GABAA and Glycine Receptor-Mediated Inhibitory Synaptic Transmission onto Adult Rat Lamina IIi PKCγ-Interneurons: Pharmacological but not Anatomical Specialization - Archive ouverte HAL
Journal Articles Cells Year : 2022

GABAA and Glycine Receptor-Mediated Inhibitory Synaptic Transmission onto Adult Rat Lamina IIi PKCγ-Interneurons: Pharmacological but not Anatomical Specialization

Corinne El Khoueiry
Cristina Alba-Delgado
Myriam Antri
Maria Gutierrez-Mecinas
  • Function : Author
  • PersonId : 1132537
Andrew J. Todd
  • Function : Author
  • PersonId : 1132539
Alain Artola
  • Function : Author
  • PersonId : 1109268
Radhouane Dallel

Abstract

Mechanical allodynia (pain to normally innocuous tactile stimuli) is a widespread symptom of inflammatory and neuropathic pain. Spinal or medullary dorsal horn (SDH or MDH) circuits mediating tactile sensation and pain need to interact in order to evoke mechanical allodynia. PKCγexpressing (PKCγ +) interneurons and inhibitory controls within SDH/MDH inner lamina II (IIi) are pivotal in connecting touch and pain circuits. However, the relative contribution of GABA and glycine to PKCγ + interneuron inhibition remains unknown. We characterized inhibitory inputs onto PKCγ + interneurons by combining electrophysiology to record spontaneous and miniature IPSCs (sIPSCs, mIPSCs) and immunohistochemical detection of GABAARα2 and GlyRα1 subunits in adult rat MDH. While GlyR-only-and GABAAR-only-mediated mIPSCs/sIPSCs are predominantly recorded from PKCγ + interneurons, immunohistochemistry reveals that ~80% of their inhibitory synapses possess both GABAARα2 and GlyRα1. Moreover, nearly all inhibitory boutons at gephyrinexpressing synapses on these cells contain glutamate decarboxylase and are therefore GABAergic, with around half possessing the neuronal glycine transporter (GlyT2) and therefore being glycinergic. Thus, while GABA and glycine are presumably co-released and GABAARs and GlyRs are present at most inhibitory synapses on PKCγ + interneurons, these interneurons exhibit almost exclusively GABAAR-only and GlyR-only quantal postsynaptic inhibitory currents, suggesting a pharmacological specialization of their inhibitory synapses.
Fichier principal
Vignette du fichier
cells-11-01356.pdf (1009.19 Ko) Télécharger le fichier
Origin Publisher files allowed on an open archive

Dates and versions

hal-03643239 , version 1 (15-04-2022)

Licence

Identifiers

Cite

Corinne El Khoueiry, Cristina Alba-Delgado, Myriam Antri, Maria Gutierrez-Mecinas, Andrew J. Todd, et al.. GABAA and Glycine Receptor-Mediated Inhibitory Synaptic Transmission onto Adult Rat Lamina IIi PKCγ-Interneurons: Pharmacological but not Anatomical Specialization. Cells, 2022, 11 (8), pp.1356. ⟨10.3390/cells11081356⟩. ⟨hal-03643239⟩
87 View
108 Download

Altmetric

Share

More