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ABSTRACT

Aims. The present study aims at providing a deeper insight into the power and limitation of an unsupervised classification algorithm
(called Fisher-EM) on spectra of galaxies. This algorithm uses a Gaussian mixture in a discriminative latent subspace. To this end, we
investigate the capacity of this algorithm to segregate the physical parameters used to generate mock spectra and the influence of the
noise on the classification.
Methods. With the code CIGALE and different values for nine input parameters characterising the stellar population, we have sim-
ulated a sample of 11 475 optical spectra of galaxies containing 496 monochromatic fluxes. The statistical model and the optimum
number of clusters are given in Fisher-EM by the integrated completed likelihood (ICL) criterion. We repeated the analyses several
times to assess the robustness of the results.
Results. Two distinct classifications can be distinguished in the case of the noiseless spectra. The one above 13 clusters disappears
when noise is added, while the classification with 12 clusters is very robust against noise down to a signal to noise ratio (SNR) of 3. At
SNR=1, the optimum is 5 clusters, but the classification is still compatible with the previous one. The distribution of the parameters
used for the simulation shows an excellent discrimination between classes. A higher dispersion, both in the spectra within each class
and in the parameter distribution, leads us to conclude that despite a much higher ICL, the classification with more than 13 clusters in
the noiseless case is not physically relevant.
Conclusions. This study yields two conclusions valid at least for the Fisher-EM algorithm. Firstly, the unsupervised classification of
spectra of galaxies is both reliable and robust to noise. Secondly, such analyses are able to extract the useful physical information
contained in the spectra and to build highly meaningful classifications. In an epoch of data-driven astrophysics, it is important to trust
unsupervised machine learning approaches that do not require training samples which are unavoidably biased.

Key words. Methods: data analysis – Methods: statistical – Galaxies: statistics – Galaxies: general – Techniques: spectroscopic

1. Introduction

Machine learning is becoming increasingly popular in astro-
physics, mainly through the supervised approach, which con-
sists in training the algorithm with whatever relevant informa-
tion we already know. This is for instance the case of the clas-
sification of astronomical objects, where the observations are
matched against representative data of previously established
classes (Fraix-Burnet et al. 2015).

Supervised classification has two appealing advantages. The
first one is that it can be very fast and well adapted to the very
large databases produced by new telescopes. The second one is
its immediate usefulness since a new observation is assigned to
a class with supposedly known physical properties.

Supervised classification has however several limitations. It
depends much on the quality of the reference classification and
this relies on important prerequisites: large enough data sam-
ples, good quality of the data and a proper understanding of the
physics underlying the studied objects. Moreover, a careful vi-
sual inspection may be needed in many cases. Hence, rarer ob-
jects might not be well represented, inducing biases in the learn-
ing process (e.g. Cavuoti et al. 2014). Supervised classification
is also obviously not suited to characterise or identify new kinds
of objects.

Conversely, unsupervised classification consists in pattern
recognition in the data space to establish a reference classifi-
cation. Cleared from human subjectivity, this approach can be
expected to be more suited for subsequent supervised classifica-
tion since it is entirely data-driven.

Among clustering techniques, model-based approaches (Fra-
ley & Raftery 2002; McLachlan & Peel 2000) are popular. They
are renowned for their probabilistic foundations and their flexi-
bility. One of the main advantages of these approaches is the fact
that their models and results can be interpreted from both the sta-
tistical and practical points of view. In addition, it turns out that
many of the other heuristic approaches (mostly based on similar-
ity measures) correspond approximately to particular clustering
models (Bouveyron et al. 2019). One of the simplest and well-
known algorithm is the k-means approach, which considers a
mixture of identical Gaussian. A more powerful tool is the Gaus-
sian mixture model (GMM, Bouveyron et al. 2019) approach,
which fits a multivariate Gaussian to each cluster (e.g. de Souza
et al. 2017). The GMM allows for more adaptability to the distri-
bution of points and clusters in the data space, but that may not
be sufficient. Two solutions are possible : merging of Gaussian
components (e.g. Hennig 2010) and use of non-Gaussian com-
ponents (see a comprehensive review in Bouveyron et al. 2019).
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However, the choice of the merging criterion and of the models
rises philosophical issues (e.g. Hennig 2015). In our experience,
if the data do not fit the model, the algorithm fails to find the
optimum number of clusters as in De et al. (2016). We never met
this problem with GMM on astrophysical data.

Unfortunately, model-based methods usually show a disap-
pointing behaviour in high-dimensional spaces (e.g. De et al.
2016). They suffer from the well-known curse of dimensional-
ity (Bellman 2010), which is mainly due to the fact that model-
based techniques are over-parametrised in high-dimensional
spaces. For this reason, dimension reduction methods are fre-
quently used in practice to reduce the dimension of the data be-
fore the clustering step. Feature extraction methods, such as prin-
cipal component analysis (PCA), or feature selection methods
are very popular. In astrophysics, PCA is used to separate some
big classes of spectra or even remove some noise (Marchetti et al.
2013). However, dimension reduction usually does not consider
the clustering task and provides a suboptimal data representation
for the classification step. For instance, the variance axes of PCA
are not necessarily the discriminant axes (Chang 1983). Indeed,
dimension reduction methods usually imply an information loss
which could have been discriminative. To avoid the drawbacks
of dimension reduction, several approaches have been proposed
in the last decade to allow model-based methods to efficiently
classify high-dimensional data. Subspace clustering techniques
are one of them. They are mostly based on probabilistic ver-
sions of the factor analysis model and allow to classify the data
in low-dimensional subspaces without reducing the dimension
(Bouveyron 2016).

The main drawback of unsupervised classification is that
the classes are built from a statistical point of view. Statisti-
cal criteria (and this is the advantage of model-based methods)
provide objective ways to find the "best" solution and assess
their robustness. But there is no real "good" classification in the
sense that only the physical interpretation and the goal of the
study constitute the metric assessing the usefulness of the clas-
sification (e.g. Hennig 2015). Nevertheless, several works have
proven the relevance of this approach in astrophysics (see a re-
view for the extragalactic domain in Fraix-Burnet et al. 2015).
For instance, de Souza et al. (2017) used a Gaussian Mixture
Model (GMM, e.g. Bouveyron et al. 2019) approach to clas-
sify emission line galaxies using, as observables, the two line
ratios log[OIII]/Hβ and log[NII]/Hα and the equivalent width of
the Hα line (logEW(Hα)). They find a statistical optimum of
four classes that revised slightly the separation between active
galactic nuclei (AGNs), Seyfert galaxies, low-ionization nuclear
emission-line regions (LINERs) and star forming regions. With
a larger sample of 362923 galaxies and 47 observables (includ-
ing emission lines, Lick indices, morphologies and photometric
observables), Chattopadhyay et al. (2019) applied an Indepen-
dent Component Analysis (Jutten & Herault 1991) to reduce the
dimensionality, followed by a k-means (MacQueen 1967) analy-
sis. They obtain 10 classes that correspond to the classical known
classes of galaxies.

A significant step forward in both the sample size and the
number of features has been performed by Fraix-Burnet et al.
(2021) on a sample of 702248 optical spectra (1437 monochro-
matic fluxes each) of galaxies from the Sloan Digital Sky Sur-
vey (SDSS) using an unsupervised clustering discriminative la-
tent mixture model algorithm called Fisher-EM (Bouveyron &
Brunet 2012). They obtained 86 robust and very homogeneous
classes that a preliminary analysis shows they can be easily given
a physical interpretation.

Table 1: Table of parameter linear correlation coefficients. The
parameters are not intrinsically correlated in CIGALE, but the
combinations of values used to generate the sample for this study
may show underlying involuntary correlations between some pa-
rameters.

Tmain τmain fburst Tburst τburst Metallicity
τmain 0.17
fburst −0.42 0.01

Tburst 0.21 0.18 −0.28
τburst −0.06 0.38 −0.11 0.20

Metal. 0.33 −0.20 −0.39 0.11 −0.02
E(B-V)cont −0.22 0.10 0.27 −0.10 −0.01 −0.28

In the present paper, we aim at bringing some insight into
the power and limitation of the use of the algorithm Fisher-EM
on a simple mock sample of spectra. This is a follow-up of the
above study (Fraix-Burnet et al. 2021) but its results can be help-
ful for many unsupervised approaches. It is well known that the
many degeneracies present in spectra cause the derivation of the
properties of galaxies to be somewhat difficult (Marchetti et al.
2013). We are particularly interested in the way the classifica-
tion obtained through Fisher-EM is able or not to segregate the
physical properties and in its sensitivity to noise.

To this end, we simulated a sample of galaxy spectra with
the spectral energy distribution (SED) fitting code CIGALE (Bo-
quien et al. 2019) using a number of input physical parameters.
Then we performed the clustering with Fisher-EM on the spec-
tra. Finally, we analysed the resulting classes in terms of these
input parameters. We also study the influence of the noise on the
results.

This paper is organised as follows. The simulations and the
data are presented in Sect. 2. The algorithm Fisher-EM is briefly
described in Sect. 3 together with the method to select the op-
timum number of clusters. In Sect. 4 we describe the classifica-
tions obtained on the noiseless spectra, and show the distribu-
tion of the physical parameters of the simulations and determine
the most discriminant ones. In Sect. 5, the influence of different
levels of noise on the classification and on the associated phys-
ical properties of the classes is presented. After a discussion in
Sect. 6 we conclude this paper in Sect. 7.

2. Data

2.1. Generation of the spectra

The spectra used in this study have been simulated with the
code CIGALE (Code Investigating GALaxy Emission), a soft-
ware that extends the work of Burgarella et al. (2005) and Noll
et al. (2009).

The code CIGALE creates spectra from the UV to the far-
IR. In the present work, we consider the optical part of the spec-
tra (496 fluxes between 380.66-737.00 nm) to be able to make
a later comparison with observed data such as those from the
SDSS (see for example Fraix-Burnet et al. 2021). Each simulated
spectrum requires a set of input parameters characterising the
galaxy. In our simulations, we assumed a Chabrier (2003) Ini-
tial Mass Function (IMF). We limited the star formation history
(SFH) to a main population and, in some cases, a later burst of
same metallicity. With these assumptions, the optical part of the
spectra is affected by nine parameters in CIGALE. We simulated
spectra with bursts of varying strength (fburst): none, medium and
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large. For each burst strength, we considered populations of dif-
ferent ages and time scales (Tmain, τmain, Tburst, τburst), metallic-
ity, reddening (E(B−V)lines, E(B−V) f actor), and redshift. See Sect. 2.2
for the description of the input parameters. The combinations of
the values chosen for the input parameters yield 11475 spectra.
All spectra were normalised by their mean values between 505
and 581 nm, a region where the spectra have no emission lines.

2.2. Description of the input parameters

The optical part of the spectra is affected by nine CIGALE input
parameters. The values taken in this work are listed in Table A.1
and their distribution shown in Fig. 1. These nine parameters are
reduced to seven, as explained in the following:

– Tmain is the age (in Myr) of the main stellar population in the
galaxy. It is varied from 2000 to 13000 Myr.

– τmain is the e-folding time (in Myr) of the main stellar pop-
ulation and characterises the SFR of the main population to-
gether with Tmain (module sfhdelayed of CIGALE) :

SFRmain(t) ∝
t
τ2

main

exp(−t/τmain) (1)

In the sample, τmain varies from 500 to 10500 Myr.
– fburst is the mass fraction of stars produced during a burst of

star formation, and ranges from 0 to 0.5. When fburst = 0, no
burst is considered in the history of the galaxy.

– Tburst is the age (in Myr) of the burst of star formation, and
ranges from 5 to 100 Myr. When fburst = 0, Tburst is fixed to
0.

– τburst is the e-folding time (in Myr) of the burst of star for-
mation and characterises the SFR of the burst event together
with Tburst:

SFRburst(t) ∝
t
τ2

burst

exp
(
−t
τburst

)
for t > Tmain − Tburst (2)

It varies from 4500 to 50000 Myr. These values are of the
same order of Tmain−Tburst, and much larger than Tburst, so
that the SFR is essentially constant during the second burst
of star formation. When fburst = 0, no burst is considered in
the history of the galaxy, and τburst is therefore fixed to 0.

– Metallicity is assumed to be identical for the main and burst
stellar populations as well as for the interstellar medium, and
takes three possible values: 0.008, 0.02 and 0.05.

– E(B-V)cont: the reddening of the continuum that intervenes in
the computation of the attenuation due to the dust inside the
galaxy. For the lines, we have E(B-V)lines =E(B-V)cont/E(B-
V) f actor where E(B-V) f actor is a normalising factor given as
an input parameter. We choose to discuss only E(B-V)cont
throughout this paper for its physical relevance. In the simu-
lated spectra, E(B-V)cont takes a wide variety of values from
0.000125 to 0.44.

– Redshift was varied from 0 to 1 to include the effect of the
intergalactic medium (IGM) on the spectra. For the classi-
fication process, we shifted the spectra to the same redshift
of 0. As a consequence, the spectra that differ only by red-
shift end up being very similar because the effect of the IGM
happens to be very small. We will thus not discuss the red-
shift any more in the rest of this paper.

As defined previously, the Tmain, τmain, fburst, Tburst and
Metallicity parameters are actually the building blocks of the
stellar populations composing a galaxy. It is thus natural that
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Fig. 1: Histograms of CIGALE parameters input values in the
study sample. This sample was not created to fit some specific
parameter distribution, but rather cover the parameter space as
much as CIGALE allowed it while keeping the spectra realistic.

varying the values of these parameters would directly influence
the continuum and the absorption lines of a galaxy spectrum (e.g.
a high value of Tmain would redden the spectrum and deepen
molecular lines, etc.). Also, E(B-V)cont translates the presence
of dust in the interstellar medium by reddening the spectrum.
On the other hand, the emission lines in a galaxy spectrum are
the signature of a recent star forming event in the history of that
galaxy. Therefore, the same parameters Tmain, τmain, fburst, Tburst
are also responsible for the presence and the height of these lines.
Moreover, since the interstellar medium, in CIGALE, has the
same metallicity as the stars, the Metallicity parameter will also
affect the emission lines in addition to the stellar component. Fi-
nally, because the chosen values of τburst are much larger than
those of Tburst (see Table A.1), τburst only weakly affects our
spectra.

Most CIGALE parameters only take discrete and pre-
determined values, making it impossible to fully cover the pa-
rameter space. Some parameters such as E(B-V)cont allow for
a decent sampling, while some others such as Metallicity only
take very few values. The sampling density of a parameter may
affect somewhat its discriminant power, but in a very indirect
way since the clustering is performed with the spectra and not
with the input parameters.
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Moreover, while the parameters are not intrinsically corre-
lated in CIGALE, some of them may be slightly correlated due
to our parameter sampling. Such correlations have to be kept in
mind when analysing the discriminative properties of the classi-
fication method, as one parameter may deceptively appear well
discriminated due to its correlation with another discriminated
parameter. However, for our sample the Pearson correlation co-
efficients remain small (see Table 1), and reach at most -0.42
(fburst vs Tmain).

We wish to insist that our mock sample is not intended to rep-
resent a complete diversity of spectra of real galaxies. Rather,
it must be considered as a realistic sample with selection bi-
ases. These biases are here not observational, instrumental or
catalogue-based, but are due to the necessarily limited choice
for the values of the input parameters.

The simulated spectra are noiseless, and their analysis is pre-
sented in Sect. 4. To study the influence of the level of noise
on the clustering result, we generated different signal-to-noise
ratio (SNR) set of spectra by adding a Gaussian noise to each
monochromatic flux. The analysis of these noisy spectra is de-
scribed in Sect. 5.

3. Method

3.1. The Fisher-EM algorithm

In this work, we have applied the unsupervised classification
method named Fisher-EM (Bouveyron & Brunet 2012) on the
sample of optical galaxy spectra simulated with CIGALE (see
Sect. 2).

Fisher-EM is a subspace Gaussian mixture algorithm that re-
lies on a statistical model, named the discriminative latent mix-
ture (DLM) model. It uses a modified version of the expectation-
maximisation (EM) algorithm by inserting a Fisher-step to opti-
mise the ratio of the sum of the between-class variance over the
sum of the within-class variance for a better clustering.

Formally, we may define the observation vector Y =
{y1, ..., yn} such that yi ∈ IRp describes spectrum number i. The
dimension p is the p fluxes at the p wavelengths of the spectra.

Classifying the observations into K classes mathematically
translates into finding the vector Z = {z1, ..., zn} which assigns
each spectrum yi to a given class zi ∈ [[1,K]]. In the case of
Fisher-EM, the clustering process occurs in a subspace IE ⊂ IRp

of dimension d = K − 1 < p. Therefore, the Gaussian mixture
model is applied to the projected data X rather than the observed
data Y:

Y = UX + ϵ (3)

where U ∈ Mp,d(IR) is the projection matrix and ϵ is a noise
vector of dimension p following a Gaussian distribution centred
around 0 and of covariance matrix Ψ (εk ∼ N(0,Ψk)). The mul-
tivariate Gaussian probability distribution X describing the class
k in the subspace is parameterised by a mean vector µk and a
covariance matrix Σk:

X|Z=k ∼ N(µk,Σk) (4)

Combining Eqs. 3 and 4, we obtain:

Y|X,Z=k ∼ N(UX,Ψk) (5)

The observed data is thus modelled by a marginal distribution
f (y) that is the sum of K multivariate Gaussian density functions

ϕ of mean Uµk and covariance UΣkUt+Ψ, each weighted by the
corresponding mixing proportion πk:

f (y) =
K∑

k=1

πkϕ(y; Uµk,UΣkUt +Ψ) (6)

By further assuming that the noise covariance matrix Ψk sat-
isfies the conditions V tΨkV = βkIp−d where V is the orthogonal
complement of U, and U tΨkU = 0d, the whole statistical model
denoted by DLM[Σkβk] can be shown to take the following form:

Σk 0

0

βk 0
. . .

. . .
0 βk



 d ≤ K − 1

 (p − d)

These last conditions imply that the discriminative and the non-
discriminative subspaces are orthogonal, which suggests in prac-
tice that all the relevant clustering information remains in the
latent subspace. From a practical point of view, βk models the
variance of the non-discriminative noise of the data.

Several other models can be obtained from the DLM[Σkβk]
model by relaxing or adding constraints on model parameters.
It can, for example, be assumed that the noise parameter βk dif-
fers from class to class, or that the covariance matrices Σk are
the same for all K classes. A thorough description of the DLM
model, its 12 declinations, as well as the algorithm itself can be
found in Bouveyron & Brunet (2012).

The Fisher-EM algorithm requires the number of groups K
and the DLM model as input. After undergoing an initialisation
obtained from multiple k-means runs, the algorithm proceeds as
follows:

– E-step: the posterior probabilities that the n observations yi
belong to each of the K classes are computed.

– Fisher-step: The projection matrix U is computed to max-
imise the Fisher criterion.

– M-step: the DLM model parameters are adjusted to max-
imise the likelihood.

The Fisher-EM algorithm is implemented in the eponym
package for R.

3.2. Choice of the model and number of classes

The choice of the best statistical DLM model and the optimum
number of clusters depends on the data and are estimated in this
study with the integrated completed likelihood (ICL) criterion.
This criterion penalises the likelihood by the number of param-
eters of the statistical model, the number of observations, and
favours well separated clusters (Biernacki et al. 2000; Girard &
Saracco 2016).

The best statistical model was found to be Ak jBk in all the
cases studied in this paper. This model is such that in each
group, the covariance matrix Σk is assumed to be diagonal:
Σk = diag(αk1 , ..., αkd ).

The optimum number of clusters K is also given by the max-
imum ICL value, and depends on each data set.

In order to characterise the stability of the algorithm, sev-
eral classifications were generated for each number of clusters
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Fig. 2: Clustering analysis of noiseless spectra with Fisher-EM.
Top: the convergence rate as a function K. For every K value
considered, 32 classifications were calculated. Bottom: boxplots
of the ICL is as a function of the number of clusters K. The
horizontal bars show the median value, the boxes represent the
two quartile values, the whiskers extend to points that lie within
1.5 times the interquartile range of the lower and upper quartile
and data beyond are shown individually with dots.

K yielding a distribution of ICL values for each. This dispersion
is found to be generally low, and is shown as boxplots in the
ICL-vs-K figures presented throughout this paper.

The EM algorithm is known to sometimes find an empty
cluster (i.e. a null πk in Eq. 6). This results in an undefined log-
likelihood that stops Fisher-EM. In this paper, we call this the
non-convergence of the algorithm.

4. Analysis of the noiseless spectra

4.1. Optimal number of clusters

In this section, we apply the Fisher-EM algorithm on the simu-
lated noiseless spectra, described in Sect. 2. There is a remark-
able jump in ICL values at K = 14 (Fig. 2). In addition, the
algorithm does not converge for K = 13 while there is a 100%
convergence rate at K = 12 and K = 14. Henceforth, K = 13
appears as a frontier between two very distinct regimes. For
K < 13, the algorithm always converges, and the ICL is max-
imum at K=12. In the K > 13 regime, the convergence rate de-
creases as the number of clusters increases, and no convergence
is obtained for any K > 23. Strictly speaking, the ICL is the
greatest for K = 23 and from a statistical standpoint, K = 23 is
therefore the best result but has a low convergence rate. Besides,
the classification at K = 14, on top of having no convergence
issue, matches very well the one at K = 23 in that they share a
lot of classes containing the same galaxies (i.e. they have sim-
ilar class composition, see Fig. 3a). Undeniably, the latter hav-
ing 9 more clusters and a slightly better ICL makes it more re-
fined. Nonetheless, the K = 14 classification seems to be a good
compromise between reproducibility and goodness-of-fit, and is
therefore chosen to represent the K > 13 regime.

(a) Left:K=14. Right: K=23

(b) Left:K=12. Right: K=14

Fig. 3: Comparisons between three classifications of the noise-
less spectra (SNRINF): K=12, K=14 and K=23. In (a), the com-
position of the classes of K=14 (left) and K=23 (right) are com-
pared, and of K=12 (left) and K=14 (right) in (b). The colour
boxes represent the classes, the grey lines represent galaxies that
are shared by the two classes they link, and the height of the
colour boxes is proportional to the number of galaxies in a given
class.

The classifications at K = 14 and K = 12 are arranged
in a significantly different way (Fig. 3b), showing that the two
regimes in fact correspond to two distinct classifications.

The mean spectra and dispersion of each class of the retained
classifications (i.e. K = 14 and K = 12) are shown in Fig. 4
and Fig. 5 (the vertical scale is arbitrary but the same for all
plots of spectra in this paper). Despite its better ICL, the K = 14
classification shows a higher dispersion than K = 12 for most of
the classes besides a few exceptions (classes 4, 10 and 14), and
in some cases, blue and red continua are even mixed together
(classes 2, 3, 6, 9). On the other hand, the dispersion within most
classes of the K = 12 classification is rather small, indicating a
decent homogeneity of the classes.

The distribution of the spectra among the 14 and 12 classes,
is relatively well-balanced (Figs. 6 and 7), although arguably
more even for the 14 classes. It varies from about 200 to 2000
spectra with an average of circa 500.
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Fig. 4: 14-cluster classification of the noiseless spectra, with the
mean spectra (in black) and their dispersion (in grey) for every
class. N is the number of members in each class. All the spectra
were normalised by their mean values between 505 and 581 nm,
a region where the spectra have no emission lines. The scale is
the same for all panels and all other figures of spectra through-
out this paper. The dispersion corresponds to the 10% and 90%
quantiles for each monochromatic flux. The classes are sorted by
ascending average Tmain.

In both cases, there is no mean spectrum without emis-
sion lines. This is because several spectra with intense lines are
present in all classes. In particular, in our sample, emission lines
are present in spectra with fburst=0 that have a high τmain (e.g.
5000).

4.2. Parameter distribution among classes

As mentioned is section 2, the simulated spectra are associated
each with a set of parameter values. As explained in Sect. 2, the
relevant ones are Tmain, Tburst, τmain, τburst, fburst, metallicity and
E(B-V)cont.

A parameter-by-parameter analysis and class-by-class anal-
ysis of the classifications is made possible by visualising the pa-
rameters’ distribution among the 12 and 14 classes (Fig. 7 and
Fig. 6).

4.2.1. Classification at K=14

Let us first consider the parameter-by-parameter approach. fburst
is mostly separated into two categories in this classification:
higher values (classes 2, 3, 4, 5, 6, 10 and 13) and lower values
(classes 1, 7, 8, 9, 11, 12 and 14). The separation is, however,
not very sharp, especially for some lower fburst classes.

The metallicity is not well sampled as it only takes three dis-
crete values (0.008, 0.02 and 0.05), but is rather well segregated
in the classes. Half of the classes gather one single metallicity
value, two of them being the lower one (classes 4 and 5), and
five being the medium one (classes 7, 10, 11, 13 and 14). The
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Fig. 5: 12-cluster classification of the noiseless spectra (see
Fig. 4).

other half contain a mixture of usually two values: lower and
medium (classes 1, 3 and 6) or medium and higher (classes 10
and 12) with the exception of classes 2 and 8 which mix all three
values. The higher metallicity value is not as well separated as
the medium and lower values.

The classes have been sorted by ascending age Tmain. There
is a clear distinction made in the classification between younger
and older galaxies. Three categories can be drawn: classes con-
taining the youngest galaxies (1 to 6), classes containing an
equivalent mixture of young and old galaxies (7 to 12), and
classes of older galaxies (13 and 14).
τmain has a high dispersion in the classes, although the lower

values happen to be concentrated in the classes with lower fburst.
The Tburst values are well isolated among the classes with

high fburst, with the exception of class 2 which also contains a
fraction of low fburst galaxies. In the other classes, where the
burst of star formation is less prominent, no distinction is made
between Tburst values.
τburst is quite dispersed in most of the classes with lower fburst

classes. It is slightly less the case for higher fburst classes, but
τburst remains a parameter that is not well discriminated in the
classification.

E(B-V)cont does not appear to be well separated. Apart from
a few classes (4, 10, and 14), high and low E(B-V)cont values are
mixed together in this classification.

All things considered, the classification at K = 14 is
essentially explained by four parameters (fburst, Tmain, Tburst,
metallicity), while the other three (τmain, τburst, E(B-V)cont)
show similar distributions among most of the classes with a few
exceptions.

The properties of the classes can be summarized as follows.
Classes 1 to 6 are made of galaxies of younger ages (Tmain) and
a rather significant burst of star formation (fburst). Those classes,
except for classes 1 and 2, nearly only have one value of Tburst:
classes 3 and 4 contain galaxies that have had their burst hap-
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Fig. 6: 14-cluster classification of the noiseless spectra. Top left:
number of spectra contained in each class. All others: heatmaps
of the relevant CIGALE input parameters among the 14 classes
on noiseless spectra. All possible parameter values (see Ta-
ble A.1) are represented on the y-axis, and the class index on
the x-axis. The within-class densities of the parameter values are
illustrated in the form of a heatmap, where a dark square equates
to a density of 1, and white of 0. The classes are sorted by as-
cending average Tmain

pen very recently in the star formation history (5 Myr), class 6
contains galaxies of older bursts (50 to 100 Myr), and class 5
of medium age (20 Myr). Metallicity values are also fairly well
separated in those classes. Galaxies of classes 2, 3 and 6 have
metallicities of 0.008 and 0.02, while classes 4 and 5 only con-
tain galaxies with a metallicity of 0.008.

Classes 7 to 12 mostly contain two populations of galax-
ies: older galaxies with a significant burst of star formation, and
younger galaxies. Apart from class 8, they all gather galaxies of
medium to high metallicity. In this category, class 10 stands out
as the galaxies it is made of all have a 20 Myrs old prominent
burst of star formation, while the other classes do not differenti-
ate Tburst.

Finally, classes 13 and 14 gather old galaxies with a faint
burst of star formation. More exactly, galaxies of class 14 have
had little to no burst in their star formation history, while galaxies
of class 13 did, but a long time prior to observation (old Tburst).
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Fig. 7: 12-cluster classification of the noiseless spectra. Top left:
number of spectra contained in each class. All others: heatmaps
of the relevant CIGALE input parameters among the 12 classes
on noiseless spectra. All possible parameter values (see Ta-
ble A.1) are represented on the y-axis, and the class index on
the x-axis. The in-class densities of the parameter values are il-
lustrated in the form of a heatmap, where a dark square equates
to a density of 1, and white of 0. The classes are sorted by as-
cending average Tmain

Overall, each class shows its own specificity in regard to the
physics of the galaxies it contains. Three groups of classes can
be distinguished (1-6, 7-12, 13-14) which essentially categorise
the galaxies as young and active, less active, and inactive and
old.

4.2.2. Classification at K=12

As shown in Fig. 3b, the classification at K = 12 is significantly
different from the one at K = 14 in terms of spectrum distribu-
tion. However, from a physical standpoint, they show very simi-
lar characteristics (Fig. 7).

They are in fact both mostly driven by fburst, metallicity, Tmain
and Tburst. Nonetheless, their distribution among the classes
show significantly less dispersion for K = 12 despite the lower
ICL. This is specifically striking for lower values of fburst which
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Fig. 8: Linear discriminant analysis on the classification of
noiseless spectra at K = 14. Top: cumulative data variance de-
scribed by the linear discriminant analysis components. LD1 to
LD7: weight of each parameter for components 1 to 7 of the lin-
ear discriminant analysis. Weighted total: cumulative weight of
each parameter among the 7 components weighted by the per-
centage of data variance described by each component.

are scattered around a lot of classes and mixed with higher values
for K = 14, while they are extremely well separated for K = 12.

Class-wise, a similar categorisation as in K = 14 can be
made, with classes 1-5 corresponding to the young active galax-
ies, classes 6-10 to a mixture of old active galaxies, and younger
ones, and classes 11-12 to the old and mostly inactive ones. In
addition, class 12 gathers almost all galaxies that did not undergo
an additional period of star formation, while that information
was not retrieved at K = 14.

As a whole, the classification at K=12 is more discriminative
that the one at K=14, but they both are sensitive to the same
physical parameters. As such, despite the statistical superiority
of K=14, K=12 appears to be a better version of K=14 in terms
of their physical discriminative properties.

4.3. Linear Discriminant Analysis

Linear discriminant analysis (LDA) was applied to the classified
data in order to identify the influence of each parameter in the
classification process. As a matter of fact, the LDA analysis re-
turns a set of components that are essentially the projection vec-

tors that best separates the classes, and while the classification
was done based on the information of the spectra, LDA analysis
uses the information of the parameters, therefore highlighting the
links between them and the classification. The results are shown
in Fig. 8 and Fig. 9.

4.3.1. Classification at K=14

The analysis at K = 14 resulted in seven components labelled
LD1 to LD7 (Fig. 8). The first one explains almost half of the
data variance, and adding the next three brings it up to close to
90%.

An overall weight attributed to each parameter by the LDA
is obtained by summing the seven components weighted by
their relative variance explained. This overall weight quantifies
how discriminated the parameters are by the classification. The
results agree well with the conclusion obtained in Sect. 4.2,
namely, the parameters that are best discriminated, are Tburst,
metallicity, Tmain and fburst. The e-folding time of the burst of
star formation is by far the least discriminated parameter, fol-
lowed by the reddening and the e-folding time of the main stellar
population.

The first component allocates most of its weight equally to
Tburst, metallicity and Tmain. The second one is dominated by
the age of the burst of star formation (Tburst) and to a lesser
extent the stellar mass fraction of the burst (fburst). The third
component equally distributes most of its weight to three pa-
rameters, namely Tmain, τmain and fburst. The fourth component
is completely dominated by the reddening (E(B-V)cont) which
was mostly ignored by the previous component. The final three
components are mostly dominated by parameters that are already
greatly taken into account in the first three components, but they
also allocate some of their weight to the e-folding times of the
SFR of the main stellar population and the burst event (τmain,
τburst), which were totally insignificant in the previous compo-
nents.

4.3.2. Classification at K=12

As expected given their similarities, the LDA analysis at K = 12
shows similar results than K = 14 (Fig. 9).

There is, however, a significant difference between LD4 and
LD6. But because the explained variance of those components is
so small, they have little to no impact on the overall weight of
the parameters.

5. Analysis of the noisy spectra

In this section, we study the effect of noise on the classification
of the spectra for different values of SNR. As such, a Gaussian
noise of constant SNR was added to the 11 475 spectra. We used
seven of values for the SNR: 1, 3, 5, 10, 20, 100, and 500.

5.1. Optimal number of clusters

The very characteristic break of the ICL curve observed at K=13
for the noiseless spectra disappears as soon as a noise as small as
SNR=500 is added. The ICL curves obtained have an optimum
independently of the noise level (Fig. 10), as opposed to the ever-
increasing ICL on noiseless spectra.

For SNR≤100 and below, the ICL reaches its maximum
for K=11 to 13. Besides, convergence is reached every sin-
gle time for any K smaller than 30-40, depending on the noise
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Fig. 9: Linear discriminant analysis on the classification of
noiseless spectra at K = 12. Top: cumulative data variance de-
scribed by the linear discriminant analysis components. LD1 to
LD7: weight of each parameter for components 1 to 7 of the lin-
ear discriminant analysis. Weighted total: cumulative weight of
each parameter among the 7 components weighted by the per-
centage of data variance described by each component.

level. At SNR=500, the ICL sometimes shows another behaviour
that fully depends on the random generation of the noise. At
SNR=500, the noise may be insufficient to blur out the data spar-
sity, which is likely responsible for the ICL break and conver-
gence issues on noiseless spectra. Therefore, while for most gen-
erated noise the ICL showed an optimum, one particular noise
vector lead to an ever-increasing ICL curve (until loss of conver-
gence) that resembles that of the noiseless spectra.

Our study of the noise shows that the ICL curves at different
SNR differ from that of the noiseless case, but they all agree and
yield the same optimal number of clusters around K=12. Fur-
thermore, we show that the optimal classifications on the spectra
with added noise closely resembles the K = 12 one on noiseless
spectra, whether it be based on the composition of the classes
(Fig. 11) or their median spectrum (Fig. 12).

The classification at SNR=20 and K=12 is taken as a refer-
ence in the rest of this paper, and the results for the other SNRs
are available in Appendix B.
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Fig. 10: Top: Optimal number of clusters across the different
noise levels. All others: ICL as a function of K for different
noise levels. In each of those panels, the red boxplot highlights
the maximum median value of the ICL i.e. the associated best-
fit K value. For the SNR of 500, two behaviours were observed
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Fig. 11: Same as Fig. 3 between the K = 12 classification on
noiseless spectra (right) and on spectra with an added noise of
SNR=20 (left).
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Fig. 12: 12-clusters classification obtained on the spectra with
added noise of SNR=20 (see Fig. 4).

5.2. Parameter distribution among classes

The optimal classification at SNR=20 is essentially identical to
that on the noiseless spectra presented in Sect. 4.2.2 in regard
to the parameter distribution in the classes (Fig. 13). Slight dif-
ferences appear nonetheless, highlighting the loss of information
induced by the additional noise. For example, there is no longer
a class isolating 20 Myr old star bursts. On the other hand, some
specificities in the spectra appear to be retrieved more accurately
with the addition of noise. There is, for instance, 5 classes con-
taining a unique value of metallicity, as opposed to 3 on noiseless
spectra. Lower values of fburst are also more sharply separated.

At greater noise (Appendix B), this enhanced ability to dis-
criminate some parameters fades out, and the dispersion in the
classes increases for all parameters. At SNR=3, the method is
still capable of making out burstless galaxies from burst-heavy
ones, but lower non-zero values of fburst become more erratically
distributed around the classes. Metallicity is not as well discrimi-
nated either, as only a single class of unique value remains. Tmain,
and Tburst to a lesser extent, are still separated in a similar fashion
despite the significant amount of noise.

At SNR=1, the optimum shifts from 12 to 5 classes, but the
method is still capable of approximately separating old and in-
active galaxies from young and active ones.

5.3. Linear Discriminant Analysis

The LDA applied on the noisy spectra with SNR=20 shows
that the first three components completely dominate the analy-
sis (60%, 20%, 10%), whereas five components were significant
for the noiseless spectra. The first component is similar to that of
the noiseless spectra, with a more heavily weighted fburst param-
eter nonetheless. The second and third components, however, are
distinctively different. It appears that the weight of the parame-
ters have been shifted from one component to another: Tburst,
fburst and τmain are less significant in the second component, but
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Fig. 13: 12-cluster classification on the spectra with an added
noise of SNR=20. Top left: number of spectra contained in each
class. All others: heatmaps of the relevant CIGALE input pa-
rameters among the 12 classes. All possible parameter values
(see A.1) are represented on the y-axis, and the class index on
the x-axis. The in-classes densities of the parameter values are
illustrated in the form of a heatmap, where a dark pixel equates
to a density of 1, and white of 0.

more important in the third one. Likewise, Tmain, τmain and E(B-
V)cont have higher weights in the second component, and lower
weight in the third one. While some components are indeed dif-
ferent, the overall relevance of each parameter in regard to the
classification remains close to unchanged.

6. Discussion

6.1. The origin of the K≥13 regime

The analysis on the noiseless spectra revealed an odd behaviour
at K≥13: a lack of convergence at K=13, and a high plateau of
the ICL for K from 14 to 23 (Fig. 2).

In an ideal world, the ICL curve as a function of the num-
ber K of clusters should show a clear peak, since this criterion
takes into account the number of free parameters in the statisti-
cal models and the good separation of the clusters. But the ICL
curve has not always this ideal behaviour, especially in high di-
mension (e.g. Fraix-Burnet et al. 2021). In particular, it often

Article number, page 10 of 18



J. Dubois et al.: Unsupervised classification of CIGALE galaxy spectra

0
20
40
60
80

100

1 2 3 4 5 6 7
component

va
ria

nc
e 

(%
)

Variance per component

τburst

E(B−V)cont

τmain

fburst

Tmain

Metallicity
Tburst

0.0 0.1 0.2 0.3
weight

Weighted total

τburst

E(B−V)cont

τmain

fburst

Tmain

Metallicity
Tburst

0.0 0.5 1.0
weight

LD1

τburst

E(B−V)cont

τmain

fburst

Tmain

Metallicity
Tburst

0.0 0.5 1.0
weight

LD2

τburst

E(B−V)cont

τmain

fburst

Tmain

Metallicity
Tburst

0.0 0.5 1.0
weight

LD3

τburst

E(B−V)cont

τmain

fburst

Tmain

Metallicity
Tburst

0.0 0.5 1.0
weight

LD4

τburst

E(B−V)cont

τmain

fburst

Tmain

Metallicity
Tburst

0.0 0.5 1.0
weight

LD5

τburst

E(B−V)cont

τmain

fburst

Tmain

Metallicity
Tburst

0.0 0.5 1.0
weight

LD6

τburst

E(B−V)cont

τmain

fburst

Tmain

Metallicity
Tburst

0.0 0.5 1.0
weight

LD7

Fig. 14: Linear discriminant analysis on the classification of
spectra with added noise of SNR=20. Top: cumulative data vari-
ance described by the linear discriminant analysis components.
LD1 to LD7: weight of each parameter for components 1 to 7
of the linear discriminant analysis. Weighted total: cumulative
weight of each parameter among the 7 components weighted by
the percentage of data variance described by each component.

shows a plateau that ends when the algorithm fails to converge
(i.e. encounters an empty cluster, see Sect. 4.1).

Since the classifications for K>13 differs from the classifica-
tions obtained for K=12 with and without noise, we suspected
that this might be due to the fact that the data are simulated with
a necessarily limited coverage of the parameter space.

To test this hypothesis, we devised a toy model at the low-
est possible dimension to reproduce this behaviour. After trials
and errors, we managed to find a data set that is described in
Appendix C. The ICL curves show an optimum at K=4, with so-
lutions at K=2 but no convergence at K=3. Remarkably, if we
add a very small amount of noise to a part of one of the five
variables, solutions are found in all cases, exactly as with our
CIGALE data.

Even if this toy model cannot be considered as a proof, we
conclude that the behaviour found in the noiseless data may be
due to some peculiar distribution of the data in the parameter
space, i.e. too small a dispersion and probably a significant level
of sparsity. In addition, Jouvin et al. (2021) find a poor perfor-
mance of the Fisher-EM results in the case of very little noise, a
behaviour that they cannot explain but suspect it might be related

to insufficient constraints brought by the data set. Such problems
are known to occur in EM-GMM based clustering (e.g. Kasa &
Rajan 2020).

The case of K≥13 is therefore thought to be an artefact re-
sulting from the simulated nature of the spectra, and is dismissed
in the rest of this section. Instead, K=12 shall be seen as the rep-
resentative classification of the noiseless spectra.

We stress that the noiseless situation cannot be encountered
in reality.

6.2. The physical discrimination capacity of unsupervised
classification

The classification at K=12 shows classes of spectra that are
very homogeneous with little dispersion, demonstrating the abil-
ity of Fisher-EM to find structures in a high-dimensional data
space. This was already noticed for the much larger SDSS sam-
ple (Fraix-Burnet et al. 2021).

The analysis of the distribution of the parameters used in
the CIGALE simulations shows that this discriminative power
among the spectra is also visible in the physical properties of the
galaxies. Among the seven parameters, four are clearly well dis-
criminated (Tmain, Tburst, fburst and Metallicity), and to a lesser
extent τmain and E(B-V)cont. This is an important result which
shows that Fisher-EM is capable of picking up the expected rele-
vant physical parameters. The LDA analysis confirms these most
influential parameters. The fact that the weights of Tburst and
Metallicity appear stronger than that of Tmain could be due to
their small sampling density (respectively three and four values).
However, fburst has only six values and has a similar weight as
Tmain. Also, the latter has a higher weight than τmain despite hav-
ing a similar distribution. Lastly, the LDA analysis shows that
τburst has a weak impact on the classification, but this is proba-
bly not due to its small sampling density since it was expected
from the physics itself (Sect. 2.2).

As a conclusion, we have shown that each class has not
only a specific spectral shape, but also its members have specific
physical properties. Hence, in a real data set, a detailed analysis
of the mean spectra of the classes should reveal these properties
and transform an unsupervised classification into an objective
and physical atlas of galaxy spectra.

6.3. The effect of the noise

The addition of noise raises two questions that we address in this
section: i) does it change the classification itself, and, ii) does it
change the physical interpretation.

6.3.1. Effect on the classification

Adding some noise to our spectra strongly modifies the ICL
curve by revealing a clear maximum around K=12 (for SNR≥3)
with a quasi identical classification, the noiseless one included.
At SNR=1, the optimum is K=5 so that a higher level of noise
tends to smear out the classes and, as expected, lessens the dis-
criminative capability of the analysis.

The presence of noise in the data also tends to facilitate the
convergence of Fisher-EM. In fact, at the SNRs considered, the
convergence issues that were encountered in the noiseless case
were non-existent. Lack of convergence was still observed in
the noisy case when a high number of classes was chosen, but
this behaviour is usual and was seen on real data as well (Fraix-
Burnet et al. 2021).
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6.3.2. Effect on the physical meaning of the classes

The present study shows that our unsupervised classification and
its physical meaning are essentially unchanged between SNR=3
and SNR=500 for our simulated data, demonstrating its robust-
ness.

At SNR=1, most of the physical discriminative capacity of
the method is lost, and only 5 classes are found. Nonetheless,
those 5 classes are not meaningless, and remarkably separate
rather well active galaxies from inactive ones. As a matter of fact,
Jouvin et al. (2021) showed that in some cases, Fisher-EM could
even prove itself capable of accurately classifying data with a
SNR as low as -1dB.

7. Conclusion

The present study shows that the unsupervised classification al-
gorithm Fisher-EM applied on thousands of CIGALE galaxy
spectra yields a classification that is both robust against the ini-
tialisation of the algorithm and against the noise. Very impor-
tantly, the classification is very discriminating with respect to
the physical properties of the galaxies.

Unsupervised classification in astrophysics is still in its in-
fancy, and the first robust classification of spectra of galaxies
have been published very recently (Fraix-Burnet et al. 2021).
The aim of such an objective classification is to produce an at-
las that is entirely data-driven, and that could be used later with
supervised learning in big surveys. Even though the preliminary
interpretation of the classes found in Fraix-Burnet et al. (2021)
have shown their physical relevance, the present work confirms
that unsupervised machine learning is able to yield not only a
robust statistical classification but also a physical classification
of the properties of the galaxies from the spectra.

The main advantage of the unsupervised classification is that
we do not put any a priori physical information into the classi-
fication process but rely on the ability of the algorithm to de-
tect the structures that it is really able to detect, not the ones
we would wish. We are thus not limited by the representative-
ness of the training set, and we consequently avoid all the asso-
ciated biases. In addition, as shown in Fraix-Burnet et al. (2021),
the classification is characterised by the statistical model that we
can use for further supervised classifications. This is performed
through the E-step only, which is extremely fast. This means that
the Fisher-EM algorithm has built its own training set (Fig. 5)
that happens to be physically well characterised (Fig. 7).

Our result is a strong encouragement to analyse in more
depth the atlas proposed in Fraix-Burnet et al. (2021) and ex-
tend it to larger samples. The exciting perspective is to include
galaxies at higher redshifts in order to study the evolution of the
classification with time through a fully data-driven procedure.
Acknowledgements. We warmly thank Charles Bouveyron for many discussions
during this study. This research has made use of the NASA/IPAC Extragalactic
Database (NED), which is funded by the National Aeronautics and Space Ad-
ministration and operated by the California Institute of Technology.
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Appendix A: Spectra generation

Table A.1: CIGALE parameters used to generate the data

Tmain
(Myr)

τmain
(Myr) fburst

Tburst
(Myr)

τburst
(Myr) metallicity E_BV_lines E_BV_factor redshift

9500
10500
11500

500
1000
3000

0 - -

0.02
0.05

0.0005
0.01
0.025
0.05
0.075

0.1

0.25

0.001
0.002
0.003
0.004
0.005

10000
11000
12000

2000
5000

0.02

0.005
0.077
0.148
0.220
0.292
0.363
0.435
0.507
0.578
0.650

0.44

0.01
0.02
0.03
0.04
0.05
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0.07
0.08
0.09

6000
10000 5000

0.1
0.2
0.3

5000
7500 5500

0.4
0.5
0.6

4000
6500 4500 0.7

0.8

13000 5000 0

2000
5200 3000

0.001
0.01
0.1

20
100

4500
0.8
0.9
1

2000

4000
6000 0.7

7000
2500

7000 0.6
7500
3000
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7000 0.5

8000
4000

8000 0.4
9000

5000
10000

5000
10500 50000

0.1
0.2
0.3

10000
11000
12000

6000
9000 10000

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

6000 5000
8000

0.1
0.25
0.5

5
20
50

11000

0.008
0.02

0.005
0.116
0.226
0.337
0.447
0.558
0.668
0.779
0.889
1.000

4000
7200 5000 6500

0.4
0.5
0.6

5000
10000 6000 9000

0.1
0.2
0.3
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Appendix B: Results on spectra with added noise

B.1. Parameter distribution
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Fig. B.1: SNR=1
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B.2. LDA analysis
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Fig. B.9: SNR=10
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Fig. B.10: SNR=100

B.3. Mean spectra
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Fig. B.11: SNR=3 (see Fig. 4).
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Fig. B.12: SNR=5 (see Fig. 4).
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Fig. B.13: SNR=10 (see Fig. 4).
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Fig. B.14: SNR=100 (see Fig. 4).
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Appendix C: Toy model

To try visualise the conditions for the gap at K=13 in the ICL
curve for the noiseless case (Sect. 4.1 and Fig. 2), we constructed
a toy model by trials and errors. The simplest sample one can
build to reproduce this behaviour is a sample of five variables,
and 1000 observations to ensure a perfect reproducibility.

Let us consider the following matrix made with the following
five variables:

Var1[1 : 500] = 1 Var1[501 : 1000] = 2
Var2[1 : 300] = N(10, 0.01) Var2[301 : 1000] = N(15, 0.01)
Var3[1 : 800] = 1 Var3[801 : 1000] = 2
Var4[1 : 500] = N(100, 0.01) Var4[501 : 1000] = N(150, 0.05)
Var5[1 : 200] = 1 Var5[201 : 1000] = N(4, 0.1)

where VarX[i : j] designates the indices from i to j of vari-
able VarX, andN(µ, σ2) means that the values are drawn from a
normal distribution of mean µ and standard deviation σ.

This sample (Fig C.2) yields a ICL curve Fig C.1 with a gap
at K=3 (Fisher-EM never converges) and a much higher value at
K=4 than at K=2. This behaviour is identical to the one at K=13
in Fig. 2.

Adding a little bit of dispersion in Var2 by increasing σ2

from 0.01 to 0.05:

Var2[1 : 300] = N(10, 0.05) Var2[301 : 1000] = N(15, 0.05)

as represented by the red points in Fig C.2, the Fisher-EM anal-
ysis always yields a solution (Fig C.3).

This behaviour is thus very similar to the one obtained on
the CIGALE sample, and is thus explained by the very peculiar
distribution of the observations in the multivariate data space.
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Fig. C.1: All the ICL values as a function of the number of clus-
ter K obtained for the toymodel. Each points correspond to a suc-
cessful run of Fisher-EM for one of the twelve statistical models.
This figure should be compared with Fig. 2.
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Fig. C.2: The values of the 5 variables for the toymodel with
1000 observations that yield the ICL curve in Fig C.1. The points
in red in the second panel (Var2) are the ones with a slightly
increased dispersion that yield the ICL curve in Fig C.3.
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Fig. C.3: Same as Fig. C.1 with the slightly mode dispersed vari-
able Var2.
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