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Abstract 

Facial morphology, a conspicuous feature of human appearance, is 

highly heritable. Previous studies on the genetic basis of facial 

morphology were mainly performed in European-ancestry cohorts (EUR). 

Applying a data-driven phenotyping and multivariate genome-wide 

scanning protocol to a large collection of 3D facial images of individuals 

with East Asian ancestry (EAS), we identified 244 variants in 166 loci (62 

novel) associated with typical-range facial variation. A newly proposed 

polygenic shape analysis indicates that the effects of the variants on 

facial shape in EAS can be generalized to EUR. Based on this, we further 

identified 13 variants related to differences between facial shape in EUR 

and EAS populations. Evolutionary analyses suggest that the difference 

in nose shape in EUR and EAS populations is caused by a directional 

selection, mainly due to a local adaptation in Europeans. Our results 

illustrate the underlying genetic basis for facial differences across 

populations. 

  



Main Text 1 

Facial morphology has substantial variations at the individual and population 2 

level. Multiple studies show significant differences in craniofacial morphology 3 

across people from different geographic regions1-18. For example, individuals of 4 

European ancestries (EUR) have a more protruding nose and brow ridges than 5 

those of East Asian ancestries (EAS)19. Such differences must have a strong 6 

genetic basis, which remains unknown, largely due to the low number of studies 7 

in performed in EAS populations compared to EUR. Previous genetic studies 8 

collectively reported about 219 loci associated with facial morphology in EUR 9 

populations, but only 24 were reported in EAS or Eurasian-ancestry populations, 10 

about 20 in Latin American-ancestry populations, and four in African-ancestry 11 

populations (Supplementary Table 1)3-5,9,12-14,16,17. Large-scale studies in EAS 12 

populations and other non-European populations are much needed to provide 13 

a complete architecture of the genetic basis of facial morphology, particularly 14 

the observable differences across populations. 15 

Here we performed a genome-wide association study (GWAS) based on a large 16 

collection of 3D facial images from the Han Chinese population. Using a data-17 

driven phenotyping approach, we identified hundreds of associated variants10,18. 18 

In addition, we identified specific variants distinguishing facial appearance 19 

between EUR and EAS populations. We further provided evidence that those 20 

population-based facial differences, especially for nose shape, were under 21 

selection. A schematic overview of our study design can be found in Extended 22 

Data Figure 1.  23 

 24 



GWAS on facial phenotypes discovered 244 leading variants. 25 

To study facial variation from a global to local scale, we used 3D facial surface 26 

scans from a large-scale EAS population (Methods, Supplementary Table 2) in 27 

a discovery (n = 6,968) and replication cohort (n = 2,706), and subsequently 28 

combined them in a meta-analysis. A semi-supervised phenotyping procedure 29 

defined 63 hierarchically arranged facial segments using the discovery cohort 30 

(Methods). Next, we performed a canonical correlation analysis (CCA) based 31 

GWAS on each facial segment's group of principal components (Methods). 32 

Subsequently, we identified 50 independent tests using parallel analysis and 33 

permutation test (Methods, Supplementary Note)18,20,21. Thus, besides 34 

conventional genome-wide significant threshold (P = 5×10-8), we set a stricter 35 

study-wide significant threshold to P = 9.8×10-10 (P = 5×10-8/51.41) after 36 

Bonferroni correction for multiple testing. In the discovery datasets, we 37 

identified 153 genome-wide significant variants (P < 5×10-8, minor allele 38 

frequency (MAF)>0.05) in 124 loci after condition analysis and peak selection 39 

(Methods). In the replication dataset, 119 out of 153 (77.8%) variants were 40 

replicated at nominal significance (p<0.05), 118 (77.1%) were replicated at 41 

FDR<0.05, 75 (49.0%) were replicated at a Bonferroni-corrected significance 42 

(P < 3.28×10-4). For the 84 variants that passed the study-wide significance (P 43 

< 9.8×10-10), 80 out of 84 (95.2%) were replicated at nominal significance 44 

(p<0.05) and FDR<0.05, 65 (77.4%) were replicated at a Bonferroni-corrected 45 

significance (P < 5.95×10-4). To increase statistical power, we performed a 46 

meta-analysis using Stouffer's method to combine the P-values obtained from 47 

the discovery and replication cohort18,22. As a result, we identified 244 48 

independent variants in 166 loci under the genome-wide threshold associated 49 



with normal range facial variation (Fig. 1a; Supplementary Table 3) where 151 50 

variants in 106 loci were study-wide significant. According to the anatomical 51 

structure, we classified the 244 genome-wide significant variants in ten facial 52 

regions (Supplementary Note), including forehead, glabella, eye, tempora, 53 

zygoma, nose, maxillary, upper mouth, lower mouth, and mandible (Fig. 1b; 54 

Supplementary Table 4). The nose was the feature associated with the most 55 

variants (107) out of the ten regions. The numbers of variants associated with 56 

the other nine regions were: glabella (35), upper mouth (32), eye (29), zygoma 57 

(28), maxillary (25), mandible (20), forehead (16), lower mouth (13) and 58 

tempora (12). In addition, we calculated the genome-wide heritability of each 59 

3D facial segments at each level. The 3D facial segments’ heritability ranged 60 

from 7.47% to 52.3%. As we expected, the nose segments were also among 61 

the most heritable area (42.17% to 46.86%, Supplementary Fig. 1). 62 

We considered a variant as novel when it was not in linkage disequilibrium (LD, 63 

r2 < 0.1) with previously reported variants in facial GWASs (P < 5×10−8, 64 

Supplementary Table 1) in any East Asian (EAS), European (EUR), and African 65 

(AFR) populations in the 1000 Genomes Project phase 3 (1000GP, Methods)23. 66 

As such, 130 of the 244 leading variants under the genome-wide threshold were 67 

novel, while 65 of the 151 under the study-wide threshold were novel 68 

(Supplementary Table 3). We considered a genetic locus as novel when it did 69 

not overlap with previously reported genomic loci associated with facial 70 

variation. As such, 62 out of 166 loci were novel. 71 

We used FUMA and GREAT to annotate the leading variants24,25. As a result, 72 

we identified 206 candidate genes potentially associated with facial variation, 73 

among which 100 genes were not reported in previous facial GWASs 74 



(Supplementary Table 3). We found that the genes associated with the leading 75 

variants were highly enriched in biological processes of skeletal system 76 

development and morphogenesis (Extended Data Fig. 2a). Moreover, the 77 

epigenome and transcriptome datasets showed that the leading variants were 78 

mainly enriched for enhancers in craniofacial tissues. Compared with the 79 

ectoderm at the later stage of fetal development, candidate genes were 80 

significantly highly expressed in the mesenchyme (Extended Data Fig. 2b-c), 81 

consistent with our expectation and previous studies18,26-30. 82 

We investigated associations (P < 1×10-5) with other complex traits for the 244 83 

variants through PhenoScanner, a web-based GWAS repository (Methods)31. 84 

We found that the traits sharing high genetic components with facial shapes 85 

mainly involved physical measurements, body composition and hair 86 

morphology (Supplementary Table 5). The highest co-association was the risk 87 

of atrial fibrillation (PITX2, rs6843082, P = 3.0×10-155). This variant has been 88 

reported to be associated with cardioembolic stroke and ischemic stroke, 89 

suggesting that facial features might be a biomarker of cardiovascular disease.  90 

 91 

Characteristics of specific variants in EAS and EUR  92 

By comparing the 244 leading variants identified in our study with the 203 93 

leading variants reported in a recently published EUR study using similar 94 

phenotyping and analysis framework, 89 variants were shared in both studies 95 

(Methods)18. The remaining 155 and 114 variants in the EAS and EUR studies 96 

respectively were different (Fig. 2a; Supplementary Table 6). Therefore, we 97 

defined three different groups: 89 shared variants, 155 EAS-specific variants, 98 

and 114 EUR-specific variants. 99 



To understand these shared and population-specific variants' characteristics, 100 

we examined their allele frequencies in EAS and EUR populations based on 101 

the 1000GP23. Comparison of cross-population minor allele frequency (MAF) 102 

showed that the groups of population-specific variants had higher MAF in their 103 

respective population (PEAS-specific = 9.0×10-12, PEUR-specific = 8.1×10-9,). In 104 

contrast, the shared variants had no difference of MAF between the two 105 

populations (Pshared = 0.1) (Fig. 2b-e). These results suggest that higher MAFs 106 

may increase the statistical power to detect the variants associated with facial 107 

variation within the respective populations. Moreover, 77.5% (69 out of 89) of 108 

the shared variants passed the study-wide significance threshold while only 109 

54.2% (84 out of 155) EAS-specific variants and 55.2% (63 out of 114) EUR-110 

specific variants passed the study-wide significance threshold (chisq.test PEAS 111 

= 3.2×10−4; PEUR = 4.8×10−6).  112 

To explore potential biological functional differences between the shared and 113 

population-specific variants, we used Metascape to compare the differences of 114 

enriched terms for their annotated genes32. We found that EAS-specific, EUR-115 

specific, and shared genes were all associated with top terms that were 116 

previously reported in association with craniofacial variation (Fig. 2f). Moreover, 117 

we observed a considerable number of functional overlaps among the three 118 

groups (Fig. 2g). These results indicate that the associated genes across 119 

populations share substantially similar biological processes. We next compared 120 

epigenetic regulation patterns of the shared and population-specific variants in 121 

various cell-types or tissues. The shared and population-specific variants were 122 

all enriched for enhancers in craniofacial tissues (Fig. 2h), again indicating that 123 

the potential functions of facial variants across populations are analogous. 124 



As expected, we found that the population-specific variants had a significantly 125 

higher Wright's fixation index (FST) than random variants from a genome-wide 126 

background both in EAS and EUR populations (PEAS-specific= 2.42×10-10; PEUR-127 

specific = 0.0063, Extended Data Fig. 3), while the shared variants had no 128 

significant difference compared with random variants (PEAS-shared = 0.599)33,34. 129 

The same result applied to the Cross Population Extended Haplotype 130 

Homozygosity (XP-EHH) analysis using REHH2 in these two populations (PEAS-131 

specific = 0.0078; PEUR-specific = 0.038; PEAS-shared = 0.449)35,36. These results 132 

suggest that facial variation across populations could be attributed to random 133 

drift and natural selection. The population-specific variants explained a larger 134 

proportion of natural selection while the shared variants may mainly explain 135 

random drift influencing facial variation. 136 

In summary, the population-specific variants found in EAS and EUR were 137 

identified due to cross-population MAF differences and subtle effect sizes. 138 

Nonetheless, similar biological processes underlying facial variation were 139 

shared across populations. 140 

 141 

Polygenic shape analysis generalizes results from EAS to EUR 142 

To explore the genetic basis of EAS facial shape and the genetic factors 143 

contributing to the difference in facial shape between EAS and EUR, we first 144 

investigated whether the association results of the leading variants in our EAS 145 

study could be generalized to EUR. 146 

We introduced a novel polygenic shape analysis to investigate whether the 147 

differential accumulated genetic effects between the two populations of the 148 

leading variants is in line with the actual population facial differences. Similar to 149 



the classic polygenic score analysis, we defined the Polygenic Shape (PS) for 150 

an individual as the sum of the number of effect risk alleles weighted by risk 151 

allele effect size of all the leading variants37. Similarly, the Polygenic Population 152 

Shape (PPS) is the average polygenic shape for a given population (Methods). 153 

Using data of EUR (n = 404) and EAS (n = 208) individuals from 1000GP, we 154 

calculated the PPS of the two populations for the whole face and ten anatomical 155 

facial regions.  156 

To visualize and compare this effect to the true population facial shape average 157 

for each facial region, we constructed EUR and EAS PPS-derived faces by 158 

adding and subtracting, respectively, (𝑷𝑷𝑺𝐸𝑈𝑅 − 𝑷𝑷𝑺𝐸𝐴𝑆)/2 to a population 159 

neutral average face, which was constructed as the average of the EUR and 160 

EAS population average shapes (Methods). We used 3D facial scans of EAS 161 

and EUR individuals to calculate each population's average face and therefore 162 

generated EUR and EAS average faces. Compared with the average face of 163 

EUR, we found that EAS had more protrusion in the cheek; more concavity in 164 

the forehead, glabella, nose, and mandible (Fig. 3a-i), which were consistent 165 

with a previous study19. Interestingly, when we amplified the differentiated 166 

accumulated genetic effects five times, the PPS-derived faces looked very 167 

similar to EAS and EUR's actual average face (Fig. 3a-ii). The EUR and EAS 168 

PPS-derived faces showed similar facial variation to the ground truth, especially 169 

in the glabella and nose region (Fig. 3a-ii). 170 

To test the generalization of the association results from our study to EUR, we 171 

compared the EUR and EAS PPS-derived faces of the whole face using all the 172 

244 leading variants with the PPS of the whole face using 244 variants 173 

randomly chosen from the genome. The EAS and EUR PPS-derived faces 174 



using the leading variants were significantly more similar to the true population 175 

average faces than that using random variants, either measured by Euclidean 176 

distance (Pdis = 0.007) or cosine similarity (PEUR = 0.004; PEAS = 0.005; Fig. 3b). 177 

Moreover, we calculated individual facial polygenic shape for EUR and EAS 178 

individuals from 1000GP and measured their East Asian ancestry facial 179 

appearance (EAS-FA), defined as the projected length of the individual’s 180 

polygenic shape onto the explicit EAS-EUR shape difference (Methods, 181 

Supplementary Fig. 2). The EAS-FA of both EUR and EAS groups were 182 

significantly separated, with EUR individuals closer to the EUR face and EAS 183 

individuals closer to the EAS face (t.test P < 2.2×10-16, Fig. 3c). 184 

We also performed the same analyses locally for ten anatomical facial regions. 185 

The EAS and EUR PPS-derived shapes using the leading variants were 186 

significantly more similar to the population average shapes than those using 187 

random variants, involving the upper mouth, nose, maxillary, glabella, eye, 188 

tempora and zygoma in all the three measurements of similarity including 189 

cosine similarity, Euclidean distance, and EAS-FA (Extended Data Fig. 4a). 190 

Notably, the nasal region performed the best among the ten anatomical regions 191 

(Pdis = 4.8×10-33; PEUR = 3.7×10-37; PEAS = 3.4×10-37; Fig. 3d-f). However, we 192 

obtained non-significant results for the mandible, forehead, and lower mouth 193 

(Extended Data Fig. 5). These results indicate that the PPS constructs 194 

morphological variations in most facial regions between EUR and EAS. Our 195 

results demonstrates that the PPS-derived faces using the leading variants are 196 

similar, both visually and statistically, to the true population average shapes at 197 

global and local scales, suggesting that the facial shape effects identified from 198 

the EAS study generalize well to EUR populations. 199 



 200 

Variants contribute to EAS facial appearance (EAS-FA) 201 

Among the leading variants, we aimed to find those variants that make EAS 202 

have more East Asian facial features, in other words, those variants that 203 

increase East Asian facial appearance (EAS-FA). We defined the contribution 204 

of a variant to EAS-FA as the effect allele frequency weighted projected length 205 

of its effect size vector onto the EAS-EUR shape difference (Methods, 206 

Supplementary Fig. 3, and Supplementary Table 7). A variant with a positive 207 

EAS-FA contribution may cause the EAS population's facial morphology to 208 

increase EAS-FA. In contrast, a variant with a negative EAS-FA contribution 209 

may cause the EAS population to increase EUR facial appearance. In brief, the 210 

variants with large positive EAS-FA are of our interest. In each facial region, we 211 

constructed a distribution of the variant’s contribution to EAS-FA using 244 212 

leading variants. We further calculated whether each leading variant has 213 

significantly higher contribution to EAS-FA than the distribution after Bonferroni 214 

correction (P < 0.005, Extended Data Fig. 6, and Supplementary Table 8). As 215 

a result, 13 variants that passed filtering were considered to increase EAS-FA 216 

(Table1; Supplementary Fig. 4).  217 

The 13 variants had a higher FST than the other variants (t.test P < 1.0×10-16), 218 

indicating that they have significant allele frequency differences between EUR 219 

and EAS populations. The Population Branch Statistics (PBS) values of the 220 

variants were significantly higher in EAS (P < 1.0×10-16) relative to EUR and 221 

YRI (Yoruba), but not in EUR (P = 0.188) relative to EAS and YRI, which 222 

suggests that these variants may be under selection in EAS38. Thus, these 223 

variants potentially contribute to the morphological differences between EUR 224 



and EAS. Most of the EAS-FA variants might be standing genetic variations, as 225 

the alternative allele frequency was relatively high, given the evolutionary time, 226 

as shown in Table 1. Notably, six variants had FST above 0.5 between EUR and 227 

EAS. Furthermore, three of these variants affected the glabella segments, and 228 

two affected the nasal region. This result suggests that local adaptation might 229 

play a role in forming facial variation between EAS and EUR. Among the 13 230 

variants, six were reported to be associated with facial shape variation. Well-231 

known facial genes such as EDAR, TBX15 and MRPS22 were associated with 232 

craniofacial morphology in many studies3,4,6,10,13,15,16,18,39-43. Our study showed 233 

a variant in an intron of TBX15 (rs10923710, NC_000001.10:g.119502774G>T) 234 

contributing to maxillary and tempora shape in EAS, consistent with the 235 

observation that this locus had multiple spatial effects on the face18. The 236 

rs12632544 (NC_000003.11:g.138946868T>A) is an intergenic variant near 237 

MRPS22 on chromosome 3q23. It is in LD (r2 = 0.932) with rs12633011, which 238 

was reported associated with morphology of eyes in a previous EAS study16. 239 

MRPS22 was reported to be associated with human earlobe size and a mouse 240 

skeleton phenotype3,44,45. A reanalysis of a GWAS study on cranioskeletal 241 

variation in outbred mice showed that variants in the region of chromosome 9, 242 

overlapping with Mrps22, were significantly associated with craniofacial 243 

variation (FDR < 5%, Supplementary Fig. 5). These variants were associated 244 

with the protrusion of the maxillary bone, the shrinkage of the eye and malar 245 

bone. In our study, rs12632544 contributes to EAS-FA in the glabella, eye and 246 

tempora (Extended Data Fig. 4b), in line with the result in the outbred mice. We 247 

also identified seven novel variants contributing to EAS-FA, five out of which 248 

are located closely to novel genes. Some of these have been reported in the 249 



context of craniofacial dysmorphology. For instance, the rs6669519 250 

(NC_000001.10:g.75584009T>A), which contributes to the shape of glabella, 251 

is an intergenic variant near LHX8 on chromosome 1p31.1. LHX8 (LIM 252 

Homeobox 8) was reported to be associated with cleft palate, forebrain neuron 253 

development and differentiation46,47. The rs12473319 254 

(NC_000002.11:g.232880971G>C), an intronic variant of the DIS3L2 gene, 255 

showed association with EAS-FA in glabella (Extended Data Fig. 4c). DIS3L2 256 

was found to affect a skeleton phenotype in a mouse genome study45,48. In 257 

addition, DIS3L2 is a candidate gene for the Perlman syndrome, characterized 258 

by craniofacial abnormalities. Moreover, the frequency of the derived C allele is 259 

higher in EAS (47.8%) than EUR (2.2%). The estimated allele age of this variant 260 

is about 7,875 years old (Table 1), when EAS and EUR were already separated, 261 

suggesting that this variant arose in East Asian populations49. 262 

Interestingly, there are four independent variants associated with nose 263 

morphology in the SOX9 locus in our EAS GWAS (Extended Data Fig. 7). 264 

Although SOX9 is a well-known gene contributing to the variation in nose shape, 265 

rs8068343 (NC_000017.10:g.69447706T>C) is a novel variant that affects 266 

nose shape differences between populations7,9,10. In contrast, the other three 267 

variants may affect nose shape within populations. Compared with the variants 268 

previously identified near SOX9, the reference (T) allele of rs8068343 has a 269 

lower frequency in EUR (0.04) than in EAS (0.46). Moreover, this variant had a 270 

significantly higher FST (0.528) between EUR and EAS than any other variants, 271 

and the Integrated Haplotype Score (iHS) of this variant was also significantly 272 

higher in CHB (Han Chinese, 2.55)50. These results indicate that this variant 273 

contributes to EUR-EAS nose shape difference. 274 



 275 

Nose-associated variants are under positive selection  276 

To assess whether the variation of facial morphology in EAS and EUR 277 

populations is due to natural selection or random drift, we conducted several 278 

selection analyses of the leading variants discovered here. The FST enrichment 279 

test showed that regions of the whole face and nose had a significantly higher 280 

FST than random variants after Bonferroni correction (Pwhole face = 8.22×10-7, 281 

Pnose = 1.00×10-4, Supplementary Table 9; Fig. 4a), indicating that facial 282 

morphology has been under natural selection in EAS and EUR, especially in 283 

the nose region51. XP-EHH enrichment analysis showed a consistent result 284 

(Pwhole face = 3.78×10-3, Pnose = 1.27×10-3, Supplementary Table 9; Fig. 4b). 285 

Next, the mean PBS values for the nose-associated loci were significantly 286 

higher than random variants in EUR (P = 6.90×10-4) but not in EAS (P = 0.15) 287 

(Supplementary Table 9, Fig. 4c), indicating that nose shape may be under 288 

subtle local selection in Europeans rather than in East Asians. In addition, we 289 

found that mean PBS values for the nose-associated loci in a recent published 290 

EUR facial GWAS were significantly higher in EUR (PEUR = 9.46×10-3) but not 291 

in EAS (PEAS = 0.464; Fig. 4d)18. The results support that nose shape may be 292 

under local selection in EUR rather than in EAS populations.  293 

Based on a study of He et al., we estimated and tested differences using the 294 

selection coefficients for nose variants with positive contribution to East Asian 295 

nose appearance (EAS-FA in the nose segment)52. The EUR population 296 

showed higher selection coefficients for nose EAS-FA increasing variants than 297 

the EAS population (P = 4.88×10-2, Supplementary Table 9, Fig. 4e). Moreover, 298 

by comparing the mean genetic prediction of EAS and EUR's facial variation to 299 



the expected difference under random drift (Methods), the nose and glabella 300 

morphology in EUR was more protruding than EAS and the divergence of the 301 

nose was greater than expected under the neutral model (Fig. 4f)34. 302 

Furthermore, by comparing the PPS using the leading variants with the 303 

expected PPS under random drift in the EUR and EAS, we obtained the 304 

direction (and significance) of natural selection on facial morphology in each 305 

population34. Similar to the population differences, the nose, glabella, and 306 

zygoma were under significant natural selection in EUR (Fig. 4g). However, in 307 

EAS, the effects of natural selection were not significant (Fig. 4h). These results 308 

suggest that facial morphology in EUR may undergo local adaptation, 309 

producing a more protruded nose, glabella, and flatter zygoma. 310 

Based on the above results, we speculate that facial features underlying EUR-311 

EAS differences are potentially due to the adaptive selection that occurred in 312 

the EUR population, which makes European-ancestry populations have 313 

protruded and narrow noses, significantly different from those of East Asian-314 

ancestry populations.  315 

 316 

Discussion 317 

As a large-scale East Asian population facial GWAS using a data-driven global-318 

to-local phenotyping, our study broadens the knowledge of craniofacial 319 

genetics outside frequently investigated European-ancestry populations. 320 

Compared to previous facial GWASs, we identified 130 (out of 244) novel 321 

variants associated with typical range facial variation, which have similar 322 

biological functions as the variants identified previously1-18. A considerable 323 

number of shared variants were independently identified in a EUR study and 324 



our EAS study, using the same facial phenotyping approach. Among the 114 325 

known variants, 96 were associated with consistent facial regions reported in 326 

the previous facial GWASs. When we compared shared variants with EUR 327 

study of White et al., 82 out of 89 were associated with the same facial regions, 328 

which indicates that different segmentation patterns could obtain similar GWAS 329 

results (Supplementary Table 3, 6)18. These results suggest that the 244 330 

variants identified in our study are reliable and the genetic factors underlying 331 

facial variation might be universal across populations. 332 

We further extended the concepts of polygenic scores (PGS) to polygenic 333 

shapes (PS) in order to verify whether the association found in EAS could be 334 

generalized to EUR37. Both visual and statistical evidence supported this 335 

hypothesis on the whole face and major anatomical facial regions. However, 336 

the PPS of the mandible, forehead, and lower mouth showed some difference 337 

from the corresponding EUR and EAS average shapes, which is mainly due to 338 

the insufficient number of significant variants associated with these facial 339 

regions. Besides smaller phenotypic variation in these regions in EAS, 340 

environmental factors contributing to facial variation may also impact the results. 341 

In addition, the QST analysis suggests that mandible, lower mouth, and 342 

forehead exhibit fewer signals of facial shape differences between EAS and 343 

EUR19. This could explain some reason for the inconsistency of the PPS for 344 

these facial regions. Of future interest is to calculate the PPS by combining all 345 

the variants identified in EAS and EUR studies. This might further improve the 346 

PPS in representing population facial shapes. 347 

Our study also provides insights into the genetic basis of the facial shape 348 

differences between European-ancestry populations and East Asian-ancestry 349 



populations. In addition to identifying 13 primary variants contributing to EUR-350 

EAS facial differences, we provided a method to investigate the genetic factors 351 

associated with inter-population facial variation. These 13 variants all had 352 

positive and larger effects on EUR-EAS facial differences, shaping the faces of 353 

East Asian populations to be more EAS-FA. Again, corresponding with the PPS 354 

results, due to the innate limitation of GWAS, our study may overlook rare or 355 

fixed variants that lead to more EAS-FA in EAS population. By applying our 356 

method to EUR populations, additional variants affecting EAS-FA might be 357 

discovered. Moreover, for those rare or fixed variants with opposite alleles 358 

between EUR and EAS, a single population GWAS has limitations, and an 359 

admixture population instead is needed. 360 

Due to the large number of significant variants identified in the nose region, our 361 

evolutionary analysis further supports the hypothesis proposed by Zaidi et al. 362 

that human nose shape has evolved in response to selection pressures53. 363 

Again, the PBS analyses showed that nose shape difference between EUR and 364 

EAS is mainly due to natural selection in European-ancestry populations rather 365 

than in East Asian-ancestry populations18. 366 

In conclusion, this study presents a large EAS population GWAS on 3D facial 367 

shapes. Our study identified a large number of novel variants associated with 368 

normal range facial shape variation. Using newly introduced polygenic shapes, 369 

we successfully depicted perceptually recognizable population average faces, 370 

making our results more tangible, comprehensive, and intuitive. We identified 371 

13 variants contributing to more EAS-FA and revealed natural selection in 372 

shaping EUR-EAS nose shape difference. Our findings will greatly facilitate the 373 

understanding of human facial morphology across populations. 374 
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Tables 420 

Table 1: The 13 variants mainly associated with East Asian facial appearance (EAS-FA) 421 

rsID CytoBand A1 A2 P-value EUR EAS PBS_EAS PBS_EUR FST_EURvEAS Seg Candidate gene Allele age 

rs7516137 1p36.32 C G 9.75×10-29 0.318 0.553 0.077 0.036 0.107 18 PRDM16 537708 

rs6669519*† 1p31.1 T A 3.40×10-08 0.173 0.781 0.831 0.000 0.547 24 LHX8 51373 

rs10923710 1p12 G T 1.20×10-44 0.193 0.507 0.262 0.000 0.207 19, 26 TBX15 88185 

rs3827760 2q12.3 A G 2.17×10-13 0.000 0.921 2.587 0.306 0.945 27 EDAR 36410 

rs12473319*¶† 2q37.1 G C 1.35×10-10 0.022 0.478 0.554 0.161 0.511 24 DIS3L2 39385 

rs12632544 3q23 T A 1.87×10-65 0.000 0.500 0.571 0.332 0.595 24, 25, 26 MRPS22 626678 

rs147468294 6q14.3 A AC 9.02×10-17 1.000 0.690 0.299 0.207 0.397 7 TBX18 46640 

rs111847181 8p23.1 G GAC 5.28×10-09 0.454 0.964 0.779 0.000 0.424 18 PPP1R3B 788343 

rs4749259*¶† 10p12.1 T C 3.88×10-29 0.936 0.584 0.370 0.037 0.334 26 MKX 298528 

rs12258832*¶† 10p12.1 A G 1.61×10-24 0.892 0.690 0.133 0.005 0.129 26 MKX 64715 

rs3740550* 10q26.11 A G 6.70×10-43 0.994 0.875 0.127 0.029 0.145 19 
RAB11FIP2, 

EMX2 
64603 

rs8068343* 17q24.3 C T 3.32×10-51 0.959 0.462 0.470 0.281 0.528 18 SOX9 1261665 

rs9980535*¶† 21q21.3 A G 3.99×10-11 0.176 0.762 0.357 0.380 0.521 18 LINC00161 1030805 

* Novel variants in our GWAS finding, which are not in LD (r2 < 0.1) with variants reported in previous facial GWAS studies, see in ST1, ST3. 422 
¶ Novel loci in our GWAS finding, which are not within the same loci (<500kb) in previous facial GWAS studies, see in ST1, ST3. 423 
† Novel genes in our GWAS finding, which are not reported in previous facial GWAS studies.424 



Figure Legends 425 

426 

Fig. 1: Overall results of genome-wide association meta-analyses in Han 427 

Chinese cohort. a) The Manhattan plot on the ring represents the meta-analyses P-428 

values, with chromosomes colored and labelled. P-values are -log10 scaled. Using 429 

500kb windows, peak variants are colored in red (novel variants) and green (known 430 

variants). Inside the Manhattan plot, a binary tree of facial segments illustrates the 431 

hierarchical facial segmentation up to level four. On the whole face and ten selected 432 

facial segments (colored), variants in the segment itself (colored) and in its derivative 433 

segments (gray) are plotted, with the number of variants listed (#variants in derivative 434 

segments in parenthesis). b) Visualization of ten selected facial segments and number 435 

of significant variants. 436 

 437 



438 

Fig. 2: Comparison of shared and population-specific variants. a) Number of 439 

specific and shared variants of two study cohorts (EAS and EUR). b-e) Cross-440 

population MAF comparisons of b) specific variants of EAS (n = 155). c) Shared 441 

variants (n = 178 (89 in EAS study and 89 in EUR study), shared variants in both 442 

studies are used), and d) specific variants of EUR (n = 114). In b-d), P-values are 443 

provided using a two-sided Mann-Whitney U-test. When MAF < 0.001, MAF was 444 

truncated to 0.001 to fit the log scale (1000GP). e) MAF ratio comparison of three 445 

groups. Boxplots show medians (center lines), first and third quartiles (lower and upper 446 

box limits, respectively), 1.5-fold interquartile ranges (whisker extents) and outliers 447 

(black circles). Colors are corresponding with a). f) Metascape analysis shows the 448 

biological processes associated with genes in the three groups of genes. g) Each 449 



outside arc represents a group, and each inside arc represent a gene list. On the inside, 450 

each arc represents a gene list, where each gene has a spot on the arc. The dark 451 

orange color represents overlapping genes among groups. Same genes (purple lines) 452 

and different genes fell into the same ontology term (blue lines) of three groups. h) 453 

Heatmap indicates the global enrichment of trait-associated variants of each group (y 454 

axis) in enhancer of different tissue (x axis). 455 

 456 



457 

Fig. 3: Visualization of PPS derived whole faces and nose of EAS and EUR and 458 

the statistical validations for PPS approach. a) Visualization of facial morphology 459 

of EAS and EUR. i) from top to bottom, representing the ground truth of EUR average 460 

face, overall average face (EUR and EAS), and EAS average face respectively; ii) from 461 

top to bottom, the PPS derived whole faces of 244 leading variants by adding 462 

𝑷𝑷𝑺𝑬𝑼𝑹 − 𝑷𝑷𝑺𝑬𝑨𝑺  +5, +1 to -1, -5 times on the overall average facial shape. 463 

Differences are visualized using the normal displacement (displacement in the 464 

direction locally perpendicular to the facial surface), blue and red refer to depression 465 

and protrusion in local shape respectively. b) The null distribution (blue) of i) Euclidean 466 

distance, ii) Cosine similarity with EUR average face, and iii) Cosine similarity with EAS 467 

average face using 1,000 simulations from 244 random variants on the whole face, red 468 

line infers the statistics of the 244 leading variants, black line infers 95% quantile of 469 

distribution from the random variants. c) The EAS-FA of polygenic shapes (whole face) 470 

for individuals in 1000GP. The squares represent the mean EAS-FA score and the 471 

horizontal lines represent 1st and 3rd quantile. d) The 𝑷𝑷𝑺𝑬𝑼𝑹 − 𝑷𝑷𝑺𝑬𝑨𝑺 difference of 472 

nose region in three views. i), ii), and iii) Front, side, and vertical views, respectively. 473 

The PPS derived nose of EUR and EAS are presented in the blue and orange color 474 

respectively. e) The distribution of i) Euclidean distance. ii) Cosine similarity with EUR 475 



average nose and iii) Cosine similarity with EAS average nose using 1,000 simulations 476 

from random variants, red line infers the statistics of the 107 leading variants 477 

associated with nose, black line infers 95% quantile of distribution from the random 478 

variants. f) The EAS-FA of polygenic shapes (nose only) for individuals in 1000GP. 479 

The squares represent the mean EAS-FA score for the nose and the horizontal lines 480 

represent 1st and 3rd quantile. 481 

482 

Fig. 4: Natural selection analyses and enrichment test of the differentiation of 483 

facial-associated variants among the EAS and EUR populations. a, b) P-values (-484 

log10 scale) of a) FST and b) XP-EHH for the whole face and 10 anatomical regions. 485 

The red line is the P-value threshold of 0.05. c, d) Observed mean PBS value for the 486 

leading variants c) the 244 variants in this EAS study, and d) the 203 variants from 487 

study of White et al against the null distribution among EAS, EUR and YRI for the nose 488 

region. e) Selection coefficients for the nose region against the underlying null 489 

distribution (blue). The red line corresponds to the observed selection coefficients. The 490 

black line is 95% quantile of the null distribution. f) Differentiated accumulated genetic 491 

effects of the 244 leading variants (visualized using the local surface normal 492 

displacement) and P-values (-log10 scale) of each quasi-landmark. g) Effects and P-493 

values (-log10 scale) of each quasi-landmark compared with random drift in the 494 

European population and in h) the East Asian population. 495 



 496 

 497 
Extended Data Fig. 1: Study design. We first start with a face segmentation 498 

procedure to get 63 face segments from which we defined 10 anatomical face regions. 499 

Then by using a CCA based GWAS, we identified 244 variants with a P value lower 500 

than 5×10-8, in which 151 are also lower than 9.8×10-10. To investigate what affects 501 

the similarity of an EAS face, we used polygenic population shape (PPS) analyses to 502 

fit EUR and EAS faces and identified 13 variants mainly contributing to EUR-EAS facial 503 

differences. To investigate selection on facial variation, we used FST and XP-EHH to 504 

find which parts of the face are under selection. These results, we further compared 505 

with random drift and random PPS to find out, which from the two populations, EUR or 506 

EAS, experienced selection. 507 

 508 



 509 
Extended Data Fig. 2: Enrichment analysis of leading variants. (a) Geno Ontology 510 

enrichment for genes annotated from leading variants by GREAT24. (b) Heatmap 511 

indicating the global enrichment of trait-associated variants in different chromatin state 512 

(y axis) and in different tissue (x axis). The fold change was calculated by GREGOR28. 513 

The embryonic craniofacial tissue was previously published by epigenomic atlas, while 514 

the other was previously published by Roadmap Epigenome27. The description of the 515 

25-state chromatin model can be found at: 516 

https://egg2.wustl.edu/roadmap/web_portal/imputed.html#chr_imp. (c) Expression 517 

levels of the candidate genes in craniofacial tissues. Each point (n=3 biologically 518 

independent replicates for each condition) represents an estimated fold change 519 

compared to control genes at different times (E10.5, E11.5, E12.5), in different 520 

prominences (Frontonasal, FNP: circle; Maxillary, MxP: square; Mandibular, MnP: 521 

triangle), and tissue layer (Ectoderm, Ect: red; Mesenchyme, Mes: blue). Data are 522 

presented as mean values +/- 95% confidence intervals (1.96×SEM). 523 

 524 



 525 



Extended Data Fig. 3 XP-EHH and FST enrichment analysis for shared and 526 

differentiated variants. XP-EHH and FST enrichment analysis for (a, d) EUR 527 

differentiated variants, (b, e) EAS differentiated variants, and (c, f) shared variants in 528 

EAS study. The blue color is the null distribution. The red line is the mean XP-EHH or 529 

FST score of shared or differentiated variants. The black line is the 95% quantile of the 530 

null distribution. 531 

 532 



Extended Data Fig. 4 Validation of PPS in 10 anatomical segments. (a) The null 533 

distribution (blue) of Euclidean distance, cosine similarity with EUR average face and 534 

EAS average face using 1,000 simulations derived from random variants on the 10 535 

anatomical regions, red line infers the statistics of the leading variants associated with 536 

corresponding regions; black line infers 95% quantile of distribution from the random 537 

variants with corresponding regions; (b) The genetic effects of rs12632544 and (c) 538 

rs12473319 weighted by their effect allele number difference of EUR and EAS 539 

(visualized using the local surface normal displacement). 540 

 541 
Extended Data Fig. 5 The EAS-FA of polygenic shapes in 10 anatomical regions 542 

for EAS and EUR individuals in 1000GP. The EAS-FA of polygenic shapes in a) 543 

mandible, b) forehead, c) lower mouth, d) upper mouth, e) nose, f) maxillary, g) glabella, 544 

h) eye, i) tempora, and j) zygoma for EAS and EUR individuals in 1000GP. The squares 545 

represent the mean EAS-FA score in 10 anatomical regions and the horizontal lines 546 

represent 1st and 3rd quantile. 547 

 548 



 549 
Extended Data Fig. 6 EAS-FA of the 244 leading variants on the EUR-EAS 550 

difference. The distributions (blue) of EAS-FA derived from 244 leading variants 551 

associated with a) whole face and b) - k) 10 anatomical segments. The black dotted 552 

line is the EAS-FA threshold of each region (mean + 3×SD). The red arrow is the variant 553 

over threshold. 554 

 555 

 556 



Extended Data Fig. 7 Multi peak in 17q24.3 region. (a) Association variants in the 557 

SOX9 locus and genomic environment surrounding SOX9 across a 2-Mb window. Four 558 

independent variants, represented by (1) rs34476511 (blue), (2) rs9900242 (green), (3) 559 

rs8068343 (red), and (4) rs2193052 (purple) are observed; (b) Allele frequency in AMR, 560 

SAS, AFR, EUR and EAS population of the four variants from 1000GP; (c) The effects 561 

of the four variants in the nose region. 562 
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Ethics statement 697 

All participants provided written informed consent, and all study protocols were 698 

approved by the institutional review boards of the pertinent research institutions. 699 

The National Survey of Physical Traits (NSPT) is the sub project of The National 700 

Science & Technology Basic Research Project which was approved by the 701 

Ethics Committee of Human Genetic Resources of School of Life Sciences, 702 

Fudan University, Shanghai (14117). The Northern Han Chinese (NHC) cohort 703 

was approved by the Ethics Committee of Human Genetic Resources at the 704 

Shanghai Institute of Life Sciences, Chinese Academy of Sciences (ER-SIBS-705 

261410-A1801). The Taizhou Longitudinal Study (TZL) was approved by the 706 

Ethics Committee of Human Genetic Resources at the Shanghai institute of life 707 

Sciences, Chinese Academy of Sciences (ER-SIBS-261410). Written informed 708 

consent was granted for each participant before enrollment in the study. We 709 

confirm that our study is compliant with the Guidance of the Ministry of Science 710 

and Technology (MOST) for the Review and Approval of Human Genetic 711 

Resources. 712 

 713 

Sample and recruitment details 714 

The samples in this study were collected from three independent cohorts, the 715 

National Survey of Physical Traits (NSPT) cohort (n = 3,322), the Northern Han 716 

Chinese (NHC) cohort (n = 4,767), and the Taizhou Longitudinal Study (TZL) 717 

cohort (n = 2,881). For the NSPT sample, individuals were recruited at three 718 

Chinese cities: Nanning, Guangxi province (n = 1,326); Taizhou, Jiangsu 719 

Province (n = 986); Zhengzhou, Henan province (n = 1,010). In the NHC cohort, 720 



participants were recruited in Tangshan, Hebei province. These two cohorts 721 

constituted the discovery dataset. The TZL cohort, where individuals were 722 

recruited in Taizhou, Jiangsu province, were used as the replication dataset. 723 

The characteristics of the datasets is shown in Supplementary Table 2.  724 

 725 

Genotyping and imputation  726 

Since we used two different genotyping platforms in the discovery and 727 

replication datasets (details in the Supplementary Note), we chose to impute 728 

the two data sets separately, then combine the imputed results. 729 

For each dataset, standard data cleaning and quality assurance practices were 730 

performed based on the GRCh37 genome assembly. Phasing was performed 731 

using SHAPEIT2 (v2.17) 54 and imputation to the 1000GP Phase 3 reference 732 

panel using IMPUTE2 (v2.3.2) 55. After post-imputation quality control, 733 

8,018,212 shared variants were obtained for analysis. 734 

 735 

3D image acquisition, registration, and quality control 736 

3D images of all individuals in the three cohorts were captured and acquired 737 

using the 3dMDface (3dMD) camera system. When capturing, participants were 738 

asked to close mouth, open eyes, and hold faces with a neutral expression.  739 

The 3D surface images were registered using the MeshMonk (v0.0.6)56 in 740 

MATLABTM 2018a. This performed a homologous configuration of 7,906 741 

spatially dense landmarks, allowing the 3D image data to be standardized. We 742 

performed Generalized Procrustes analysis (GPA) and symmetrization, then 743 

investigated every mapped image manually and identified outlier images. 3D 744 



facial images with poor quality were removed or re-processed, with details 745 

available in the Supplementary Note. 746 

As a result, 6,968 (n = 4,089 in NHC cohort, n = 2,879 in NSPT cohort) and 747 

2,706 unrelated individuals with good quality 3D images in the discovery and 748 

replication dataset are used for further analysis. 749 

 750 

Facial phenotyping 751 

Like the approach of White et al., we performed a semi-supervised facial 752 

segmentation based on the phenotypic correlation between facial landmarks 753 

using the discovery dataset18. To calculate the phenotypic correlations, we first 754 

corrected the symmetrized facial shapes for the covariates of age, age squared, 755 

sex, body mass index (BMI), and four SUGIBS components using a partial 756 

least-squares regression (PLSR, function plsregress from MATLABTM 2018a) in 757 

both the discovery and replication cohort18. SUGIBS is a method for genetically 758 

robust genome-wide ancestry inference based on the spectral (S) 759 

decomposition of an unnormalized genomic (UG) relationship matrix 760 

generalized by an Identity-by-State (IBS) similarity degree of individuals’ matrix, 761 

which was also used by White et al18,57.  762 

To study global and local effects on facial variation, we refined the data-driven 763 

facial segmentation method to avoid isolated point and cluster specific facial 764 

regions. We performed a hierarchical spectral clustering on a combined matrix, 765 

as 0.9×RV similarity matrix + 0.1×distance matrix, up to level five, resulting in a 766 

total of 63 facial segments (Supplementary Fig. 6, Supplementary Note). In 767 

each segment, we performed principal component analysis (PCA) on the PLSR 768 

residuals of the discovery cohort and obtained the PC scores as the phenotypic 769 



scores for the discovery cohort. In the replication cohort, we projected the PLSR 770 

residuals onto the PCA space build in the discovery cohort to obtain the PC 771 

scores as the phenotypic scores. We described the methods in detail in the 772 

Supplementary Note. 773 

 774 

Multivariate genome-wide association meta-analyses 775 

The association analysis is similar to that in White et al18. For all three phases 776 

(discovery, replication, and meta-analysis), the genotypes were coded as the 777 

number of major alleles present (0, 1 or 2). In the discovery phase, in each of 778 

the 63 facial segments, we used canonical correlation analysis (CCA) to define 779 

the linear combination of the facial segments PCs that are mostly correlated 780 

with each variant, which represent the phenotypic effect in shape space. When 781 

one of the two sets of variables has only one variable, CCA reduces to multiple 782 

regression58. The resulting vector 𝛚i is the effect size vector of this variant in 783 

the shape PCA space (Supplementary Note). The correlation can be tested for 784 

significance based on Rao's exact F-test (one-sided, right tail)59. For each 785 

variant, we obtained a direction 𝛚i in the shape PCA space most correlated 786 

with the genotype of that variant and a P-value representing the strength of 787 

correlation in the discovery phase. In the replication phase, we first projected 788 

the phenotypic scores onto the CCA direction and calculated the Pearson's 789 

correlation between the projected scores and the genotypes in the replication 790 

cohort. To test the correlation's significance, we used the Student's t-test where 791 

the t-statistics is defined as . We performed a one-sided right 792 

tail test for each variant to ensure that the effective direction of the variant within 793 
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the two datasets is the same. Next, the P-values obtained in the discovery and 794 

replication phase were combined in a meta-analysis using Stouffer's method 795 

weighted by the sample sizes22. We used the corresponding implementations 796 

of these methods in the SNPLIB package (available at https://github.com/jiarui-797 

li/SNPLIB) to accelerate the analyses. 798 

 799 

Conditional analysis and GWAS peak selection 800 

For every variant, the meta-analysis described above yielded 63 P-values 801 

representing 63 facial segments. In the conditional analysis and peak selection, 802 

we selected the lowest P-value for each variant. For the initial selection, we 803 

selected the variants with P-value below the genome-wide threshold (P = 5×10-804 

8) and calculated the pairwise r2 between these variants. In each chromosome, 805 

we grouped the selected variants consecutively in a way that the r2 between 806 

every two neighbor selected variants in the group is larger than 0.05, which 807 

resulted in 230 groups. Then, we selected the variant with the lowest P-value 808 

as the conditional variant for each group and performed association tests of the 809 

remaining variants on the condition of the conditional variant. The variant with 810 

the most significant P-value still lower than the genome-wide threshold was 811 

selected as conditional variants. We repeated these two steps until no variant 812 

remains significant. Finally, we obtained 244 leading SNPs from all groups. We 813 

considered ±500 kb genomic region of each leading variant as a genomic locus. 814 

If nearby genomic regions overlapped, we merged them into one genomic locus. 815 

 816 

https://github.com/jiarui-li/SNPLIB
https://github.com/jiarui-li/SNPLIB


Permutation test of study-wide P-value threshold 817 

To determine the study-wide Bonferroni P-value threshold, we calculated the 818 

number of independent tests by both the eigenvalues of the correlation matrix 819 

of the segments and the permutation analysis scheme used in the study of 820 

White et al18,20,21. The numbers of independent tests obtained from the 821 

eigenvalues of the correlation matrix and the permutation analysis are 50 and 822 

51.41, respectively. Here, we used the more stringent threshold 5×10-8/51.41 = 823 

9.8×10-10. The details can be found in the Supplementary Note. 824 

 825 

Heritability of Facial Segments  826 

In each facial segment, we first calculated the genome-wide heritability of each 827 

retained shape PCs using the discovery cohort and calculated the facial 828 

segment’s heritability as the mean of the PCs’ heritability weighted by each 829 

PC’s eigenvalue (variance). To calculate the genomic relationship matrix (GRM) 830 

for heritability estimation, we first removed SNPs based on high levels of 831 

pairwise LD by PLINK v1.9 with window size of 50, step size of 5 bases, and 832 

r2>0.1, remaining 266, 241 SNPs. The heritability of all facial segment PCs was 833 

estimated by GCTA60,61. 834 

 835 

Gene mapping and functional annotation 836 

Candidate genes of the genome-wide-significant leading SNPs were first 837 

identified using the NCBI, HaploReg V4.1, UCSC genome browser and 838 

Ensemble genome browser62-65. We also used three gene-mapping criteria 839 

implemented in Functional Mapping and Annotation (FUMA, v1.3.6) to identify 840 

the most likely candidate gene per leading variant25. First, we map variants to 841 



genes based on physical distance (within a 10,000 base pair window) from the 842 

known protein-coding genes in the human reference assembly. Second, we 843 

included the genes which have a significant cis- expression quantitative trait 844 

locus (eQTL; 1 Mb distance to the leading variant) association with the leading 845 

variants, using 10 tissue types from the GTEx v8 database66-68. We used an 846 

FDR of 0.05 to define significant eQTL associations. Finally, we also identified 847 

candidate genes for each leading variant if there is chromatin interaction. To 848 

further prioritize candidate genes, we limited interaction-mapped genes to those 849 

who interact with a predicted enhancer region identified in any of the 111 tissues 850 

or cell types from the Roadmap Epigenomics Mapping Consortium (ROADMAP) 851 

and/or a gene promoter region (from 250 bp upstream to 500 bp downstream 852 

of the transcription start site (TSS) and predicted by the ROADMAP to be a 853 

promoter region)27. We expected that the resulting candidate genes are more 854 

likely to have a plausible biological function. We used an FDR of 1×10-6 to 855 

define significant interactions. To further narrow down the candidate genes, we 856 

investigated whether any gene in the window was previously associated with 857 

craniofacial development or morphology through normal-range facial 858 

association studies, genetic disorders with facial dysmorphology phenotypes, 859 

or animal models. To investigate the potential biological process of the 860 

candidate genes, FUMA (v1.3.6) and GREAT (v4.0.4) were performed using 861 

preset parameters24,25. 862 

 863 

Chromatin state association in embryonic craniofacial tissue  864 

We used GREGOR (v1.4.0) to evaluate global enrichment of trait-associated 865 

variants in different chromatin states28. This method tests for an increase in the 866 



number of facial-associated index variants, or their LD proxies (r2 > 0.8), 867 

overlapping with the regulatory feature more often than expected by chance by 868 

comparing to permuted control sets (random control variants are selected 869 

across the genome that match the index variant for several variants in LD, minor 870 

allele frequency and distance to nearest intron). The reference epigenomes of 871 

127 human tissues and cell types were obtained from the NIH Roadmap 872 

Epigenomics Mapping Consortium26. The human embryonic craniofacial 873 

chromHMM states were obtained from each Carnegie stage by Wilderman et 874 

al29.  875 

 876 

Gene expression enrichment analysis  877 

We selected a set of transcriptome datasets from critical periods of mouse face 878 

formation that enable gene expression to be analyzed with respect to time, 879 

prominence, and tissue layer (GSE62214). We evaluate the expression level 880 

(fold change) of the candidate genes compare to a set of control groups where 881 

the genes were randomly selected from the genome. Then we regressed the 882 

fold change of gene expression on time, prominence, and tissue layer to test 883 

their associations. 884 

 885 

The EAS and EUR average facial shapes 886 

We recruited 89 individuals with self-reported European ancestry (32 females 887 

and 57 males) between 16 and 57 years old in Shanghai25. They were required 888 

to have complete European ancestry over the last three generations. Their 3D 889 

facial images were captured using the same protocol as used in the Chinese 890 

cohort. In each segment, we aligned these EUR facial shapes to the 891 



corresponding sample full Procrustes mean shape. We then calculated the 892 

male and female average facial shapes separately and used the average facial 893 

shapes of the two average shapes as the EUR average facial shapes. To 894 

calculate the EAS average facial shapes, we selected five individuals in the Han 895 

Chinese cohort with matched age and gender to the individuals in the EUR 896 

cohort. We finally selected 445 (5×89) individuals to calculate the EAS average 897 

facial shapes in the same manner as in the EUR cohort. 898 

 899 

Polygenic shape analysis (PSA) 900 

One can calculate the effect size vector 𝛃i in the original shape space by: 901 

𝛃i = 𝐕k𝚺𝑘𝝎𝑖 (1) 902 

where 𝚺𝑘 is a diagonal matrix of the largest 𝑘 singular values and the column 903 

vectors of 𝐕k are the corresponding 𝑘 right singular vectors obtained from the 904 

PCA (Supplementary Note).  905 

Thus, the polygenic shape (PS) of an individual could be calculated as:  906 

𝐏𝐒 = ∑ 𝜷𝑖𝒈𝑖

n

i

                                                          (2) 907 

where 𝒈𝑖 is the genotype value of variant 𝑖37. Subsequently, we calculate the 908 

polygenic population shape (PPS) by:  909 

𝐏𝐏𝐒 = 2 ∑ 𝜷𝑖𝒂𝑖

n

i

                                                     (3) 910 

where 𝒂𝑖  is the effect allele frequency of variant 𝑖 and two times 𝒂𝑖  is the 911 

average number of effect alleles in a given population.  912 

Next, we used the PPS difference between EUR and EAS (𝑃𝑃𝑆𝐸𝑈𝑅 − 𝑃𝑃𝑆𝐸𝐴𝑆) 913 

calculated by leading variants compared with random variants to evaluate 914 



whether leading variants could effectively fit the EUR-EAS shape difference. 915 

We calculated the PPS derived shapes as following: 916 

𝐹𝐸𝐴𝑆
𝑑 = 𝐹𝐴𝑉𝐺 −

𝑃𝑃𝑆𝐸𝑈𝑅 − 𝑃𝑃𝑆𝐸𝐴𝑆

2
                                         (4) 917 

𝐹𝐸𝑈𝑅
𝑑 = 𝐹𝐴𝑉𝐺 +

𝑃𝑃𝑆𝐸𝑈𝑅 − 𝑃𝑃𝑆𝐸𝐴𝑆

2
                                         (5) 918 

where 𝐹𝐸𝐴𝑆
𝑑  and 𝐹𝐸𝑈𝑅

𝑑  are the corresponding PPS derived shapes, 𝐹𝐴𝑉𝐺 is the 919 

average facial shape of the population average shapes of EUR and EAS (i.e., 920 

a population neutral average face).  921 

We performed 1,000 simulations to calculate the random 𝑃𝑃𝑆𝐸𝑈𝑅 − 𝑃𝑃𝑆𝐸𝐴𝑆. In 922 

each simulation, random variants with the same effect allele frequencies in EAS 923 

were chosen to calculate random 𝑃𝑃𝑆𝐸𝑈𝑅 − 𝑃𝑃𝑆𝐸𝐴𝑆. Subsequently, the cosine 924 

similarity and the Euclidean distances between the PPS and the corresponding 925 

average face were used as measures of shape similarity. P-values of each 926 

approach were then calculated using the null distribution established by these 927 

1,000 simulations. 928 

 929 

Variant’s contribution to EAS-FA 930 

We used the projected (vector) length to quantify a variant's contribution to the 931 

EUR-EAS face difference: 932 

𝑙𝑖 =
𝟐(𝑎𝑖

𝐸𝑈𝑅 − 𝑎𝑖
𝐸𝐴𝑆) × 𝜷𝑖 × (�̅�𝐸𝑈𝑅 − �̅�𝐸𝐴𝑆)

|�̅�𝐸𝑈𝑅 − �̅�𝐸𝐴𝑆|
                            (6) 933 

If a variant has a positive sign of projected length, we regard this variant to be 934 

linked to EAS individuals having more EAS features. In contrast, a variant with 935 

a negative sign is linked with EAS individuals having more EUR characteristic 936 

features. 937 

 938 



Genetic information used from 1000 Genome Project 939 

We used the individuals’ genetic information from 1000 GP Phase 3 for related 940 

analysis including calculating MAF, PPS analysis, FST and PBS calculation, etc. 941 

EAS including Han Chinese in Beijing (CHB, n = 103), and Southern Han 942 

Chinese (CHS, n = 105); EUR including Toscani (TSI, n = 107), British (GBR, 943 

n = 91), Iberian (IBS, n = 107), and Utah residents (CEU, n = 99), without 944 

Finnish (FIN); AFR including Yoruba (YRI, n = 103) were used for analysis. 945 

 946 

Calculation of natural selection signatures 947 

We calculated genome-wide natural selection signatures based on XP-EHH 948 

using REHH2 (v3.2.0)36. The genome-wide XP-EHH z-scores were 949 

standardized through normalization within each derived allele frequency bin 950 

(bin widths = 0.01). We estimated two-tailed P-values of the variant according 951 

to the normalized z-scores. We calculated the FST and PBS for different sets of 952 

a population, by using the observed allele frequencies estimated from the 953 

1000GP Phase 333,38. On the basis of a previous study, we measured selective 954 

pressures by (genic) selection coefficients, which the details of the calculations 955 

are described in He et al52.  956 

 957 

Phenome-wide selection signature analysis 958 

Similar to the approach used in Guo et al., we compared the mean FST/PBS 959 

value of the leading variants with that of the control variants with MAF and LD 960 

score matched51. First, we divided all the variants (1000GP) into 20 MAF bins 961 

from 0 to 0.5 with an increment of 0.025 (excluding the SNPs with MAF < 0.01). 962 

Each of the MAF bins was further grouped into 20 bins according to the 20 963 



quantiles of LD score distribution. The MAF and LD score values were 964 

computed from the EAS or EUR samples in the 1000GP described above. 965 

Second, we allocated the leading variants to the MAF and LD stratified bins, 966 

randomly sampled a matched number of "control" variants from each bin, 967 

computed a mean FST/PBS value for the control variants sampled from all bins, 968 

and repeated this process 10,000 times to generate a distribution of mean 969 

FST/PBS under drift. Third, a P-value was computed from a two-tailed test by 970 

comparing the observed mean FST/PBS value for the leading variants against 971 

the null distribution quantified by the control variants, assuming normality of the 972 

null distribution. Regarding enrichment analysis of the selection signatures by 973 

XP-EHH, we obtained the sum of the squared values of the normalized XP-974 

EHH z-scores of the variants (or the proxy variants in LD when available; r2 > 975 

0.6 in the CHB or CEU data from 1000 Genome Project), which was compared 976 

with the X2 distribution with the degree of freedom equal to the number of the 977 

variants. 978 

 979 

Direction of genetic differentiation 980 

The analysis below uses a similar method introduced in Robinson et al. to 981 

quantify the population genetic differentiation of a complex trait34. The leading 982 

variants' coefficients were randomized across variants 10,000 times, and 983 

10,000 genetic predictors were created in the EAS or EUR samples from the 984 

1000GP described above. By keeping the effect sizes consistent but attributing 985 

these effects across variants at random, the genetic predictors generated 986 

reflect the action of genetic drift.  987 

 988 



Data Availability 989 

The Meta-analysis GWAS summary statistics are available on the National 990 

Omics Data Encyclopedia.  991 

NODE: OEP002283 (https://www.biosino.org/node/project/detail/OEP002283 ).  992 

The participants making up the NSPT, NHC and TZL datasets were not 993 

collected with broad data sharing consent. Given the highly identifiable nature 994 

of both facial and genomic information and unresolved issues regarding risk to 995 

participants, we opted for a more conservative approach to participant 996 

recruitment. Broad data sharing of the raw data from these collections would 997 

thus be in legal and ethical violation of the informed consent obtained from the 998 

participants. This restriction is not because of any personal or commercial 999 

interests. Additional details can be requested from L.J. for the NSPT dataset, 1000 

and S.Wang for the NHC and TZL datasets. Data usage shall be in full 1001 

compliance with the Regulations on Management of Human Genetic Resources 1002 

in China. 1003 

Publicly available data used were: the 1000 GP Phase 3 data: 1004 

(https://www.internationalgenome.org/category/phase-3/)23, The Roadmap 1005 

Epigenomics Project: (http://www.roadmapepigenomics.org)26, NCBI dbSNP 1006 

database: (http://www.ncbi.nlm.nih.gov/SNP)62, UCSC genome browser: 1007 

(http://genome.ucsc.edu)63, HaploReg v4.1: 1008 

(https://pubs.broadinstitute.org/mammals/haploreg/haploreg.php)64, Ensemble 1009 

genome browser: (http://asia.ensembl.org/Homo_sapiens/Info/Index)65, GTEx 1010 

v8: (https://gtexportal.org/home/)66-68, Human genome dating: 1011 

(https://human.genome.dating/)49, and the transcriptome resource from 1012 

separated ectoderm and mesenchyme of the developing mouse face 1013 

https://www.biosino.org/node/project/detail/OEP002283
https://www.internationalgenome.org/category/phase-3/
http://www.roadmapepigenomics.org/
http://www.ncbi.nlm.nih.gov/SNP
http://genome.ucsc.edu/
https://pubs.broadinstitute.org/mammals/haploreg/haploreg.php
http://asia.ensembl.org/Homo_sapiens/Info/Index
https://gtexportal.org/home/
https://human.genome.dating/


(GSE62214): 1014 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62214).  1015 

 1016 

Code availability 1017 

The statistical analyses in this work were based on functions of the statistical 1018 

toolbox in MeshMonk (https://github.com/TheWebMonks/meshmonk, 1019 

v0.0.6)56, MATLABTM 2018a, R (v3.6.1), ggplot2 (v3.1.0), Python (v3.5.0), 1020 

PLINK v1.9, SHAPEIT2 (v2.17), IMPUTE2 (v2.3.2), SNPLIB 1021 

(https://github.com/jiarui-li/SNPLIB ), GCTA-GREML, FUMA (v1.3.6), GREAT 1022 

(v4.0.4), GREGOR (v1.4.0), Metascape (https://metascape.org), LocusZoom 1023 

(https://genome.sph.umich.edu/wiki/LocusZoom), and REHH2 (v3.2.0) as 1024 

mentioned throughout the Methods.  1025 

  1026 
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