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ABSTRACT
Electron beam-induced current in the temperature range from 304 to 404 K was employed to measure the minority carrier diffusion length
in metal–organic chemical vapor deposition-grown p-Ga2O3 thin films with two different concentrations of majority carriers. The diffusion
length of electrons exhibited a decrease with increasing temperature. In addition, the cathodoluminescence emission spectrum identified
optical signatures of the acceptor levels associated with the VGa

−–VO
++ complex. The activation energies for the diffusion length decrease

and quenching of cathodoluminescence emission with increasing temperature were ascribed to the thermal de-trapping of electrons from
VGa

−–VO
++ defect complexes.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0086449

β-Ga2O3 is an emerging fourth-generation power electronics
platform with a wide-bandgap of ∼4.8 eV and a high breakdown
field (8 × 106 V cm−1).1–6 It is becoming increasingly attractive
due to its applications in high-power electronics, true solar-blind
UV detection, and optoelectronic devices.2,3,7–10 Undoped β-Ga2O3
tends to be n-type due to unintentional donor impurities such as
Si. Intentionally, n-type β-Ga2O3 can be obtained by adding con-
trolled amounts of impurities such as Si, Sn, and Ge, which is well
documented.3,5 Carrier transport characterization revealed impu-
rity bands and the hopping mechanism of electrical transport in
such doped films.11–14 Low-temperature electron mobilities up to
796 cm2/V s13 have been reported. The incorporation of doped lay-
ers in devices such as Schottky diodes and field-effect transistors
(FETs), including metal–oxide–semiconductor FETs (MOSFETs),
and their ability to withstand high energy particle radiation have

been explored.15–24 Replicating these results to achieve p-type con-
ductivity in β-Ga2O3 has proven very difficult due to factors such as
doping asymmetry, high compensation of acceptors, the high ioniza-
tion energy of acceptor levels, and hole-trapping at O(I) and O(II)
sites.25–30 Despite these difficulties, native p-type conductivity was
demonstrated at high temperatures in undoped β-Ga2O3.31,32 It was
observed that native p-type conductivity is achievable by creating
a significant number of native acceptors (VGa) and suppressing the
compensation due to native donors (VO). The thermodynamic bal-
ance required to weaken the self-compensation in undoped β-Ga2O3
was achieved by adjusting the growth temperatures and oxygen par-
tial pressures during the deposition of Ga2O3 on sapphire substrates
by Metal–Organic Chemical Vapor Deposition (MOCVD).32,33

p-type β-Ga2O3 is a relatively recent discovery and an
uncharted territory in terms of minority carrier transport and
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luminescence characterization as well as their temperature depen-
dences. Knowledge of minority carrier (electrons) transport proper-
ties in p-type β-Ga2O3 is essential for achieving bipolar technology
on the gallium oxide platform. In this report, the diffusion length
of minority carriers (electrons), cathodoluminescence, and their
temperature dependence are studied in p-type β-Ga2O3 with two
different majority carrier (holes) concentrations.

Undoped β-Ga2O3 samples, analyzed in this study, were grown
in an RF-heated horizontal MOCVD reactor with separate inlets
to avoid premature reactions in the manifold between oxygen and
organometallics precursors. Trimethylgallium (TMGa) and 5.5 N
pure oxygen were used as gallium and oxygen sources, respectively.
Argon was used as the carrier gas (cf. Ref. 32). The β-Ga2O3 layer
was grown on a c-oriented sapphire substrate using Ga/O ratio and
growth temperature as 1.4 × 10−4 and 775 ○C, respectively. Two dif-
ferent total reactor pressures of 30 and 38 Torr and variable growth
rates (gallium and oxygen precursor fluxes) were used to create two
different native defect (VGa and VO) concentrations in the Ga2O3
films, leading to the different values of p-type conductivity. The
difference between the total reactor pressures for the deposition of
the two samples is due to a change in the oxygen partial pressure.
The concentration of native defects responsible for p-type conduc-
tivity is sensitive to the oxygen partial pressure. The epitaxial layer
thickness was ∼450 nm. X-ray diffraction scans revealed highly tex-
tured films of gallium oxide in the β-Ga2O3 phase with a monoclinic
space group (C2/m) symmetry. Hereinafter, the sample grown under
30 Torr total reactor pressure will be labeled A and that grown under
38 Torr will be labeled B.

A detailed study of the electrical transport properties for the
above-referenced highly resistive (close to stoichiometric) Ga2O3
samples has been performed. Ohmic contacts were prepared with
silver paint at the four corners of the sample. Hall effect mea-
surements were conducted in a van der Pauw configuration in the
500–850 K temperature range for magnetic fields perpendicular to
the film plane varying from −1.6 to 1.6 T using a high impedance
high-temperature custom-designed measurement setup. Resistivi-
ties at highest measured T = 850 K were found to be ρ (A) = 1.2
× 103 Ω cm and ρ (B) = 1.3 × 104 Ω cm. Hall effect measurements
demonstrated (cf. Refs. 31 and 32) the positive sign for majority
carriers in both samples, thus confirming the p-type conductivity.
The free hole concentrations and mobilities at 850 K were esti-
mated as follows: p = 5.6 × 1014 cm−3 and μ = 8.0 cm2 V−1 s−1

for sample A and p = 2.7 × 1013 cm−3 and μ = 16 cm2 V−1 s−1

for sample B. Temperature-dependent measurements were possible
to perform only down to 520 K (p = 2.0 × 1010 cm−3) for sam-
ple A and only to 620 K for sample B (p = 7.1 × 1010 cm−3) due
to the samples’ high resistivity. The difference in hole concentra-
tions is due to the difference in growth conditions (total reactor
pressure and the ratio of gallium–oxygen precursor fluxes), result-
ing in the variation of electrical compensation degree K = NA/ND,
i.e., the ratio of native acceptor to native donor concentrations.
Ni/Au (20/80 nm) asymmetrical pseudo-Schottky contacts were
created on the film with lithography/liftoff techniques for further
analysis.

Electron Beam-Induced Current (EBIC) and cathodolumines-
cence (CL) measurements were performed in situ in a Phillips
XL-30 Scanning Electron Microscope (SEM) to characterize the dif-
fusion length (L) of minority carriers (electrons) and luminescence

FIG. 1. A schematic diagram of the sample structure and experimental setup.

behavior of the samples, respectively. The measurements were car-
ried out in the 304–404 K temperature range using a Gatan Mon-
oCL2 temperature-controlled stage integrated into the SEM. For
both EBIC and CL measurements, the electron beam energy was
kept at 10 keV. The EBIC line scans were obtained in a planar con-
figuration (Fig. 1). The EBIC signal was amplified with a Stanford
Research Systems SR 570 low-noise current amplifier and digitized
with a Keithley digital multimeter (DMM) 2000 controlled by a per-
sonal computer (PC) using homemade software. CL measurements
were carried out using a Gatan MonoCL2 attachment to the SEM.
Spectra were recorded with a Hamamatsu photomultiplier tube sen-
sitive in 150–850 nm range and a single grating monochromator
(blazed at 1200 lines/mm).

EBIC line-scans were used to extract diffusion length, L, from
the following equation:34,35

C(x) = C0xα exp(− x
L
), (1)

where C(x) is the EBIC signal at distance x from the Schottky junc-
tion, C0 is a scaling constant, x is the distance of the electron beam
from the Schottky barrier, and α is the linearization parameter,
related to surface recombination velocity. The coefficient α was set
at −0.5, corresponding to the low influence of surface recombina-
tion. Since the carrier concentration is low in both samples, the
Schottky barrier depletion width is significantly larger than L and,
therefore, the approach outlined in Ref. 36 was used. Figures 2(a)
and 2(b) show the raw EBIC signals and a fit with xα exp(−x/L)
used in extracting L for samples A and B, respectively. The tem-
perature dependence of L for samples A and B is shown in Fig. 3.
L decreased with increasing temperature, with values for samples
A and B at 304 K of 1040 and 8506 nm, respectively. At 404 K, L
reduced to 640 and 6193 nm, respectively. Relatively large values
of L are partially due to the shallow majority carrier concentration.
Within the current temperature range of measurements, the origin
of L decrease is likely due to phonon scattering.37 Reported values of
L for minority carrier (holes) in n-type β-Ga2O3 are within 50–600
nm,20,21,38–41 lower than those of electrons measured in this work for
minority carrier electrons. A likely reason could be the large effec-
tive mass for holes (18–25 m0).42 It is worth noting that a similar
dependence of L on temperature was found for n-type β-Ga2O3,
but it is attributed to scattering on ionized impurities due to heavy
Si doping.41 The activation energy for the temperature dependence
of L is given by43,44
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FIG. 2. An example of the acquired EBIC line-scan from sample A (a) and sample B (b) at 304 K along with exp(−x/L)/x0.5 fit for extraction of the diffusion length.

L(T) = L0 exp(ΔEL,T

2kT
), (2)

where L0 is a scaling constant, ΔEL,T is the thermal activation energy,
k is the Boltzmann constant, and T is the temperature. The activation
energy pertaining to the reduction of L with temperature is 67 and
113 meV for samples A and B, respectively. A detailed discussion
regarding the origin of ΔEL,T is given later in the text.

Raw CL spectra and their Gaussian decompositions at 304 K are
presented in Figs. 4(a) and 4(b) for samples A and B, respectively.

FIG. 3. Temperature dependence of the diffusion length for samples A and B. The
inset shows the Arrhenius plot with a linear fit for extraction of the activation energy
ΔEL,T.

The CL spectra exhibit four characteristic luminescence bands:
ultraviolet (UVL′ and UVL) at 375 and 415 nm, blue (BL) at 450 nm,
and green (GL) at 520 nm. The UVL′ and UVL bands are commonly
ascribed to recombination of self-trapped excitons, considering the
absence of near band edge emission and their lack in β-Ga2O3 for
sub-bandgap excitation.26,27,29,45–48 The self-localization of excitons
occurs at O(I) and O(II) site, corresponding to UVL′ and UVL
bands, respectively.47,49 Although, as has been shown from Electron
Paramagnetic Resonance (EPR) measurements50 and confirmed by
several independent EBIC studies on n-type β-Ga2O3,20–23,39,51,52

the self-localization of holes is unstable above 110 K, the optical
signature of the self-trapped excitons persists in CL and photolu-
minescence (PL) measurements. Note that the relative contribution
of UVL′ and UVL bands in both A and B samples is much lower
than in n-type β-Ga2O3, found in earlier reports.26,47,49,53–58 The
BL band arises from donor–acceptor pair recombination involving
a VO donor and VGa or a (VO, VGa) complex as an acceptor. GL
has several different origins, mentioned in the literature, and was
observed with an array of various dopants, such as Mg,59 Si,54 and
Er.60 In undoped β-Ga2O3, grown by floating zone technique, Víl-
lora et al.61 ascribed GL to self-trapped excitons as it existed only
for PL excitation energies below the bandgap. Moreover, this band
was also observed in β-Ga2O3 nanoflakes, structurally consisting of
a crystalline core and amorphous shell.62,63 In a recent study on
β-Ga2O3 films on a c-plane sapphire substrate with (201) orienta-
tion, deposited with magnetron sputtering,64 the intensities of BL
and GL were modulated by changing the oxygen flow rate, and the
origin of the GL was attributed to the presence of isolated VGa. Fur-
thermore, the presence of isolated VO did not independently play
a role in enhancing BL, and the origin of BL was assigned to a
defect complex involving VO and VGa. Given the abundance of iso-
lated VGa acceptors and (VO, VGa) complexes in both samples, a
relatively large contribution of both BL and GL to the CL emis-
sion spectrum is observed in this work. Binet and Gourier53 and
Onuma et al.49 independently found a correlation between con-
ductivity and concentration of the VO donors in n-type β-Ga2O3.
In this case, since VO compensates the acceptors, and due to the
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FIG. 4. Normalized CL spectrum for sample A (a) and sample B (b) and their Gaussian decomposition into four bands: UVL′, UVL, BL, and GL.

high ionization energy of acceptors, p-type β-Ga2O3 has relatively
high resistivity below 450 K.31,32 The presence of a rather large
number of VGa acceptors and (VO, VGa) acceptor complexes, pro-
moting p-type conductivity, was confirmed from the CL emission
spectrum.

The temperature dependence of the CL signal follows the
form53

I(T) = I0/(1 + eΔECL/kT), (3)

where I(T) is the integrated CL intensity, I0 is a constant, and ΔECL
is the process activation energy. Figure 5 shows the Arrhenius plot of
ln(I0/I(T) − 1). The process activation energy ΔECL, obtained from
a linear fit of the temperature dependence depicted in Fig. 5, was
88 and 101 meV for samples A and B, respectively. The total CL

FIG. 5. Arrhenius plot of ln(I0/I(T) − 1) vs 1/(kT) from Eq. (1), where I is the inte-
grated CL emission intensity, with the fit, used in the extraction of activation energy
(ΔECL) for the thermal quenching process.

intensity is used in Fig. 5 because the relative contributions of the
individual luminescence bands remained approximately constant in
the temperature range of the measurements. The activation energies
ΔEL,T and ΔECL for sample A (67 and 88 meV, respectively) and sam-
ple B (113 and 101 meV, respectively) are comparable and can be
attributed to a common origin.

Temperature-dependent resistivity measurements between 300
and 850 K in our earlier study32 on deep VGa acceptor defects
in similar Ga2O3 samples showed two activation energies due to
temperature-activated processes. In the high temperature region
(T > 400 K), the acceptors are ionized with an activation energy
of 0.56 eV. However, for temperatures between 300 and 400 K, a
shallower VGa

−–VO
++ acceptor complex is present. The concentra-

tion of this complex strongly increases in off stoichiometric samples
(after oxygen post-annealing) detectable by the Hall effect. The
electrical activation energy has been determined as 0.17 eV (170
meV), and these complexes are responsible for forming an impu-
rity band and hopping conductivity below 400 K.32 It is suggested
in this study that the non-equilibrium electrons in as-grown (close
to stoichiometry) Ga2O3 thin films, generated during the excita-
tion with an electron beam, are captured by VGa

−–VO
++ acceptor

defect complexes. The thermal emission of these captured elec-
trons is represented by activation energies extracted from EBIC and
CL experiments. In other words, VGa

−–VO
++ acceptor complexes

are detectable by electron beam excitation even in close to stoi-
chiometric samples when electrical measurements are insensitive,
probably due to their insufficient concentration. Moreover, based on
the discussion given above, the nature of the native defects probed
with EBIC and CL in both samples is alike. The difference in the
activation energies is primarily due to the difference in their con-
centration, which is governed by the oxygen partial pressure during
the growth process. The process of non-equilibrium electron de-
trapping in this work has an analogy with Mg-doped p-GaN, where
the release of a non-equilibrium electron from deep acceptor levels
is seen in the thermal activation of L.65

In summary, EBIC and CL techniques were employed to
understand the temperature dependence of the diffusion length of
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minority carriers and CL emission in p-type β-Ga2O3 with two dif-
ferent hole concentrations. Optical signatures of native acceptor
defects (isolated VGa and VGa

−–VO
2+ complex) were identified in

the CL spectrum. In addition, the activation energies for change of
L with temperature (ΔEL, T) and thermal quenching of CL intensity
(ΔECL) were experimentally obtained as 67 and 88 meV for sam-
ple A and 113 and 101 meV for sample B within the temperature
range of 304–404 K. Comparable values of ΔEL,T and ΔECL indi-
cate a common origin for both processes, which is attributed to
the thermal de-trapping of electrons from the VGa

−–VO
++ accep-

tor level. The current development in the characterization of p-type
β-Ga2O3 could serve a pivotal role in realizing bipolar gallium oxide
devices.
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