Structure of optimal control for planetary landing with control and state constraints
Abstract
This paper studies a vertical powered descent problem in the context of planetary landing, considering glide-slope and thrust pointing constraints and minimizing any final cost. In a first time, it proves the Max-Min-Max or Max-Singular-Max form of the optimal control using the Pontryagin Maximum Principle, and it extends this result to a problem formulation considering the effect of an atmosphere. It also shows that the singular structure does not appear in generic cases. In a second time, it theoretically analyzes the optimal trajectory for a more specific problem formulation to show that there can be at most one contact or boundary interval with the state constraint on each Max or Min arc.
Origin | Publisher files allowed on an open archive |
---|