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Genetic variants underlying differences in facial morphology in East Asian and European populations
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Main Text

Facial morphology has substantial variations at the individual and population level. Multiple studies show significant differences in craniofacial morphology across people from different geographic regions [START_REF] Liu | A genome-wide association study identifies five loci influencing facial morphology in Europeans[END_REF][START_REF] Paternoster | Genome-wide association study of threedimensional facial morphology identifies a variant in PAX3 associated with nasion position[END_REF][START_REF] Adhikari | A genome-wide association study identifies multiple loci for variation in human ear morphology[END_REF][START_REF] Adhikari | A genome-wide association scan implicates DCHS2, RUNX2, GLI3, PAX1 and EDAR in human facial variation[END_REF][START_REF] Cole | Genomewide Association Study of African Children Identifies Association of SCHIP1 and PDE8A with Facial Size and Shape[END_REF][START_REF] Pickrell | Detection and interpretation of shared genetic influences on 42 human traits[END_REF][START_REF] Shaffer | Genome-Wide Association Study Reveals Multiple Loci Influencing Normal Human Facial Morphology[END_REF][START_REF] Lee | Genome-wide association study of facial morphology reveals novel associations with FREM1 and PARK2[END_REF][START_REF] Cha | Identification of five novel genetic loci related to facial morphology by genome-wide association studies[END_REF][START_REF] Claes | Genome-wide mapping of global-to-local genetic effects on human facial shape[END_REF][START_REF] Crouch | Genetics of the human face: Identification of largeeffect single gene variants[END_REF][START_REF] Qiao | Genome-wide variants of Eurasian facial shape differentiation and a prospective model of DNA based face prediction[END_REF][START_REF] Li | LYPLAL1, PRDM16, PAX3, DKK1, TNFSF12, CACNA2D3, and SUPT3H gene variants influence facial morphology in a Eurasian population[END_REF][START_REF] Wu | Whole-exome sequencing identified four loci influencing craniofacial morphology in northern Han Chinese[END_REF][START_REF] Xiong | Novel genetic loci affecting facial shape variation in humans[END_REF][START_REF] Huang | A genome-wide association study of facial morphology identifies novel genetic loci in Han Chinese[END_REF][START_REF] Bonfante | A GWAS in Latin Americans identifies novel face shape loci, implicating VPS13B and a Denisovan introgressed region in facial variation[END_REF][START_REF] White | Insights into the genetic architecture of the human face[END_REF] . For example, individuals of European ancestries (EUR) have a more protruding nose and brow ridges than those of East Asian ancestries (EAS) [START_REF] Guo | Variation and signatures of selection on the human face[END_REF] . Such differences must have a strong genetic basis, which remains unknown, largely due to the low number of studies in performed in EAS populations compared to EUR. Previous genetic studies collectively reported about 219 loci associated with facial morphology in EUR populations, but only 24 were reported in EAS or Eurasian-ancestry populations, about 20 in Latin American-ancestry populations, and four in African-ancestry populations (Supplementary Table 1) [START_REF] Adhikari | A genome-wide association study identifies multiple loci for variation in human ear morphology[END_REF][START_REF] Adhikari | A genome-wide association scan implicates DCHS2, RUNX2, GLI3, PAX1 and EDAR in human facial variation[END_REF][START_REF] Cole | Genomewide Association Study of African Children Identifies Association of SCHIP1 and PDE8A with Facial Size and Shape[END_REF][START_REF] Cha | Identification of five novel genetic loci related to facial morphology by genome-wide association studies[END_REF][START_REF] Qiao | Genome-wide variants of Eurasian facial shape differentiation and a prospective model of DNA based face prediction[END_REF][START_REF] Li | LYPLAL1, PRDM16, PAX3, DKK1, TNFSF12, CACNA2D3, and SUPT3H gene variants influence facial morphology in a Eurasian population[END_REF][START_REF] Wu | Whole-exome sequencing identified four loci influencing craniofacial morphology in northern Han Chinese[END_REF][START_REF] Huang | A genome-wide association study of facial morphology identifies novel genetic loci in Han Chinese[END_REF][START_REF] Bonfante | A GWAS in Latin Americans identifies novel face shape loci, implicating VPS13B and a Denisovan introgressed region in facial variation[END_REF] . Large-scale studies in EAS populations and other non-European populations are much needed to provide a complete architecture of the genetic basis of facial morphology, particularly the observable differences across populations.

Here we performed a genome-wide association study (GWAS) based on a large collection of 3D facial images from the Han Chinese population. Using a datadriven phenotyping approach, we identified hundreds of associated variants [START_REF] Claes | Genome-wide mapping of global-to-local genetic effects on human facial shape[END_REF][START_REF] White | Insights into the genetic architecture of the human face[END_REF] .

In addition, we identified specific variants distinguishing facial appearance between EUR and EAS populations. We further provided evidence that those population-based facial differences, especially for nose shape, were under selection. A schematic overview of our study design can be found in Extended Data Figure 1.

GWAS on facial phenotypes discovered 244 leading variants.

To study facial variation from a global to local scale, we used 3D facial surface scans from a large-scale EAS population (Methods, Supplementary Table 2) in a discovery (n = 6,968) and replication cohort (n = 2,706), and subsequently combined them in a meta-analysis. A semi-supervised phenotyping procedure defined 63 hierarchically arranged facial segments using the discovery cohort (Methods). Next, we performed a canonical correlation analysis (CCA) based GWAS on each facial segment's group of principal components (Methods).

Subsequently, we identified 50 independent tests using parallel analysis and permutation test (Methods, Supplementary Note) [START_REF] White | Insights into the genetic architecture of the human face[END_REF][START_REF] Li | Adjusting multiple testing in multilocus analyses using the eigenvalues of a correlation matrix[END_REF][START_REF] Kanai | Empirical estimation of genome-wide significance thresholds based on the 1000 Genomes Project data set[END_REF] . Thus, besides conventional genome-wide significant threshold (P = 5×10 -8 ), we set a stricter study-wide significant threshold to P = 9.8×10 -10 (P = 5×10 -8 /51.41) after Bonferroni correction for multiple testing. In the discovery datasets, we identified 153 genome-wide significant variants (P < 5×10 -8 , minor allele frequency (MAF)>0.05) in 124 loci after condition analysis and peak selection (Methods). In the replication dataset, 119 out of 153 (77.8%) variants were replicated at nominal significance (p<0.05), 118 (77.1%) were replicated at FDR<0.05, 75 (49.0%) were replicated at a Bonferroni-corrected significance (P < 3.28×10 -4 ). For the 84 variants that passed the study-wide significance (P < 9.8×10 -10 ), 80 out of 84 (95.2%) were replicated at nominal significance (p<0.05) and FDR<0.05, 65 (77.4%) were replicated at a Bonferroni-corrected significance (P < 5.95×10 -4 ). To increase statistical power, we performed a meta-analysis using Stouffer's method to combine the P-values obtained from the discovery and replication cohort [START_REF] White | Insights into the genetic architecture of the human face[END_REF][START_REF] Stouffer | Adjustment during army life[END_REF] . As a result, we identified 244 independent variants in 166 loci under the genome-wide threshold associated with normal range facial variation (Fig. 1a; Supplementary Table 3) where 151 variants in 106 loci were study-wide significant. According to the anatomical structure, we classified the 244 genome-wide significant variants in ten facial regions (Supplementary Note), including forehead, glabella, eye, tempora, zygoma, nose, maxillary, upper mouth, lower mouth, and mandible (Fig. 1b; Supplementary Table 4). The nose was the feature associated with the most variants (107) out of the ten regions. The numbers of variants associated with the other nine regions were: glabella (35), upper mouth (32), eye (29), zygoma (28), maxillary (25), mandible (20), forehead (16), lower mouth (13) and tempora (12). In addition, we calculated the genome-wide heritability of each 3D facial segments at each level. The 3D facial segments' heritability ranged from 7.47% to 52.3%. As we expected, the nose segments were also among the most heritable area (42.17% to 46.86%, Supplementary Fig. 1).

We considered a variant as novel when it was not in linkage disequilibrium (LD, r 2 < 0.1) with previously reported variants in facial GWASs (P < 5×10 -8 , Supplementary Table 1) in any East Asian (EAS), European (EUR), and African (AFR) populations in the 1000 Genomes Project phase 3 (1000GP, Methods) [START_REF]A global reference for human genetic variation[END_REF] .

As such, 130 of the 244 leading variants under the genome-wide threshold were novel, while 65 of the 151 under the study-wide threshold were novel (Supplementary Table 3). We considered a genetic locus as novel when it did not overlap with previously reported genomic loci associated with facial variation. As such, 62 out of 166 loci were novel.

We used FUMA and GREAT to annotate the leading variants [START_REF] Mclean | GREAT improves functional interpretation of cisregulatory regions[END_REF][START_REF] Watanabe | Functional mapping and annotation of genetic associations with FUMA[END_REF] . As a result, we identified 206 candidate genes potentially associated with facial variation, among which 100 genes were not reported in previous facial GWASs (Supplementary Table 3). We found that the genes associated with the leading variants were highly enriched in biological processes of skeletal system development and morphogenesis (Extended Data Fig. 2a). Moreover, the epigenome and transcriptome datasets showed that the leading variants were mainly enriched for enhancers in craniofacial tissues. Compared with the ectoderm at the later stage of fetal development, candidate genes were significantly highly expressed in the mesenchyme (Extended Data Fig. 2b-c), consistent with our expectation and previous studies [START_REF] White | Insights into the genetic architecture of the human face[END_REF][START_REF] Bernstein | The NIH Roadmap Epigenomics Mapping Consortium[END_REF][START_REF] Kundaje | Integrative analysis of 111 reference human epigenomes[END_REF][START_REF] Schmidt | evaluating global enrichment of traitassociated variants in epigenomic features using a systematic, datadriven approach[END_REF][START_REF] Wilderman | High-Resolution Epigenomic Atlas of Human Embryonic Craniofacial Development[END_REF][START_REF] Som | Illustrated review of the embryology and development of the facial region, part 2: Late development of the fetal face and changes in the face from the newborn to adulthood[END_REF] .

We investigated associations (P < 1×10 -5 ) with other complex traits for the 244 variants through PhenoScanner, a web-based GWAS repository (Methods) [START_REF] Staley | PhenoScanner: a database of human genotypephenotype associations[END_REF] .

We found that the traits sharing high genetic components with facial shapes mainly involved physical measurements, body composition and hair morphology (Supplementary Table 5). The highest co-association was the risk of atrial fibrillation (PITX2, rs6843082, P = 3.0×10 -155 ). This variant has been reported to be associated with cardioembolic stroke and ischemic stroke, suggesting that facial features might be a biomarker of cardiovascular disease.

Characteristics of specific variants in EAS and EUR

By comparing the 244 leading variants identified in our study with the 203 leading variants reported in a recently published EUR study using similar phenotyping and analysis framework, 89 variants were shared in both studies (Methods) [START_REF] White | Insights into the genetic architecture of the human face[END_REF] . The remaining 155 and 114 variants in the EAS and EUR studies respectively were different (Fig. 2a; Supplementary Table 6). Therefore, we defined three different groups: 89 shared variants, 155 EAS-specific variants, and 114 EUR-specific variants.

To understand these shared and population-specific variants' characteristics, we examined their allele frequencies in EAS and EUR populations based on the 1000GP [START_REF]A global reference for human genetic variation[END_REF] . Comparison of cross-population minor allele frequency (MAF) showed that the groups of population-specific variants had higher MAF in their respective population (PEAS-specific = 9.0 × 10 -12 , PEUR-specific = 8.1 × 10 -9 ,). In contrast, the shared variants had no difference of MAF between the two populations (Pshared = 0.1) (Fig. 2b-e). These results suggest that higher MAFs may increase the statistical power to detect the variants associated with facial variation within the respective populations. Moreover, 77.5% (69 out of 89) of the shared variants passed the study-wide significance threshold while only 54.2% (84 out of 155) EAS-specific variants and 55.2% (63 out of 114) EURspecific variants passed the study-wide significance threshold (chisq.test PEAS = 3.2×10 -4 ; PEUR = 4.8×10 -6 ).

To explore potential biological functional differences between the shared and population-specific variants, we used Metascape to compare the differences of enriched terms for their annotated genes [START_REF] Zhou | Metascape provides a biologist-oriented resource for the analysis of systems-level datasets[END_REF] . We found that EAS-specific, EURspecific, and shared genes were all associated with top terms that were previously reported in association with craniofacial variation (Fig. 2f). Moreover, we observed a considerable number of functional overlaps among the three groups (Fig. 2g). These results indicate that the associated genes across populations share substantially similar biological processes. We next compared epigenetic regulation patterns of the shared and population-specific variants in various cell-types or tissues. The shared and population-specific variants were all enriched for enhancers in craniofacial tissues (Fig. 2h), again indicating that the potential functions of facial variants across populations are analogous.

As expected, we found that the population-specific variants had a significantly higher Wright's fixation index (FST) than random variants from a genome-wide background both in EAS and EUR populations (PEAS-specific= 2.42×10 -10 ; PEURspecific = 0.0063, Extended Data Fig. 3), while the shared variants had no significant difference compared with random variants (PEAS-shared = 0.599) [START_REF] Weir | Estimating F-Statistics for the Analysis of Population Structure[END_REF][START_REF] Robinson | Population genetic differentiation of height and body mass index across Europe[END_REF] .

The same result applied to the Cross Population Extended Haplotype Homozygosity (XP-EHH) analysis using REHH2 in these two populations (PEASspecific = 0.0078; PEUR-specific = 0.038; PEAS-shared = 0.449) [START_REF] Sabeti | Genome-wide detection and characterization of positive selection in human populations[END_REF][START_REF] Gautier | rehh 2.0: a reimplementation of the R package rehh to detect positive selection from haplotype structure[END_REF] . These results suggest that facial variation across populations could be attributed to random drift and natural selection. The population-specific variants explained a larger proportion of natural selection while the shared variants may mainly explain random drift influencing facial variation. In summary, the population-specific variants found in EAS and EUR were identified due to cross-population MAF differences and subtle effect sizes.

Nonetheless, similar biological processes underlying facial variation were shared across populations.

Polygenic shape analysis generalizes results from EAS to EUR

To explore the genetic basis of EAS facial shape and the genetic factors contributing to the difference in facial shape between EAS and EUR, we first investigated whether the association results of the leading variants in our EAS study could be generalized to EUR.

We introduced a novel polygenic shape analysis to investigate whether the differential accumulated genetic effects between the two populations of the leading variants is in line with the actual population facial differences. Similar to the classic polygenic score analysis, we defined the Polygenic Shape (PS) for an individual as the sum of the number of effect risk alleles weighted by risk allele effect size of all the leading variants [START_REF] Choi | Tutorial: a guide to performing polygenic risk score analyses[END_REF] . Similarly, the Polygenic Population Shape (PPS) is the average polygenic shape for a given population (Methods).

Using data of EUR (n = 404) and EAS (n = 208) individuals from 1000GP, we calculated the PPS of the two populations for the whole face and ten anatomical facial regions.

To visualize and compare this effect to the true population facial shape average for each facial region, we constructed EUR and EAS PPS-derived faces by adding and subtracting, respectively, (𝑷𝑷𝑺 𝐸𝑈𝑅 -𝑷𝑷𝑺 𝐸𝐴𝑆 )/2 to a population neutral average face, which was constructed as the average of the EUR and EAS population average shapes (Methods). We used 3D facial scans of EAS and EUR individuals to calculate each population's average face and therefore generated EUR and EAS average faces. Compared with the average face of EUR, we found that EAS had more protrusion in the cheek; more concavity in the forehead, glabella, nose, and mandible (Fig. 3a-i), which were consistent with a previous study [START_REF] Guo | Variation and signatures of selection on the human face[END_REF] . Interestingly, when we amplified the differentiated accumulated genetic effects five times, the PPS-derived faces looked very similar to EAS and EUR's actual average face (Fig. 3a-ii). The EUR and EAS PPS-derived faces showed similar facial variation to the ground truth, especially in the glabella and nose region (Fig. 3a-ii).

To test the generalization of the association results from our study to EUR, we compared the EUR and EAS PPS-derived faces of the whole face using all the 244 leading variants with the PPS of the whole face using 244 variants randomly chosen from the genome. The EAS and EUR PPS-derived faces using the leading variants were significantly more similar to the true population average faces than that using random variants, either measured by Euclidean distance (Pdis = 0.007) or cosine similarity (PEUR = 0.004; PEAS = 0.005; Fig. 3b).

Moreover, we calculated individual facial polygenic shape for EUR and EAS individuals from 1000GP and measured their East Asian ancestry facial appearance (EAS-FA), defined as the projected length of the individual's polygenic shape onto the explicit EAS-EUR shape difference (Methods, Supplementary Fig. 2). The EAS-FA of both EUR and EAS groups were significantly separated, with EUR individuals closer to the EUR face and EAS individuals closer to the EAS face (t.test P < 2.2×10 -16 , Fig. 3c).

We also performed the same analyses locally for ten anatomical facial regions.

The EAS and EUR PPS-derived shapes using the leading variants were significantly more similar to the population average shapes than those using random variants, involving the upper mouth, nose, maxillary, glabella, eye, tempora and zygoma in all the three measurements of similarity including cosine similarity, Euclidean distance, and EAS-FA (Extended Data Fig. 4a).

Notably, the nasal region performed the best among the ten anatomical regions (Pdis = 4.8×10 -33 ; PEUR = 3.7×10 -37 ; PEAS = 3.4×10 -37 ; Fig. 3d-f). However, we obtained non-significant results for the mandible, forehead, and lower mouth (Extended Data Fig. 5). These results indicate that the PPS constructs morphological variations in most facial regions between EUR and EAS. Our results demonstrates that the PPS-derived faces using the leading variants are similar, both visually and statistically, to the true population average shapes at global and local scales, suggesting that the facial shape effects identified from the EAS study generalize well to EUR populations.

Variants contribute to EAS facial appearance (EAS-FA)

Among the leading variants, we aimed to find those variants that make EAS have more East Asian facial features, in other words, those variants that increase East Asian facial appearance (EAS-FA). We defined the contribution of a variant to EAS-FA as the effect allele frequency weighted projected length of its effect size vector onto the EAS-EUR shape difference (Methods, Supplementary Fig. 3, and Supplementary Table 7). A variant with a positive EAS-FA contribution may cause the EAS population's facial morphology to increase EAS-FA. In contrast, a variant with a negative EAS-FA contribution may cause the EAS population to increase EUR facial appearance. In brief, the variants with large positive EAS-FA are of our interest. In each facial region, we constructed a distribution of the variant's contribution to EAS-FA using 244 leading variants. We further calculated whether each leading variant has significantly higher contribution to EAS-FA than the distribution after Bonferroni correction (P < 0.005, Extended Data Fig. 6, and Supplementary Table 8). As a result, 13 variants that passed filtering were considered to increase EAS-FA (Table1; Supplementary Fig. 4). The 13 variants had a higher FST than the other variants (t.test P < 1.0×10 -16 ), indicating that they have significant allele frequency differences between EUR and EAS populations. The Population Branch Statistics (PBS) values of the variants were significantly higher in EAS (P < 1.0×10 -16 ) relative to EUR and YRI (Yoruba), but not in EUR (P = 0.188) relative to EAS and YRI, which suggests that these variants may be under selection in EAS [START_REF] Yi | Sequencing of 50 human exomes reveals adaptation to high altitude[END_REF] . Thus, these variants potentially contribute to the morphological differences between EUR and EAS. Most of the EAS-FA variants might be standing genetic variations, as the alternative allele frequency was relatively high, given the evolutionary time, as shown in Table 1. Notably, six variants had FST above 0.5 between EUR and EAS. Furthermore, three of these variants affected the glabella segments, and two affected the nasal region. This result suggests that local adaptation might play a role in forming facial variation between EAS and EUR. Among the 13 variants, six were reported to be associated with facial shape variation. Wellknown facial genes such as EDAR, TBX15 and MRPS22 were associated with craniofacial morphology in many studies [START_REF] Adhikari | A genome-wide association study identifies multiple loci for variation in human ear morphology[END_REF][START_REF] Adhikari | A genome-wide association scan implicates DCHS2, RUNX2, GLI3, PAX1 and EDAR in human facial variation[END_REF][START_REF] Pickrell | Detection and interpretation of shared genetic influences on 42 human traits[END_REF][START_REF] Claes | Genome-wide mapping of global-to-local genetic effects on human facial shape[END_REF][START_REF] Li | LYPLAL1, PRDM16, PAX3, DKK1, TNFSF12, CACNA2D3, and SUPT3H gene variants influence facial morphology in a Eurasian population[END_REF][START_REF] Xiong | Novel genetic loci affecting facial shape variation in humans[END_REF][START_REF] Huang | A genome-wide association study of facial morphology identifies novel genetic loci in Han Chinese[END_REF][START_REF] White | Insights into the genetic architecture of the human face[END_REF][START_REF] Singh | The T-box transcription factor Tbx15 is required for skeletal development[END_REF][START_REF] Lausch | TBX15 mutations cause craniofacial dysmorphism, hypoplasia of scapula and pelvis, and short stature in Cousin syndrome[END_REF][START_REF] Ding | Redundant roles of PRDM family members in zebrafish craniofacial development[END_REF][START_REF] Kamberov | Modeling recent human evolution in mice by expression of a selected EDAR variant[END_REF][START_REF] Tan | The adaptive variant EDARV370A is associated with straight hair in East Asians[END_REF] . Our study showed a variant in an intron of TBX15 (rs10923710, NC_000001.10:g.119502774G>T) contributing to maxillary and tempora shape in EAS, consistent with the observation that this locus had multiple spatial effects on the face [START_REF] White | Insights into the genetic architecture of the human face[END_REF] . The rs12632544 (NC_000003.11:g.138946868T>A) is an intergenic variant near MRPS22 on chromosome 3q23. It is in LD (r 2 = 0.932) with rs12633011, which was reported associated with morphology of eyes in a previous EAS study [START_REF] Huang | A genome-wide association study of facial morphology identifies novel genetic loci in Han Chinese[END_REF] .

MRPS22 was reported to be associated with human earlobe size and a mouse skeleton phenotype [START_REF] Adhikari | A genome-wide association study identifies multiple loci for variation in human ear morphology[END_REF][START_REF] Shaffer | Multiethnic GWAS Reveals Polygenic Architecture of Earlobe Attachment[END_REF][START_REF] Gaudet | Phylogeneticbased propagation of functional annotations within the Gene Ontology consortium[END_REF] . A reanalysis of a GWAS study on cranioskeletal variation in outbred mice showed that variants in the region of chromosome 9, overlapping with Mrps22, were significantly associated with craniofacial variation (FDR < 5%, Supplementary Fig. 5). These variants were associated with the protrusion of the maxillary bone, the shrinkage of the eye and malar bone. In our study, rs12632544 contributes to EAS-FA in the glabella, eye and tempora (Extended Data Fig. 4b), in line with the result in the outbred mice. We also identified seven novel variants contributing to EAS-FA, five out of which are located closely to novel genes. Some of these have been reported in the context of craniofacial dysmorphology. For instance, the rs6669519 (NC_000001.10:g.75584009T>A), which contributes to the shape of glabella, is an intergenic variant near LHX8 on chromosome 1p31.1. LHX8 (LIM Homeobox 8) was reported to be associated with cleft palate, forebrain neuron development and differentiation [START_REF] Zhao | Isolated cleft palate in mice with a targeted mutation of the LIM homeobox gene lhx8[END_REF][START_REF] Haenig | Interactome Mapping Provides a Network of Neurodegenerative Disease Proteins and Uncovers Widespread Protein Aggregation in Affected Brains[END_REF] . The rs12473319 (NC_000002.11:g.232880971G>C), an intronic variant of the DIS3L2 gene, showed association with EAS-FA in glabella (Extended Data Fig. 4c). DIS3L2

was found to affect a skeleton phenotype in a mouse genome study [START_REF] Gaudet | Phylogeneticbased propagation of functional annotations within the Gene Ontology consortium[END_REF][START_REF] Astuti | Germline mutations in DIS3L2 cause the Perlman syndrome of overgrowth and Wilms tumor susceptibility[END_REF] 1), when EAS and EUR were already separated, suggesting that this variant arose in East Asian populations [START_REF] Albers | Dating genomic variants and shared ancestry in population-scale sequencing data[END_REF] .

Interestingly, there are four independent variants associated with nose morphology in the SOX9 locus in our EAS GWAS (Extended Data Fig. 7).

Although SOX9 is a well-known gene contributing to the variation in nose shape, rs8068343 (NC_000017.10:g.69447706T>C) is a novel variant that affects nose shape differences between populations [START_REF] Shaffer | Genome-Wide Association Study Reveals Multiple Loci Influencing Normal Human Facial Morphology[END_REF][START_REF] Cha | Identification of five novel genetic loci related to facial morphology by genome-wide association studies[END_REF][START_REF] Claes | Genome-wide mapping of global-to-local genetic effects on human facial shape[END_REF] . In contrast, the other three variants may affect nose shape within populations. Compared with the variants previously identified near SOX9, the reference (T) allele of rs8068343 has a lower frequency in EUR (0.04) than in EAS (0.46). Moreover, this variant had a significantly higher FST (0.528) between EUR and EAS than any other variants, and the Integrated Haplotype Score (iHS) of this variant was also significantly higher in CHB (Han Chinese, 2.55) [START_REF] Voight | A map of recent positive selection in the human genome[END_REF] . These results indicate that this variant contributes to EUR-EAS nose shape difference.

Nose-associated variants are under positive selection

To assess whether the variation of facial morphology in EAS and EUR populations is due to natural selection or random drift, we conducted several selection analyses of the leading variants discovered here. The FST enrichment test showed that regions of the whole face and nose had a significantly higher FST than random variants after Bonferroni correction (Pwhole face = 8.22×10 -7 , Pnose = 1.00×10 -4 , Supplementary Table 9; Fig. 4a), indicating that facial morphology has been under natural selection in EAS and EUR, especially in the nose region [START_REF] Guo | Global genetic differentiation of complex traits shaped by natural selection in humans[END_REF] . XP-EHH enrichment analysis showed a consistent result (Pwhole face = 3.78×10 -3 , Pnose = 1.27×10 -3 , Supplementary Table 9; Fig. 4b).

Next, the mean PBS values for the nose-associated loci were significantly higher than random variants in EUR (P = 6.90×10 -4 ) but not in EAS (P = 0.15) (Supplementary Table 9, Fig. 4c), indicating that nose shape may be under subtle local selection in Europeans rather than in East Asians. In addition, we found that mean PBS values for the nose-associated loci in a recent published EUR facial GWAS were significantly higher in EUR (PEUR = 9.46×10 -3 ) but not in EAS (PEAS = 0.464; Fig. 4d) [START_REF] White | Insights into the genetic architecture of the human face[END_REF] . The results support that nose shape may be under local selection in EUR rather than in EAS populations.

Based on a study of He et al., we estimated and tested differences using the selection coefficients for nose variants with positive contribution to East Asian nose appearance (EAS-FA in the nose segment) [START_REF] He | A probabilistic method for testing and estimating selection differences between populations[END_REF] . The EUR population showed higher selection coefficients for nose EAS-FA increasing variants than the EAS population (P = 4.88×10 -2 , Supplementary Table 9, Fig. 4e). Moreover, by comparing the mean genetic prediction of EAS and EUR's facial variation to the expected difference under random drift (Methods), the nose and glabella morphology in EUR was more protruding than EAS and the divergence of the nose was greater than expected under the neutral model (Fig. 4f) [START_REF] Robinson | Population genetic differentiation of height and body mass index across Europe[END_REF] .

Furthermore, by comparing the PPS using the leading variants with the expected PPS under random drift in the EUR and EAS, we obtained the direction (and significance) of natural selection on facial morphology in each population [START_REF] Robinson | Population genetic differentiation of height and body mass index across Europe[END_REF] . Similar to the population differences, the nose, glabella, and zygoma were under significant natural selection in EUR (Fig. 4g). However, in EAS, the effects of natural selection were not significant (Fig. 4h). These results

suggest that facial morphology in EUR may undergo local adaptation, producing a more protruded nose, glabella, and flatter zygoma.

Based on the above results, we speculate that facial features underlying EUR-EAS differences are potentially due to the adaptive selection that occurred in the EUR population, which makes European-ancestry populations have protruded and narrow noses, significantly different from those of East Asianancestry populations.

Discussion

As a large-scale East Asian population facial GWAS using a data-driven globalto-local phenotyping, our study broadens the knowledge of craniofacial genetics outside frequently investigated European-ancestry populations.

Compared to previous facial GWASs, we identified 130 (out of 244) novel variants associated with typical range facial variation, which have similar biological functions as the variants identified previously [START_REF] Liu | A genome-wide association study identifies five loci influencing facial morphology in Europeans[END_REF][START_REF] Paternoster | Genome-wide association study of threedimensional facial morphology identifies a variant in PAX3 associated with nasion position[END_REF][START_REF] Adhikari | A genome-wide association study identifies multiple loci for variation in human ear morphology[END_REF][START_REF] Adhikari | A genome-wide association scan implicates DCHS2, RUNX2, GLI3, PAX1 and EDAR in human facial variation[END_REF][START_REF] Cole | Genomewide Association Study of African Children Identifies Association of SCHIP1 and PDE8A with Facial Size and Shape[END_REF][START_REF] Pickrell | Detection and interpretation of shared genetic influences on 42 human traits[END_REF][START_REF] Shaffer | Genome-Wide Association Study Reveals Multiple Loci Influencing Normal Human Facial Morphology[END_REF][START_REF] Lee | Genome-wide association study of facial morphology reveals novel associations with FREM1 and PARK2[END_REF][START_REF] Cha | Identification of five novel genetic loci related to facial morphology by genome-wide association studies[END_REF][START_REF] Claes | Genome-wide mapping of global-to-local genetic effects on human facial shape[END_REF][START_REF] Crouch | Genetics of the human face: Identification of largeeffect single gene variants[END_REF][START_REF] Qiao | Genome-wide variants of Eurasian facial shape differentiation and a prospective model of DNA based face prediction[END_REF][START_REF] Li | LYPLAL1, PRDM16, PAX3, DKK1, TNFSF12, CACNA2D3, and SUPT3H gene variants influence facial morphology in a Eurasian population[END_REF][START_REF] Wu | Whole-exome sequencing identified four loci influencing craniofacial morphology in northern Han Chinese[END_REF][START_REF] Xiong | Novel genetic loci affecting facial shape variation in humans[END_REF][START_REF] Huang | A genome-wide association study of facial morphology identifies novel genetic loci in Han Chinese[END_REF][START_REF] Bonfante | A GWAS in Latin Americans identifies novel face shape loci, implicating VPS13B and a Denisovan introgressed region in facial variation[END_REF][START_REF] White | Insights into the genetic architecture of the human face[END_REF] . A considerable number of shared variants were independently identified in a EUR study and our EAS study, using the same facial phenotyping approach. Among the 114 known variants, 96 were associated with consistent facial regions reported in the previous facial GWASs. When [START_REF] White | Insights into the genetic architecture of the human face[END_REF] . These results suggest that the 244 variants identified in our study are reliable and the genetic factors underlying facial variation might be universal across populations.

We further extended the concepts of polygenic scores (PGS) to polygenic shapes (PS) in order to verify whether the association found in EAS could be generalized to EUR [START_REF] Choi | Tutorial: a guide to performing polygenic risk score analyses[END_REF] . Both visual and statistical evidence supported this hypothesis on the whole face and major anatomical facial regions. However, the PPS of the mandible, forehead, and lower mouth showed some difference from the corresponding EUR and EAS average shapes, which is mainly due to the insufficient number of significant variants associated with these facial regions. Besides smaller phenotypic variation in these regions in EAS, environmental factors contributing to facial variation may also impact the results.

In addition, the QST analysis suggests that mandible, lower mouth, and forehead exhibit fewer signals of facial shape differences between EAS and EUR [START_REF] Guo | Variation and signatures of selection on the human face[END_REF] . This could explain some reason for the inconsistency of the PPS for these facial regions. Of future interest is to calculate the PPS by combining all the variants identified in EAS and EUR studies. This might further improve the PPS in representing population facial shapes.

Our study also provides insights into the genetic basis of the facial shape differences between European-ancestry populations and East Asian-ancestry populations. In addition to identifying 13 primary variants contributing to EUR-EAS facial differences, we provided a method to investigate the genetic factors associated with inter-population facial variation. These 13 variants all had positive and larger effects on EUR-EAS facial differences, shaping the faces of East Asian populations to be more EAS-FA. Again, corresponding with the PPS results, due to the innate limitation of GWAS, our study may overlook rare or fixed variants that lead to more EAS-FA in EAS population. By applying our method to EUR populations, additional variants affecting EAS-FA might be discovered. Moreover, for those rare or fixed variants with opposite alleles between EUR and EAS, a single population GWAS has limitations, and an admixture population instead is needed.

Due to the large number of significant variants identified in the nose region, our evolutionary analysis further supports the hypothesis proposed by Zaidi et al.

that human nose shape has evolved in response to selection pressures [START_REF] Zaidi | Investigating the case of human nose shape and climate adaptation[END_REF] .

Again, the PBS analyses showed that nose shape difference between EUR and EAS is mainly due to natural selection in European-ancestry populations rather than in East Asian-ancestry populations [START_REF] White | Insights into the genetic architecture of the human face[END_REF] .

In conclusion, this study presents a large EAS population GWAS on 3D facial shapes. Our study identified a large number of novel variants associated with normal range facial shape variation. Using newly introduced polygenic shapes, we successfully depicted perceptually recognizable population average faces, making our results more tangible, comprehensive, and intuitive. We identified 13 variants contributing to more EAS-FA and revealed natural selection in shaping EUR-EAS nose shape difference. Our findings will greatly facilitate the understanding of human facial morphology across populations. To determine the study-wide Bonferroni P-value threshold, we calculated the number of independent tests by both the eigenvalues of the correlation matrix of the segments and the permutation analysis scheme used in the study of White et al [START_REF] White | Insights into the genetic architecture of the human face[END_REF][START_REF] Li | Adjusting multiple testing in multilocus analyses using the eigenvalues of a correlation matrix[END_REF][START_REF] Kanai | Empirical estimation of genome-wide significance thresholds based on the 1000 Genomes Project data set[END_REF] . The numbers of independent tests obtained from the eigenvalues of the correlation matrix and the permutation analysis are 50 and 51.41, respectively. Here, we used the more stringent threshold 5×10 -8 /51.41 = 9.8×10 - [START_REF] Claes | Genome-wide mapping of global-to-local genetic effects on human facial shape[END_REF] . The details can be found in the Supplementary Note.

Heritability of Facial Segments

In each facial segment, we first calculated the genome-wide heritability of each retained shape PCs using the discovery cohort and calculated the facial segment's heritability as the mean of the PCs' heritability weighted by each PC's eigenvalue (variance). To calculate the genomic relationship matrix (GRM)

for heritability estimation, we first removed SNPs based on high levels of pairwise LD by PLINK v1.9 with window size of 50, step size of 5 bases, and r 2 >0.1, remaining 266, 241 SNPs. The heritability of all facial segment PCs was estimated by GCTA [START_REF] Yang | Common SNPs explain a large proportion of the heritability for human height[END_REF][START_REF] Yang | GCTA: a tool for genome-wide complex trait analysis[END_REF] .

Gene mapping and functional annotation

Candidate genes of the genome-wide-significant leading SNPs were first identified using the NCBI, HaploReg V4.1, UCSC genome browser and Ensemble genome browser [START_REF] Sherry | dbSNP: the NCBI database of genetic variation[END_REF][START_REF] Navarro Gonzalez | The UCSC Genome Browser database: 2021 update[END_REF][START_REF] Ward | HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants[END_REF][START_REF] Aken | The Ensembl gene annotation system[END_REF] . We also used three gene-mapping criteria implemented in Functional Mapping and Annotation (FUMA, v1.3.6) to identify the most likely candidate gene per leading variant [START_REF] Watanabe | Functional mapping and annotation of genetic associations with FUMA[END_REF] . First, we map variants to genes based on physical distance (within a 10,000 base pair window) from the known protein-coding genes in the human reference assembly. Second, we included the genes which have a significant cis-expression quantitative trait locus (eQTL; 1 Mb distance to the leading variant) association with the leading variants, using 10 tissue types from the GTEx v8 database [START_REF] Lonsdale | The Genotype-Tissue Expression (GTEx) project[END_REF][START_REF] Carithers | The Genotype-Tissue Expression (GTEx) Project[END_REF][START_REF] Keen | The Genotype-Tissue Expression (GTEx) Project: Linking Clinical Data with Molecular Analysis to Advance Personalized Medicine[END_REF] . We used an FDR of 0.05 to define significant eQTL associations. Finally, we also identified candidate genes for each leading variant if there is chromatin interaction. To further prioritize candidate genes, we limited interaction-mapped genes to those who interact with a predicted enhancer region identified in any of the 111 tissues or cell types from the Roadmap Epigenomics Mapping Consortium (ROADMAP)

and/or a gene promoter region (from 250 bp upstream to 500 bp downstream of the transcription start site (TSS) and predicted by the ROADMAP to be a promoter region) [START_REF] Kundaje | Integrative analysis of 111 reference human epigenomes[END_REF] . We expected that the resulting candidate genes are more likely to have a plausible biological function. We used an FDR of 1×10 -6 to define significant interactions. To further narrow down the candidate genes, we investigated whether any gene in the window was previously associated with craniofacial development or morphology through normal-range facial association studies, genetic disorders with facial dysmorphology phenotypes, or animal models. To investigate the potential biological process of the candidate genes, FUMA (v1.3.6) and GREAT (v4.0.4) were performed using preset parameters [START_REF] Mclean | GREAT improves functional interpretation of cisregulatory regions[END_REF][START_REF] Watanabe | Functional mapping and annotation of genetic associations with FUMA[END_REF] .

Chromatin state association in embryonic craniofacial tissue

We used GREGOR (v1.4.0) to evaluate global enrichment of trait-associated variants in different chromatin states [START_REF] Schmidt | evaluating global enrichment of traitassociated variants in epigenomic features using a systematic, datadriven approach[END_REF] . This method tests for an increase in the number of facial-associated index variants, or their LD proxies (r 2 > 0.8), overlapping with the regulatory feature more often than expected by chance by comparing to permuted control sets (random control variants are selected across the genome that match the index variant for several variants in LD, minor allele frequency and distance to nearest intron). The reference epigenomes of 127 human tissues and cell types were obtained from the NIH Roadmap Epigenomics Mapping Consortium [START_REF] Bernstein | The NIH Roadmap Epigenomics Mapping Consortium[END_REF] . The human embryonic craniofacial chromHMM states were obtained from each Carnegie stage by Wilderman et al [START_REF] Wilderman | High-Resolution Epigenomic Atlas of Human Embryonic Craniofacial Development[END_REF] .

Gene expression enrichment analysis

We selected a set of transcriptome datasets from critical periods of mouse face formation that enable gene expression to be analyzed with respect to time, prominence, and tissue layer (GSE62214). We evaluate the expression level (fold change) of the candidate genes compare to a set of control groups where the genes were randomly selected from the genome. Then we regressed the fold change of gene expression on time, prominence, and tissue layer to test their associations.

The EAS and EUR average facial shapes

We recruited 89 individuals with self-reported European ancestry (32 females and 57 males) between 16 and 57 years old in Shanghai [START_REF] Watanabe | Functional mapping and annotation of genetic associations with FUMA[END_REF] . They were required to have complete European ancestry over the last three generations. Their 3D facial images were captured using the same protocol as used in the Chinese cohort. In each segment, we aligned these EUR facial shapes to the corresponding sample full Procrustes mean shape. We then calculated the male and female average facial shapes separately and used the average facial shapes of the two average shapes as the EUR average facial shapes. To calculate the EAS average facial shapes, we selected five individuals in the Han Chinese cohort with matched age and gender to the individuals in the EUR cohort. We finally selected 445 (5×89) individuals to calculate the EAS average facial shapes in the same manner as in the EUR cohort.

Polygenic shape analysis (PSA)

One can calculate the effect size vector 𝛃 i in the original shape space by:

𝛃 i = 𝐕 k 𝚺 𝑘 𝝎 𝑖 (1)
where 𝚺 𝑘 is a diagonal matrix of the largest 𝑘 singular values and the column vectors of 𝐕 k are the corresponding 𝑘 right singular vectors obtained from the PCA (Supplementary Note).

Thus, the polygenic shape (PS) of an individual could be calculated as:

𝐏𝐒 = ∑ 𝜷 𝑖 𝒈 𝑖 n i (2) 
where 𝒈 𝑖 is the genotype value of variant 𝑖 37 . Subsequently, we calculate the polygenic population shape (PPS) by:

𝐏𝐏𝐒 = 2 ∑ 𝜷 𝑖 𝒂 𝑖 n i ( 3 
)
where 𝒂 𝑖 is the effect allele frequency of variant 𝑖 and two times 𝒂 𝑖 is the average number of effect alleles in a given population.

Next, we used the PPS difference between EUR and EAS (𝑃𝑃𝑆 𝐸𝑈𝑅 -𝑃𝑃𝑆 𝐸𝐴𝑆 ) calculated by leading variants compared with random variants to evaluate whether leading variants could effectively fit the EUR-EAS shape difference.

We calculated the PPS derived shapes as following:

𝐹 𝐸𝐴𝑆 𝑑 = 𝐹 𝐴𝑉𝐺 - 𝑃𝑃𝑆 𝐸𝑈𝑅 -𝑃𝑃𝑆 𝐸𝐴𝑆 2 (4) 𝐹 𝐸𝑈𝑅 𝑑 = 𝐹 𝐴𝑉𝐺 + 𝑃𝑃𝑆 𝐸𝑈𝑅 -𝑃𝑃𝑆 𝐸𝐴𝑆 2 (5) 
where 𝐹 𝐸𝐴𝑆 𝑑 and 𝐹 𝐸𝑈𝑅 𝑑 are the corresponding PPS derived shapes, 𝐹 𝐴𝑉𝐺 is the average facial shape of the population average shapes of EUR and EAS (i.e., a population neutral average face).

We performed 1,000 simulations to calculate the random 𝑃𝑃𝑆 𝐸𝑈𝑅 -𝑃𝑃𝑆 𝐸𝐴𝑆 . In each simulation, random variants with the same effect allele frequencies in EAS were chosen to calculate random 𝑃𝑃𝑆 𝐸𝑈𝑅 -𝑃𝑃𝑆 𝐸𝐴𝑆 . Subsequently, the cosine similarity and the Euclidean distances between the PPS and the corresponding average face were used as measures of shape similarity. P-values of each approach were then calculated using the null distribution established by these 1,000 simulations.

Variant's contribution to EAS-FA

We used the projected (vector) length to quantify a variant's contribution to the EUR-EAS face difference:

𝑙 𝑖 = 𝟐(𝑎 𝑖 𝐸𝑈𝑅 -𝑎 𝑖 𝐸𝐴𝑆 ) × 𝜷 𝑖 × (𝑭 ̅ 𝐸𝑈𝑅 -𝑭 ̅ 𝐸𝐴𝑆 ) |𝑭 ̅ 𝐸𝑈𝑅 -𝑭 ̅ 𝐸𝐴𝑆 | (6) 
If a variant has a positive sign of projected length, we regard this variant to be linked to EAS individuals having more EAS features. In contrast, a variant with a negative sign is linked with EAS individuals having more EUR characteristic features.

Genetic information used from 1000 Genome Project

We used the individuals' genetic information from 1000 GP Phase 3 for related analysis including calculating MAF, PPS analysis, FST and PBS calculation, etc. 

EAS including

Calculation of natural selection signatures

We calculated genome-wide natural selection signatures based on XP-EHH using REHH2 (v3.2.0) [START_REF] Gautier | rehh 2.0: a reimplementation of the R package rehh to detect positive selection from haplotype structure[END_REF] . The genome-wide XP-EHH z-scores were standardized through normalization within each derived allele frequency bin (bin widths = 0.01). We estimated two-tailed P-values of the variant according to the normalized z-scores. We calculated the FST and PBS for different sets of a population, by using the observed allele frequencies estimated from the 1000GP Phase 3 [START_REF] Weir | Estimating F-Statistics for the Analysis of Population Structure[END_REF][START_REF] Yi | Sequencing of 50 human exomes reveals adaptation to high altitude[END_REF] . On the basis of a previous study, we measured selective pressures by (genic) selection coefficients, which the details of the calculations are described in He et al [START_REF] He | A probabilistic method for testing and estimating selection differences between populations[END_REF] .

Phenome-wide selection signature analysis

Similar to the approach used in Guo et al., we compared the mean FST/PBS value of the leading variants with that of the control variants with MAF and LD score matched [START_REF] Guo | Global genetic differentiation of complex traits shaped by natural selection in humans[END_REF] . First, we divided all the variants (1000GP) into 20 MAF bins from 0 to 0.5 with an increment of 0.025 (excluding the SNPs with MAF < 0.01).

Each of the MAF bins was further grouped into 20 bins according to the 20 quantiles of LD score distribution. The MAF and LD score values were computed from the EAS or EUR samples in the 1000GP described above.

Second, we allocated the leading variants to the MAF and LD stratified bins, randomly sampled a matched number of "control" variants from each bin, computed a mean FST/PBS value for the control variants sampled from all bins, and repeated this process 10,000 times to generate a distribution of mean FST/PBS under drift. Third, a P-value was computed from a two-tailed test by comparing the observed mean FST/PBS value for the leading variants against the null distribution quantified by the control variants, assuming normality of the null distribution. Regarding enrichment analysis of the selection signatures by XP-EHH, we obtained the sum of the squared values of the normalized XP-EHH z-scores of the variants (or the proxy variants in LD when available; r 2 > 0.6 in the CHB or CEU data from 1000 Genome Project), which was compared with the X 2 distribution with the degree of freedom equal to the number of the variants.

Direction of genetic differentiation

The analysis below uses a similar method introduced in Robinson et al. to quantify the population genetic differentiation of a complex trait [START_REF] Robinson | Population genetic differentiation of height and body mass index across Europe[END_REF] . The leading variants' coefficients were randomized across variants 10,000 times, and 10,000 genetic predictors were created in the EAS or EUR samples from the 1000GP described above. By keeping the effect sizes consistent but attributing these effects across variants at random, the genetic predictors generated reflect the action of genetic drift.
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  Han Chinese in Beijing (CHB, n = 103), and Southern Han Chinese (CHS, n = 105); EUR including Toscani (TSI, n = 107), British (GBR, n = 91), Iberian (IBS, n = 107), and Utah residents (CEU, n = 99), without Finnish (FIN); AFR including Yoruba (YRI, n = 103) were used for analysis.

  

  

  

  

  

  

  

  we compared shared variants with EUR study of White et al., 82 out of 89 were associated with the same facial regions, which indicates that different segmentation patterns could obtain similar GWAS results (Supplementary Table 3, 6)

Table 1 : The 13 variants mainly associated with East Asian facial appearance (EAS-FA) 421

 1 422¶ Novel loci in our GWAS finding, which are not within the same loci (<500kb) in previous facial GWAS studies, see in ST1, ST3.423† Novel genes in our GWAS finding, which are not reported in previous facial GWAS studies.

	rsID	CytoBand	A1	A2	P-value	EUR	EAS	PBS_EAS	PBS_EUR	FST_EURvEAS Seg	Candidate gene	Allele age
	rs7516137	1p36.32	C	G	9.75×10 -29	0.318	0.553	0.077	0.036	0.107	18	PRDM16
	rs6669519* †	1p31.1	T	A	3.40×10 -08	0.173	0.781	0.831	0.000	0.547	24	LHX8
	rs10923710	1p12	G	T	1.20×10 -44	0.193	0.507	0.262	0.000	0.207	19, 26	TBX15
	rs3827760	2q12.3	A	G	2.17×10 -13	0.000	0.921	2.587	0.306	0.945	27	EDAR
	rs12473319* ¶ †	2q37.1	G	C	1.35×10 -10	0.022	0.478	0.554	0.161	0.511	24	DIS3L2
	rs12632544	3q23	T	A	1.87×10 -65	0.000	0.500	0.571	0.332	0.595	24, 25, 26 MRPS22
	rs147468294	6q14.3	A	AC	9.02×10 -17	1.000	0.690	0.299	0.207	0.397	7	TBX18
	rs111847181	8p23.1	G	GAC	5.28×10 -09	0.454	0.964	0.779	0.000	0.424	18	PPP1R3B
	rs4749259* ¶ †	10p12.1	T	C	3.88×10 -29	0.936	0.584	0.370	0.037	0.334	26	MKX
	rs12258832* ¶ †	10p12.1	A	G	1.61×10 -24	0.892	0.690	0.133	0.005	0.129	26	MKX
	rs3740550*	10q26.11	A	G	6.70×10 -43	0.994	0.875	0.127	0.029	0.145	19	RAB11FIP2, EMX2
	rs8068343*	17q24.3	C	T	3.32×10 -51	0.959	0.462	0.470	0.281	0.528	18	SOX9
	rs9980535* ¶ †	21q21.3	A	G	3.99×10 -11	0.176	0.762	0.357	0.380	0.521	18	LINC00161

* Novel variants in our GWAS finding, which are not in LD (r 2 < 0.1) with variants reported in previous facial GWAS studies, see in ST1, ST3.
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Sample and recruitment details

The samples in this study were collected from three independent cohorts, the National Survey of Physical Traits (NSPT) cohort (n = 3,322), the Northern Han Chinese (NHC) cohort (n = 4,767), and the Taizhou Longitudinal Study (TZL) cohort (n = 2,881). For the NSPT sample, individuals were recruited at three Chinese cities: Nanning, Guangxi province (n = 1,326); Taizhou, Jiangsu Province (n = 986); Zhengzhou, Henan province (n = 1,010). In the NHC cohort, participants were recruited in Tangshan, Hebei province. These two cohorts constituted the discovery dataset. The TZL cohort, where individuals were recruited in Taizhou, Jiangsu province, were used as the replication dataset.

The characteristics of the datasets is shown in Supplementary Table 2.

Genotyping and imputation

Since we used two different genotyping platforms in the discovery and replication datasets (details in the Supplementary Note), we chose to impute the two data sets separately, then combine the imputed results.

For each dataset, standard data cleaning and quality assurance practices were performed based on the GRCh37 genome assembly. Phasing was performed using SHAPEIT2 (v2.17) [START_REF] Delaneau | A linear complexity phasing method for thousands of genomes[END_REF] and imputation to the 1000GP Phase 3 reference panel using IMPUTE2 (v2.3.2) [START_REF] Howie | A flexible and accurate genotype imputation method for the next generation of genome-wide association studies[END_REF] . After post-imputation quality control, 8,018,212 shared variants were obtained for analysis.

3D image acquisition, registration, and quality control

3D images of all individuals in the three cohorts were captured and acquired using the 3dMDface (3dMD) camera system. When capturing, participants were asked to close mouth, open eyes, and hold faces with a neutral expression.

The 3D surface images were registered using the MeshMonk (v0.0.6) [START_REF] White | MeshMonk: Open-source large-scale intensive 3D phenotyping[END_REF] in MATLAB TM 2018a. This performed a homologous configuration of 7,906 spatially dense landmarks, allowing the 3D image data to be standardized. We performed Generalized Procrustes analysis (GPA) and symmetrization, then investigated every mapped image manually and identified outlier images. 3D facial images with poor quality were removed or re-processed, with details available in the Supplementary Note.

As a result, 6,968 (n = 4,089 in NHC cohort, n = 2,879 in NSPT cohort) and 2,706 unrelated individuals with good quality 3D images in the discovery and replication dataset are used for further analysis.

Facial phenotyping

Like the approach of White et al., we performed a semi-supervised facial segmentation based on the phenotypic correlation between facial landmarks using the discovery dataset [START_REF] White | Insights into the genetic architecture of the human face[END_REF] . To calculate the phenotypic correlations, we first corrected the symmetrized facial shapes for the covariates of age, age squared, sex, body mass index (BMI), and four SUGIBS components using a partial least-squares regression (PLSR, function plsregress from MATLAB TM 2018a) in both the discovery and replication cohort [START_REF] White | Insights into the genetic architecture of the human face[END_REF] . SUGIBS is a method for genetically robust genome-wide ancestry inference based on the spectral (S) decomposition of an unnormalized genomic (UG) relationship matrix generalized by an Identity-by-State (IBS) similarity degree of individuals' matrix, which was also used by White et al [START_REF] White | Insights into the genetic architecture of the human face[END_REF][START_REF] Li | Robust genome-wide ancestry inference for heterogeneous datasets: illustrated using the 1,000 genome project with 3D facial images[END_REF] .

To study global and local effects on facial variation, we refined the data-driven facial segmentation method to avoid isolated point and cluster specific facial regions. We performed a hierarchical spectral clustering on a combined matrix, as 0.9×RV similarity matrix + 0.1×distance matrix, up to level five, resulting in a total of 63 facial segments (Supplementary Fig. 6, Supplementary Note). In each segment, we performed principal component analysis (PCA) on the PLSR residuals of the discovery cohort and obtained the PC scores as the phenotypic scores for the discovery cohort. In the replication cohort, we projected the PLSR residuals onto the PCA space build in the discovery cohort to obtain the PC scores as the phenotypic scores. We described the methods in detail in the Supplementary Note.

Multivariate genome-wide association meta-analyses

The association analysis is similar to that in White et al [START_REF] White | Insights into the genetic architecture of the human face[END_REF] . For all three phases (discovery, replication, and meta-analysis), the genotypes were coded as the number of major alleles present (0, 1 or 2). In the discovery phase, in each of the 63 facial segments, we used canonical correlation analysis (CCA) to define the linear combination of the facial segments PCs that are mostly correlated with each variant, which represent the phenotypic effect in shape space. When one of the two sets of variables has only one variable, CCA reduces to multiple regression [START_REF] Puntanen | Methods of Multivariate Analysis, Third Edition[END_REF] . The resulting vector 𝛚 i is the effect size vector of this variant in the shape PCA space (Supplementary Note). The correlation can be tested for significance based on Rao's exact F-test (one-sided, right tail) [START_REF] Olson & Chester | On choosing a test statistic in multivariate analysis of variance[END_REF] . For each variant, we obtained a direction 𝛚 i in the shape PCA space most correlated with the genotype of that variant and a P-value representing the strength of correlation in the discovery phase. In the replication phase, we first projected the phenotypic scores onto the CCA direction and calculated the Pearson's correlation between the projected scores and the genotypes in the replication cohort. To test the correlation's significance, we used the Student's t-test where the t-statistics is defined as . We performed a one-sided right tail test for each variant to ensure that the effective direction of the variant within

the two datasets is the same. Next, the P-values obtained in the discovery and replication phase were combined in a meta-analysis using Stouffer's method weighted by the sample sizes [START_REF] Stouffer | Adjustment during army life[END_REF] . We used the corresponding implementations of these methods in the SNPLIB package (available at https://github.com/jiaruili/SNPLIB) to accelerate the analyses.

Conditional analysis and GWAS peak selection

For every variant, the meta-analysis described above yielded 63 P-values representing 63 facial segments. In the conditional analysis and peak selection, we selected the lowest P-value for each variant. For the initial selection, we selected the variants with P-value below the genome-wide threshold (P = 5×10 - 8 ) and calculated the pairwise r 2 between these variants. In each chromosome, we grouped the selected variants consecutively in a way that the r 2 between every two neighbor selected variants in the group is larger than 0.05, which resulted in 230 groups. Then, we selected the variant with the lowest P-value as the conditional variant for each group and performed association tests of the remaining variants on the condition of the conditional variant. The variant with the most significant P-value still lower than the genome-wide threshold was selected as conditional variants. We repeated these two steps until no variant remains significant. Finally, we obtained 244 leading SNPs from all groups. We considered ±500 kb genomic region of each leading variant as a genomic locus.

If nearby genomic regions overlapped, we merged them into one genomic locus.