed in Figure 40: a “pessimistic” 

one (�),� m 	500	�'(, brown curve) and an “intermediary” one (�),� m 5	y'(, red curve). 

Effects of these modelling on the TDP3500 probe output signal are compared in Figure 41 for 

an AlN sample. The influence of the imperfect differential probe CMRR at high frequencies 

is highlighted thanks to their comparison with a perfect CMRR signal (F)X(6)/�y::(6) m
0 in eq. (23)).  

 
Figure 40. Modelling of the TDP3500 probe 

CMRR by first-order low-pass filters (cut-off 

frequency indicated) 

 
Figure 41. Imperfect CMRR influence on the 

TDP3500 probe output signal for 3 different 

CMRR modelling (Sample n°2 – AlN, :	 m 	100	Ø, � m 6�, “@X$w”  model, 4-slopes 

heat flux) 

 

Comparison of the residues confirms a greater degradation of the signal when the cut-off 

frequency of the CMRR modelling is lower. In the case of the “optimistic” modelling of the 

CMRR, the degradations are clearly insignificant. On the contrary, the signal is strongly 

distorted in the heating phase of the signal for a “pessimistic” CMRR modelling due to the 

higher frequency dynamic in this part (with further distortions visible at the beginning of the 

relaxation phase, see Figure 41). This CMRR modelling being drastic with respect to the cut-

off frequency considered and exhibiting many numerical instabilities, the “intermediary” 

modelling of the probe CMRR is preferred and used for TDP3500 probe simulations in this 

paper (as in Figure 32 to Figure 35). 

Furthermore, numerical instabilities presented in Figure 41 are greatly reduced when using a 

heat flux temporal shape modelling with fewer parameters, such as the triangle shape (see 
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eq. (4) in section 3.2). They can also be reduced by generating the signal from the relaxation 

phase, which is not a problem since it has been shown in section 4.2.1 that it is preferable to 

focus on this part of the signal to limit electrothermal distortions.  

The reduction of numerical instabilities is illustrated for the AlN sample in Figure 42, under 

the same conditions as in Figure 41 while using a triangle shape (see eq. (4) in section 3.2) 

and 4J as the time of the maximum voltage of the perfect CMRR model (experimentally, 4J is 

to be chosen as the time of the experimental signal maximum voltage). The probe CMRR 

performances on a glass sample are also displayed in Figure 43, where common mode 

influence appears to be weaker due to the lower thermal dynamic of the glass sample (see 

section 2). 

 
Figure 42. Imperfect CMRR influence on the 

TDP3500 probe output signal for three 

different CMRR modelling (Sample n°2 – 

AlN, :		 m 	100	Ø, � m 6�, “@X$w”  model, 

triangle heat flux, 4J f 7	3�) 

 
Figure 43. Imperfect CMRR influence on the 

TDP3500 probe output signal for three 

different CMRR modelling (Sample n°1 – 

Glass, :		 m 	100	Ø, � m 6�, “@X$w”  model, 

triangle heat flux, 4J f 8	3�) 

 

First experimental tests conducted on glass samples, presented in section 5, will highlight a 

delay on the heating part of the experimental signal and tend to indicate that the TDP3500 

CMRR behaviour is closer to the “intermediary” and “pessimistic” modelling.  

A better modelling of the CMRR behaviour can be achieved, as shown in Figure 44, thanks to 

a 1-slope (blue curve, described by eq. (28)) and a 3-slopes (red curve, described by eq. (29)) 

fitting expressions expressed in the Laplace domain (estimated parameters are indicated in 

Figure 43). Unfortunately, strong numerical instabilities then appear on the computed �qrs	rs 
signal due to the numerical Laplace inversion, making the results unusable and restricting to 

the use of low-pass first order filter expressions for CMRR modelling. 
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Figure 44. Further modelling of the TDP3500 probe CMRR 

 

�y::(6) m �
Ü�¯ ª

�ð¶Ù,ª	ß
Äª 	                     (28) 

�y::(6) m �
Ü�¯ ª

�ð¶Ù,ª	ß
Äª 	

�
Ü�¯ ª

�ð¶Ù,�	ß
Ä�

�
Ü�¯ ª

�ð¶Ù,À	ß
ÄÀ	                  (29) 

 

4.2.3. Modelling of the Analog-to-Digital Conversion 

Finally, the measured analog signal is digitalized by the oscilloscope (Analog-to-Digital 

Conversion - ADC). The MSO5 oscilloscope offers two configurations to this end, either 

enhancing sampling (6.25	+?/�, 8 bits) or accuracy (3.125	+?/�, 12 bits, resulting in twice 

less measurement points) [49]. All presented electrothermal signals use the first configuration 

(displaying 34 m 6249 points for a 1	μ� long study), without the quantification effects.  

This last effect can be modelled. Indeed, to a voltage measure �qrs	rs(4w) such that: 

�. ; − ó
� ≤ �qr	rs(4w) < �. ; + ó

�                    (30) 

corresponds the closest of the two values (closest conversion law), with 
ó
� m ÈÃÄÛí�,¥

�(�Ä��)  the 

quantification error, �wº	rs,X being the full scale (maximum) voltage that can be displayed on 

the oscilloscope channel, 3 the number of bits (8	�B4� or 12	�B4� for the MSO5 oscilloscope) 

and � ∈ Î0;… ; �X#YÏ such that �X#Y ⋅ ; m �wº	rs,X. 

An illustration of this quantification effect is given in Figure 45 for a TDP3500 differential 

probe signal (“intermediary” CMRR) and will be provided in the case of an experimental 

measurement (see section 5). Better accuracy is observed with the 3.125	+?/� , 12	�B4� 

configuration. Effect of this process while reducing the number of measurements points for 

the estimation parameter will be investigated in a subsequent study.  
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Figure 45. Illustration of the oscilloscope MSO5 ADC effect on a TDP3500 differential 

probe signal (Sample n°2 – AlN, :	 m 100	Ø, � m 6�, “@X$w”  model, 4-slopes heat flux, 4J m 5	3�). Insert: zoom 

 

 

5. First experimental results on glass samples 

First experiments were conducted with the setup described in section 2 to assess whether 

exploitable signals could be obtained. Tests were conducted on a  ̂ m 1	��  thick glass 

sample on which a  & m 200	3� thick aluminium serpentine transducer (presented in Figure 

2 (b) - left sample) was deposited by Joule effect evaporation. The Wheatstone bridge was 

balanced accordingly to the ~20	Ω resistance of the transducer and supplied with a �	 m 	6	� 

voltage, resulting in the two signals proposed in Figure 46 after laser excitation. The 

differential voltage of the bridge was measured either by using a TDP3500 differential probe 

(differential probe method, described in Figure 20 (a), section 4.1) or two TPP1000 passive 

probes (pseudo-differential method with two passive probes, as shown in Figure 20 (b), 

section 4.1).  

Signals appear to be similar, though with a higher level of noise for the two passive probes 

measurements. However, Figure 47 highlights a delay on the rise time of the pseudo-

differential signal compared to the differential probe one, along with an amplitude shift. This 

behaviour seems similar to the common mode effect modelled in section 4.2.2 for the 

TDP3500 probe (see Figure 41 and Figure 43 in the mentioned section) which could hardly 

be considered for pseudo-differential measurements. It can be caused by the influence of the 

ground leads cables inductances, their positioning on the circuit (resulting in a potential 

voltage difference of each probe ground references – see eq. (13) by posing �Ë,�(6) ≠
�Ë,�(6)), or the non-ideal symmetry of the two passive probes (M$,�(6) ≠ M$,�(6) in eq. 

(13)). It highlights, at least, a better reliability of the differential probe set-up, leading to a 

preference for the latter. It is however pointed out that both signals eventually overlap for 4 ≥
20	3� (indicated in Figure 47 and clearly visible in Figure 46); the distortions caused by the 

acquisition chain are reduced later after the signal rise (see Figure 32 to Figure 35 in section 
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4.2) due to smaller frequency spectrum range (see section 2). 

 
Figure 46. Experimental results obtained 

with a pseudo-differential (TPP1000 probes) 

and differential probe (TDP3500 probe) 

measurements methods on a 1	��  thick 

glass sample (ADC = 6.25	+?/�, 8	�B4�) 

 
Figure 47. Evidence of experimental non-

idealities of the pseudo-differential method 

with passive probes (zoom on the signal rise 

of Figure 46) 

 

An illustration of the sampling and quantification procedure (ADC) of the experimental noisy 

signal (see section 4.2) is provided in Figure 48 for two measurements with the differential 

probe, in another experimental condition (laser deposited energy and new sample of same 

characteristics). Slightly less noise is observed while prioritizing accuracy (3.125	+?/� , 

12	�B4�) over sampling (6.25	+?/�, 8	�B4�). Effect on the characterization procedure will 

have to be investigated. 

Direct electrothermal models developed in sections 3 and 4 are applied to the differential 

probe signal displayed in Figure 46 through a very simplified parameter estimation procedure 

for a first illustrative test. To reduce the number of uncertain parameters, a thermal diffusion 

in a capacitive aluminium transducer on a semi-infinite glass sample is considered ("@)$w" 
model, see section 3.3 and eq. (10)). In comparison to a mean temperature transducer 

modelling ("@X$w" model, see section 3.3 and eq. (9)), the use of this model allows to get rid of 

the knowledge or estimation of the transducer conductivity �&. This modelling is possible in 

first approximation thanks to the small maximum relative error observed between these two 

models in section 3.3 for a glass sample (S&%",X#Y f 2	%, however its validity will be further 

investigated in subsequent studies). This bias is reduced by focusing on the relaxation phase 

of the signal _4X; 4%º*` for the estimation process (reducing the maximum relative error to 

S&%",X#Y f 0.5	%), where the initial time 4X is defined as the time of the experimental signal 

maximum while the end time 4%º* is limited to 1	a� (1D heat transfer condition and semi-

infinite sample). The signal is then reconstructed on the full-time of the experiment 

(i.e. heating/rise and relaxation phases).  

Furthermore, properties of the transducer are assumed to be known (using values indicated in 

Table 1 in section 2), with the exception of the reflectivity of the transducer - and therefore 
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the heat flux absorbed �X (see eq. (7) in section 3.2 while considering a 4-slopes heat flux 

time shape described in eq. (6)) - and its thermal coefficient N&. The N&φö coefficient (see 

eq. (1)) is thus estimated along with the sample (glass) conductivity �^ by using a least square 

method associated with a regularized Levenberg-Marquardt descent algorithm [35].  

This algorithm minimizes the sum of the quadratic deviations between the experimentally 

measured differential voltage Δ�qrs	rs,%Y	 and the computed voltage Δ�)#"). The latter either 

takes into consideration the thermal diffusion of the sample (“ "@)$w"  model” with due 

amplitude adaptation) only, or with additional electrothermal distortions caused by the 

TDP3500 differential probe (see eq. (23), for the three modelling of the probe’s CMRR – 

“optimistic”, “intermediary” and “pessimistic” - described in section 4.2). It results in the 

minimization of the following cost function:   

�(÷) m ∑ ~Δ�qrs	rs,%Y	(4�) − Δ�)#")(4�, ÷)�� ⇒ ùú m arg	mins∈_s¥;s¨ÄÖ`
��(÷)����¢�ª                   (31) 

where ÷ m (��; ��NE��) is the parameter vector to be estimated with � a coefficient. Note 

that a proper sensibility analysis to parameters will be realized in a subsequent study focused 

on the estimation procedure. 

Results are displayed in Figure 49 on the full-time of the experiment while only considering 

the thermal diffusion in the sample. The estimated conductivity �^,%$swX#s%* is indicated in 

Table 6 and found within a 10	% range of the theoretical glass conductivity of 1	�.���. ��� 

such as 0.9	�.���. ��� < �^,%$swX#s%* < 1.1	�.���. ���.  

Comparison with electrothermal modelling is displayed in Figure 50 on the rise time of the 

signal where electrothermal distortions appear (see section 4.2.1). Estimated conductivity 

values are indicated in Table 6. 

Estimation results obtained while considering a triangle heat flux (see eq. (5) in section 3.2) 

are also displayed in Figure 51 and indicated in Table 6.  

 

Estimation 

model 
�^,%$swX#s%* _�.���. ���` �2  _�` � _�` 

Heat flux 

considered: 
4-slopes triangle 4-slopes triangle 

4-slopes and 

triangle 
"@)$w" 1.06 1.07 7 ⋅ 10�e 3 ⋅ 10�e 

3.5 ⋅ 10�� 

TDP3500 
(“optimistic” 

CMRR) 
1.06 1.07 6 ⋅ 10�e 3 ⋅ 10�e 

TDP3500 
(“intermediary” 

CMRR) 
1.05 1.06 5 ⋅ 10�e 4 ⋅ 10�e 
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TDP3500 
(“pessimistic” 

CMRR) 
1.00 1.01 4 ⋅ 10�e 2 ⋅ 10�e 

Table 6. Estimated conductivities �^,%$swX#s%*  on the experimental signal measured by the 

TDP3500 differential probe. The residuals mean value �2  and the standard deviation � on 

_4X; 4%º*` are indicated (�2 m �
ºs∑�¼�9ý46ý4, >6 − ¼���7��	_�` and � m ���E(�2)	_�`). Results 

are associated with visuals in Figure 49 and Figure 50 for 4-slopes heat flux, and in Figure 

51 for triangle heat flux 

 
Figure 48. Visual illustration of ADC 

influence on the TDP3500 differential probe 

measurements 

 
Figure 49. Estimated signal on _4X; 4%º*` , 

reconstructed on the full-time of the 

experiment (with �^,%$swX#s%* m
1.06	�.���. ���, 4-slopes heat flux) 

 
Figure 50. Estimated signals reconstructed 

on the full-time of the experiment, with 

electrothermal models considering the 

TDP3500 differential probe influence and 

three modelling of its CMRR (zoom on the 

heating phase). Estimated values of �^,%$swX#s%* are indicated in Table 6 (4-slopes 

heat flux) 

 
Figure 51. Estimated signals reconstructed 

on the full-time of the experiment, with 

electrothermal models considering the 

TDP3500 differential probe influence and 

three modelling of its CMRR (zoom on the 

heating phase). Estimated values of �^,%$swX#s%* are indicated in Table 6 (triangle 

heat flux) 

 

A good agreement is observed at first sight in Figure 49 between the experimental signal and 

the thermal modelling. It is highlighted by the low and zero mean value (~7 ⋅ 10�e	� with a 

standard deviation of 3 ⋅ 10��	� ) of the residuals on the estimation time of the signal 

(_4X; 4%º*`) and tend to validate the modelling of the bench behaviour. However, Figure 50 

highlights that the time of the experimental maximum and that of the thermal model signal 
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show a small difference (Δ4� f 2.2	3�). This can be explained by an error in the heat flux 

modelling (see Figure 5 - it is also reminded that a new photodiode is needed for subsequent 

parameter estimation due to distortions on the laser collected signal mentioned in section 3.2) 

and/or the definition of the experimental signal initial time (measure triggering) as well as the 

cables’ contribution (see Figure 39 in section 4.2.1). The estimation was performed on the 

relaxation phase of the signal to reduce their impacts.  

Another possibility is the influence of the differential probe on the measurements. Indeed, the 

models considering the probe and its Common Mode Rejection Ratio (CMRR) tend to be 

closer to the experimental maximum: if the “pessimistic” modelling presents strong 

discrepancies at the beginning of the heating phase (phase of the signal with the largest 

frequency range – see Table 3 - i.e. the frequency range of the probe typical CMRR which is 

not modelled accurately by the pessimistic modelling due to its low cut-off frequency, see the 

brown curve in Figure 40), it is more accurate around the signal maximum (times of the 

signal maximum delayed by Δ4 f 1.33� - even less if the experimental maximum at the time 

4X is considered as a noisy point). The performances of the TDP3500 probe would therefore 

be between the “pessimistic” and “intermediary” models for the glass sample frequency 

range. Therefore, these models seem to provide a good approximation of the electrothermal 

behaviour of the bench while using a TDP3500 differential probe. 

Furthermore, the estimation results obtained with a triangle heat flux modelling show little 

difference with those achieved with the 4-slopes excitation (no more than ~1	% of difference 

in the estimation in regard with glass theoretical conductivity, see Table 6). Heat flux 

modelling (and numerical instabilities with the CMRR modelling, see section 4.2.2) thus 

shows little influence by performing the estimation on the relaxation phase of the signal.  

It is reminded that the applications proposed here are for illustrative purposes only. The 

validation of the bench will be done through the proper estimation of an effective thermal 

conductivity (or diffusivity) once an inverse method has been implemented in a future work. 

It will then be possible to characterize the performances of the bench on various materials, 

over a wide range of conductivities and conduction times.  

 

6. Conclusions 

This paper introduced the design and characteristics of an opto-electrothermal bench (front-

face laser excitation combined with an electrothermal measurement) aiming for the thermal 

characterization of materials over a wide range of conduction times (from seconds to a few 

tens of nanoseconds). It has the potential to cover both low thermal conductivity samples 
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(like polyethylene, ~0.5	�.���. ��� , and glass, 1	�.���. ��� ) and high conductivity 

materials such as AlN (100	�.���. ��� and more). Here, first results on glass and AlN 

samples were investigated. 

In this perspective, a methodology applicable to other electrothermal measurement methods 

for designing an acquisition chain adapted to the frequency spectrum of such materials was 

presented. The combination of a Wheatstone bridge coupled to the frequency response of 

various measuring devices (differential probe, passive measuring probes or oscilloscope used 

on its own) was modelled. As a result, first electrothermal models were developed, 

considering the thermal behaviour of a multilayer sample and the distortions depending on 

the frequency response of the acquisition chain to the sample’s thermal dynamics.  

Furthermore, a sensitivity study has shown that an optimum of the bridge is found when the 

four resistors constituting it are of the same value. However, the higher these resistors are, the 

more sensitive the acquisition chain is to the imperfections of the used measuring device 

(bridge resistor to measuring device impedance ratio :	/M$  should be inferior to 10��  to 

reach at least 90	% of the sensitivity of a Wheatstone bridge without source loading effects 

induced by the measuring device). The latter is therefore likely to degrade the estimation of 

parameters, even more so with the common mode voltage which has been considered here by 

modelling the frequency dependent common mode rejection ratio of a differential probe. 

Particular attention must therefore be paid to all measurements, especially if equipment not 

suitable for high frequency measurements (600	y'() is used.  

Indeed, first experimental measurements conducted on a glass sample with a high-frequency 

differential probe (3.5	+'() and two high-frequency passive probes (1	+'() revealed the 

presence of a time delay and a reduced amplitude of the signal rise (heating) measurements 

when using the passive probes. The use of a - correctly sized – differential probe, whose 

performances and reliability seem to be better at high frequencies, is therefore preferred.  

However, both signals eventually overlap, as modelling has shown that the relaxation 

(cooling) phase of the signal is less sensitive to disturbances from the acquisition chain. This 

is consistent with the evidence that, thanks to a Discrete Cosine Transform, the high 

frequency spectral content is mainly carried on the heating phase (a maximum frequency is 

found of 600	y'(  for an AlN sample and reduced to 300	y'(  when restricted to the 

cooling phase). 

Furthermore, while thermal modelling will be the subject of future works, initial checks of 

the 1D thermal diffusion nature in the sample have been carried out by assessing the flatness 

of the laser excitation. Different modelling of the temporal shape of the laser heat flux have 

been proposed, including a 4-slopes expression in the Laplace domain that has shown in first 
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approximation a good agreement with the experimentally collected heat flux time shape.  

These models, along with the electrothermal ones developed in this paper and further 

advanced thermal models to come, permit elaborating a digital twin of the electrothermal 

bench. They will serve as a basis for future work consisting in the implementation of an 

inverse method for the estimation of an effective thermal conductivity (or diffusivity). They 

will be used as both the simulation and the inverse models, and will further allow the study in 

a simplified framework of the effects of biases caused by the acquisition chain on the 

parameter estimation. The validation of the experimental bench will then be possible once the 

estimation procedure is set, which will also permit the study of its real performances on 

various materials over a wide range of conductivities. 
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