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Abstract.  In case of the IDM-model the actual V(D) Velocity-Density law applied by this dynamic 

system is not defined, only the dynamic behavior of the vehicles/drivers is determined. So the logical 

question is whether the related investigations enhance an existing and known law or reveal a new con-

nection. Specifically, which function class/type is enhanced by the Intelligent Driver Model (IDM-

model)? The publication presents a model analysis, the goal of which was the exploration by of a fea-

ture of the IDM-model which, as yet, “remained hidden”. So, in our case the goal was not the validation 

of the model, but the exploration of a further feature of the validated model. The separate validation of 

the model was not necessary, since many validated applications for this model have been demonstrated 

in practice, for example [Kesting et al. (2008)]. In our calculations also the applied model parameter 

values remained in the range of the model parameters used in the literature. 

 This paper presents a new approach for Velocity-Density Model (VDM) synthesis. It consists in 

modelling separately each of the density and the velocity (macroscopic parameter).  From this study, 

safety time headway (microscopic parameter) can be identified from macroscopic data by mean of in-

terpolation method. By combining the density and the velocity models, a generalized new VDM is de-

veloped. It is shown that from this one, some literature velocity-density models, as well as their proper-

ties, can be derived by fixing some of its parameters.   

 

 

Keywords: Velocity-Density Model, microscopic traffic simulation, Adaptive Cruise Control 
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Introduction  
  

Traffic modelling can be classified into the three fol-

lowing classes.  

 The first class includes the microscopic models 

where the traffic is viewed as a system of interacting par-

ticles (vehicles). This interaction is modelled by differen-

tial equations as done by [Bando et al. (1998)], [Helbing 

& Tilch (1998)], [Treiber et al. (2004)], [Molina (2005)], 

[Ge et al. (2008)], [Kesting (2008)], [Rakha & Gao 

(2010)].For interested readers, a general overview of mi-

croscopic traffic models is presented by [Derbel, Mour-

llion & Basset (2012)].  

 The second class includes the macroscopic models 

where the traffic is viewed as one group of particles. Mac-

roscopic parameters are traffic density, traffic flow and 

velocity which are used for graphic representation of the 

fundamental diagram. Several works are based on this 

approach such as those ones developed by [Holden & 

Risebro (1995)], [Herty & Klar (2003)], [Treiber et al. 

(2004)], [Peter (2012)], [Peter & Szabo (2012)], [Bede & 

Peter (2013)], [Peter et al. (2013)], [Peter et al. (2013)] 

[Bede & Peter (2014)]. 

The third class includes the mesoscopic models, 

which appears to be an intermediate between the two last 

classes. Here, the traffic is viewed as clusters of vehicles. 

Several studies have been realized in this field such as 

those done by [Prigogine & Herman (1971)], [Paveri-

Fontana (1975)] and [Mahnke & Kaupuzs (1999)]. 

  

 The presented research work deals with microscopic 

and macroscopic approaches, where the traffic is repre-

sented by one cluster. The goal is to predict traffic density 

and velocity with a minimum of errors. Most of the litera-

ture velocity-density models are developed and identified 

by mean of experimental macroscopic traffic data. The 

lack of these ones leads to work under simulation. Here, 

the idea is to generate macroscopic traffic data from mi-

croscopic traffic model simulation. Nonetheless, this mi-

croscopic model must faithfully reproduce the traffic be-

haviours and be validated by the fundamental diagram 

study.   

 In this paper, the developed Velocity-Density Model 

(VDM) is based on the Intelligent Driver Model (IDM) 

([Kesting (2008)], [treiber et al. (2000)]). Our new method 

proceeds by the identification of the simulated velocity 

and density data separately. Among the advantages of this 

method is the ability to identify each microscopic parame-

ter from macroscopic ones by interpolation method. Then, 

a new VDM is computed with a mathematical develop-

ment of the velocity and density models. And it will be 

shown later that some of existing models in the literature, 

as well as their properties can be derived from this new 

VDM by fixing some of its parameters.   

  

 In this paper, Section 1 presents a brief state-of-the 

art of the existing velocity-density models. Section 2 iden-

tifies the velocity and the density functions. Section 3 

presents the synthesis method of the new VDM. Section 4 

presents the generalized VDM and section 5 concludes 

and gives outlooks. 

1. State-of-the-art of the Velocity-

Density Models 

 

Two classes of Velocity-Density Models 

can be distinguished: the stochastic 

els and the deterministic models. This 

section presents a brief state-of-the-art of 

deterministic VDM considering 

logical order.  

1.1 GREENSHIELDS MODEL 

Up to our knowledge, the first 

ministic VDM was proposed by 

[greenshields (1934)]. This affine model 

is given by the following expression 

  

)1()(
maxD

D
VDV Max   

 

(1)  

 

where Dmax is the maximum density which is the jam den-

sity. This model is identified by linear regression method 

using seven experimental observations.  

Recently, [Wang et al. (2011)] have showed 

that, with more than seven data, the 

Greenshields model is not enabling the 

prediction of velocity and density. 

1.2 GREENBERG MODEL 
 

       By the analogy with fluid flow, [Greenberg (1959)] 

has developed a logarithmic velocity-density relationship 

given by  

 

)log()(
maxD

D
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(2)  

 

The main drawback of this model is its inability to predict 

velocity for low densities. Indeed, the velocity tends to 

infinity when the density tends to zero, which is unrealis-

tic. 

1.3 UNDERWOOD MODEL 

       [Underwood (1961)] has derived an exponential mod-

el in order to overcome the drawbacks of the Greenberg 
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and Greenshields models for the free traffic flow condi-

tion. This model is given by 

  

)exp()(
maxD

D
VDV Max   

 

(3)  

 The main drawback of the Underwood model is that ve-

locity becomes zero only when density D reaches infinity 

and not D=Dmax. Hence, this model cannot be used for 

predicting velocities at high densities. 

1.4 NEWELL MODEL    

The VDM of [Newell (1961)] is expressed by 
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where λ>0 is the slope of inter-distance-velocity curve at 

V=0 km/h. 

Here, when D=Dmax then V=0 km/h. When D=0 then 

V=Vmax km/h. Therefore, the limit conditions are verified 

by the Newell model. 

 

1.5 DRAKE MODEL 

[Drake et al. (1967)] have enhanced the Greenberg 

model by studying various macroscopic traffic models. By 

estimating the density from velocity and flow data, they 

propose the new VDM expressed by 
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(5)  

 

According to [Ardekani et al. (2011)], this model presents 

a better fitting than the above Greenshields, Greenberg 

and Underwood models for non-congested conditions. In 

case of congested conditions, the Drake model presents a 

poor data fitting.   

1.6 PIPES MODEL 

[Pipes (1967)] has generalized the Greenshields mod-

el leading to a new velocity-density relationship given by  
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By varying the values of r and m, a faily of models can be 

developed. For example, Greenshields model is obtained 

for r=1 and m=1. 

1.7 DREW MODEL 

 [Drew (1968)] has proposed another model expressed as 

follows: 
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According to [Ardekani et al. (2011)], at free-flow phase, 

the Drew model presents an underestimated velocity, but 

in the congested phase, the velocity is overestimated.   

1.8 DEL CASTILLO MODEL  

[Del Castillo & Benitez (1995)] have developed a ve-

locity-density model which is given by the following ex-

pression: 




























 )1(exp1)( max

max D

D

V

C
VDV

j

Max
 

 

(8) 

where Cj is the kinematic wave speed given by 

max

max

DD

j
dD

dV
DC



  

According to [MacNicholas & Michael (2008)], the draw-

back of this model is the large kinematic wave speed 

range which makes difficult its estimation. 

If Dmax=1 and Cj = λ, then we have the Newell model.  

1.9 VAN AERDE MODEL  

   [Aerde (1995)] developed a new velocity-density 

model which is based on a simple car-following model. 

This last one is depends on the free and current velocity 

and a calibrated constants. The minimum desired distance 

headway is the output of this model. The velocity-density 

model is given by  
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(9) 

where C1, C2, and C3 are constants which can be calibrat-

ed by nonlinear regression. 

1.10  MAC NICHOLAS MODEL 

 [MacNicholas & Michael (2008)] have proposed the 

following velocity-density model 
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(10)  

 

where m and q are real constants. By varying these con-

stants, a family of models can be developed. For example, 

if Dmax=1, m=0 and 
2

1


p
q  the Drew model expres-

sion is found. 
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1.11  POWER FUNCTION MODEL 

The power function proposed by [Del Castillo 

(2012)] is given by  
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where θ is a shape parameter, 

maxD

D
  and a and b are 

constants. 

1.12  EXPONENTIAL MODEL 

The exponential model is given by Del Castillo 

(2012)as follows 
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  and θ a shape 

parameter. 

1.13  NEGATIVE POWER MODEL 

The negative power model is presented by [Del Cas-

tillo (2012)] as  
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Where w is a shape parameter. 

 

1.14  ENVIRONMENTAL 

PARAMETERIZATION MODEL 

[Peter & Fazekas (2014)] have enhanced the envi-

ronmental parameterization model by studying various 

macroscopic traffic models. The classical literature does 

not deal with the definition of the environmental vector, 

but the velocity is determined not only by vehicle density, 

but by other environmental parameterization, as well: this 

refinement can be implemented with the modification of 

VMax, or via the modification of the function itself consid-

ering the weather, visibility, road quality, width of the 

road. These environmental, seasonal factors can be repre-

sented in the environmental parameter vector e: V=v(ρ,e). 
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In this case, the parameter vector e contains 5 parameters 

 

 
Figure 1 V(ρ) velocity – density function with e1=2; 

e2=1;e3=1;e4=1;e5=1 parameters 

The following table demonstrates the favourable and un-

favourable parameter domains. The internal domain is 

located between the two distinct domains, in most of the 

cases the practical parameter comes from this internal 

interval. The borders of the intervals are empirical values, 

in a given case the coordinates of the e = [e1, e2, e3, e4, e5] 

parameter-vector are determined via regression analysis 

after the velocity – density measurement. 

 
Table 1 Demonstration of the e parameter vector 

ei Meaning of 

the parameter 

Unfavorable 

cases 

Favorable cases 

e1 Road quality Bad: e1=0.1 - 0.3 Good: e1=3 – 4 

e2 Curly road Lot of curves: 

e2=3 - 4 

Few curves: 

e2=0.1-0.2 

e3 Slippery road Bad, slippery: 

e3=1.2 - 4 

No slippery:  

e3 <1 

e4 Safety,visibili

ty 

Bad conditions: 

e4=0.5 - 0.7 

Good conditions: 

e4 >1 

e5 Width of road Narrow: 

e5=0.1 - 0.2 

Wide:  

e5 >4 

 

The specialty of the introduced V=v(ρ,e) function is that it 

gives the same results as the linear function of Green-

shields, if every parameters’ value equals to 1 (Fig. 2.).  

 
Figure 2 V(ρ) velocity – density function with e1=1; 

e2=1;e3=1;e4=1;e5=1 parameters  
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This result shows that Greenshields’ linear function has 

parameter values from the mid-range, so that provides 

really an average v(ρ) velocity-density function 

relationship in practice.  

1.15  SYNTHESIS 

  Table 2 summarizes the references with the macroscopic 

traffic models cited in this section. Vmax is the maximum 

velocity, Dmax the jam density, λ the slope of inter-

distance-velocity curve at V = 0, C1, C2, C3, m, p, q and r 

are constants and Cj is the kinematic wave speed at jam 

density.  

 
Table 2 Velocity Density model summary 

Reference Model 

 

[Greenshields 

(1934)] 
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It was necessary to review the evolution of the Velocity-

density laws in the literature, since these functions have a 

decisive role in the fundamental equation in case of traffic 

models. They shall satisfy two conflicting needs: to be as 

simple as possible, so that the large complex simulation 

models provide fast numerical calculations, while 

ing the real practical situations as widely as possible. A 

common feature of the velocity - density laws is that they 

result from non-linear regression analysis based on 

urements and hypotheses (preconceptions). The common 

flaw of the classical results is that because they do not 

refer to other environmental impacts, they only examine 

the effect of speed on the vehicle density, so essentially 

any of them can be suitable for a given modelling. [Peter 

& Fazekas (2014)] goes much further and examines also 

the environmental parameters. In case of the IDM-models 

the comprehensive examination of the speed-density 

tions is an interesting problem, because without 

ception an expanded set of functions can be examined 

from the point of view of which known function types, or 

other new models are considered as valid by this model. 

Of course, neither the classic IDM-models contain the 

environmental parameters mentioned above, so the studies 

in this area are far from closed.  

The next section is dedicated to generate microscopic and 

macroscopic simulated traffic data which are the density 

and the velocity. In addition, the impact of microscopic 

parameters to macroscopic ones is investigated.  

2. Macroscopic traffic data gen-

eration 
 

Based on microscopic traffic simulation, density-time and 

velocity-time functions will be computed in this section.  

Paragraph 2.1 presents the simulation assumptions and the 

Intelligent Driver Model intended to represent the micro-

scopic longitudinal vehicle motion. Paragraph 2.2 intro-

duces the used mathematical formula to compute macro-

scopic parameters (velocity and density). Paragraph 2.3 

presents the simulation results and discusses it and para-

graph 2.4 studies the impact of microscopic parameter on 

macroscopic ones. 

2.1 MICROSCOPIC TRAFFIC MODEL: 

INTELLIGENT DRIVER MODEL 

(IDM) 
 

The Intelligent Driver Model (IDM) is an Adaptive 

Cruise Control system intended for adjusting the driver's 

longitudinal desired velocity and safety time gap. The 

IDM model, developed by [Kesting et al. (2008)]), is ex-

pressed by 
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where an is the maximum acceleration of the vehicle 

n (m/s
2
), v

0
n the desired velocity of the vehicle n (m/s),   

and the distance gap (m). 

1 nnn lxs   

 

The desired minimum gap of the vehicle n, s*n is given by 
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where bn is the desired deceleration of the vehicle n 

(m/s
2
), s

0
n the jam distance of the vehicle n (m) and Tn the 

safety time gap of the vehicle n (s). 

Compared to the other ACC models in the literature, 

the IDM shows more advantages in terms of easy imple-

mentation, calibration and the intuitive and the availability 

of its parameters. These ones are the desired velocity v
0

n 

and the safety time gap Tn which are fixed as system in-

puts. 

The next subsection details the density and velocity 

formula for computing macroscopic data under micro-

scopic traffic simulation using the IDM model. 

2.2 DENSITY AND VELOCITY 

FORMULA 

2.2.1 Density formula 

 

As shown in subsection 2.14 in table 1, the quotient 

between the traffic density and the jam density are used in 

all models in the literature for density normalization. In 

this paper, the density is already normalized. Here, the 

traffic road section is limited by the first and the last vehi-

cle. Then, the density formula can be written as 
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where lk is the length of the vehicle (k=1,2,…,N), N the 

number of vehicle in the platoon and Lplatoon the length of 

the platoon. And the density d can be normalized in the 

interval [0,1]. Then, we have 

maxD

D
d   

where Dmax =1 in this case. For this purpose, in the rest of 

this paper, the density d will be noted as D. 

2.2.2 Velocity formula 
The platoon velocity v is the average velocity of the vehi-

cles in the platoon which is given by 
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where vn is the velocity of the vehicle n. 
  

2.3 SIMULATIONS AND RESULTS  

2.3.1 The simulation model 

The following system of non-linear matrix differential 

equations shows the structure of the IDM-model under 

investigation. For a multi vehicle system, the Intelligent 

Driver Model is given by: 
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This model examines the longitudinal dynamics in the 

direction of travelling in case of vehicles travelling in a 

lane and is specifically capable of analyzing the evolution 

of the speed-density law. The movement is performed on 

a line, which is a given lane. We have dealt with the 

ther generalization of the model in [Derbel, Peter, Mour-

llion & Basset (2012)] and [Derbel et al. (2013)].   

2.3.2 Simulation assumptions 
 

In our simulations, the following assumptions are 

taken into account:  

 The AAC model, which is our microscopic traffic 

model, is already validated and its parameters are 

identified based on experimental data ([Kesting 

et al. (2008)]). 

 The traffic is homogeneous. It means that the 

longitudinal motion of all vehicles is controlled by 

the same ACC (IDM) with the same parameter 

values. A heterogeneous traffic includes vehicles 

with manual and automatic driving modes. 

 The road has only one lane. 
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 Only the longitudinal vehicle motion is studied. 

The lane change and the lateral motion are 

neglected.  

2.3.3 The simulator 
 

The development of traffic simulators has received 

much attention in recent years. Many companies have 

invested in such projects and have made simulators 

integrating various dynamic and kinematic models of 

vehicles, driver and road architectures available. These 

simulators are known by their complexities in terms of 

software development. For example, the simulator 

ARCHISIM adopts multi-agent approach and techniques 

from artificial intelligence to simulate complex 

phenomena. Our motivations for the development of a mixed 

traffic simulator (coexistence of automated and manual 

driving style in the same traffic section) are justified 

according to the following two aspects: 

- The high cost of traffic simulators in the market. 

- The collision management problem. For example, 

the traffic simulators CarMaker and Microsimulation of 

Road Traffic Flow (MRTF) do not perfectly manage 

collisions between vehicles. 

 Our mixed traffic simulator is developed using the C 

language and the OpenGL library (Open Graphics 

brary) for graphical interface. Figure 2 shows the structure 

of mixed traffic simulator. This simulator has inputs that 

are used by its different modules to save the output of the 

simulation in different formats such as video and/or data 

required for post-processing. 

     The inputs of the simulator are the following three: 

- "XML File" in which some parameters can be set: 

the simulation number, the initial vehicle number, the 

road length and the minimum and maximum percentage 

of automated vehicles.  

- "Global Settings": these parameters are fixed 

throughout the simulation (e.g. road width). 

- "OpenGL library": This library is responsible for 

the GUI management such as scenarios and architectures 

used in the simulation. 

  In the simulator body, the following modules are 

developed: 

- "Scenario Development Module": This module 

cludes the different developed scenarios. They take their 

input parameters through the "main" function. It selects 

the script to run from the choice made in the XML file. In 

this module, there are useful models: the IDM model for 

longitudinal automated driving style, the Two Velocity 

Difference Model (TVDM) [Ge et al. (2008)] for longitu-

dinal manual driving style and the Minimizing Overall 

Braking change Induced by Lane change (MOBIL) model 

[Kesting et al. (2008)] for the lane change management. 

These models need to be updated in each simulation step 

through the numerical integration module (Runge Kutta). 

- "GUI Management Module": This module is based 

on the OpenGL library and the measurements are record-

ed to generate and update the simulator graphical inter-

face. 

 The outputs of this simulator are the following three: 

- "Screen": Displays the architecture and the scenar-

io. 

- "Video": to save the simulation  

        - "File .txt or .bin": saves the data needed for post-

processing 

   

Figure 3 shows the position of the vehicles in a platoon.  

The IDM simulation model with the parameters given by 

table 3 is applied to simulate the fully automated traffic 

using our developed microscopic traffic simulator. The 

presented parameter values in this table are originated 

from an identification step using experimental data and 

used to validate the IDM with the fundamental diagram by 

[Kesting et al. (2008)]. At each simulation step, the simu-

lated microscopic traffic data such as the position, the 

velocity and the acceleration of each vehicle are comput-

ed. Then, the density and the velocity are computed ac-

cording to equations (17) and (18) respectively. 

Simulation parameters are given in table 4. In this table, 

the jam distance s
0
n is set to zero in order to have the max-

imum density equal to 1. 

 

Figure 2 Structure of the developed simulator 

 

  To study the sensitivity of macroscopic parameters 

(velocity and density) according to the microscopic 

parameters (an, bn, Tn), traffic simulation is performed 

made for each of the maximum acceleration an values (the 

other microscopic parameters are constants), the desired 

deceleration bn (the other microscopic parameters are 

constants) and the safety time headway Tn (the other 

microscopic parameters are constants).  

2.3.4 Simulation results 
 

 

Figure 3 Positions of the vehicles in the platoon 

 



 8 

Table 3 IDM simulation parameters 

Parameter Mean value Unit 

Maximum acceleration  an 3 m/s
2
 

Desired deceleration bn  3 m/s
2
 

Safety time headway Tn  1.5 s 

 
Table 4 Simulation parameters 

Parameter  Value Unit 

Vehicle number    20 vehicle 

Simulation time 1000 s 

Simulation time step 0.01 s 

Initial inter distance 0 m 

Initial acceleration 0 m/s
2
 

Desired velocity 50 km/h 

Initial velocity 0 km/h 

The jam distance 0 m 

Vehicle length 5 m 

 

Figure 4 shows the density versus the time (first 

curve) and the velocity versus the time (second curve) 

during 1000 s of simulation with the microscopic parame-

ters given by table 3 and the simulation parameters given 

by Table 4. Here as the density increases, the velocity 

decreases until the stable state. 

 

 

Figure 4 Traffic density and velocity time functions 

2.4 FROM MACROSCOPIC 

PARAMETERS TO MICROSCOPIC 

PARAMETERS 
 

In this section, two goals are fixed: the first one consists 

in studying the dependency of the shape of the velocity-

time and the density-time functions to microscopic pa-

rameters. The second goal is to study the ability to identi-

fy microscopic parameters from macroscopic parameters. 

Microscopic parameters are the maximum acceleration an, 

the desired deceleration bn and the safety time headway 

Tn. In this step the following assumptions are made: the 

maximum acceleration an ∈ [2, 7] m/s
2
 the desired decel-

eration bn ∈ [2, 5] m/s
2
 and the safety time headway Tn 

∈ [1.5, 4] s. The ranges are empirical intervals given by 

[Kesting et al. (2008)]. In this paragraph, it is noted that 

all vehicles have the same parameters (homogeneous traf-

fic).  

 

2.4.1 Impact of an , bn and Tn on density 
 

As shown in figure 3, the maximum acceleration and the 

desired deceleration have no impact on traffic density. 

Indeed, when the traffic becomes stable,  

0 nv , ∀n ∈ {1,...,N} and then 0
2






nn

nn

bva

vv
. 

The safety time headway Tn has an impact on traffic 

density i.e when Tn increases, traffic density decreases. In 

fact, vehicles tend to increase inter-distance when Tn is 

high, then the traffic density decreases. 

 

 

Figure 5 Density for different an, bn  and Tn sets 

 

2.4.2 Impact of an , bn and Tn on velocity  
 

As shown in figure 6, the maximum acceleration and the 

desired deceleration have no impact on the velocity. The 

same reason cited in 3.4 is the cause of this result: when 

the traffic becomes stable, 0 nv  ∀ n ∈ {1...N} and  

 then 0
2






nn

nn

bva

vv . The safety time headway Tn has an 

impact on the velocity i.e. when Tn decreases vehicles 

velocity increases. Vehicles accelerate to reach the desired 

velocity until the safety time headway is guaranteed. 

 

Figure 7 shows the impact of the time headway Tn on 

the macroscopic parameters. Now the curves of this figure 

will be considered as reference to us. In case of unknown 

time headway, from the density and the velocity values, 

we can identify the mean value of time headway between 

vehicles way by mean of interpolation. 

 



 9 

 

Figure 6 Velocity for different an, bn  and Tn sets 

 

 

Figure 7 Impact of the time headway on the velocity density 

curve 

3. New velocity-density model 

synthesis method 
 

The new method consists in studying the variation of 

each of the two macroscopic parameters (velocity and 

density given by the figure 2) separately along the simula-

tion time. To carry out this study, a family of functions is 

computed to approximate the density-time and velocity-

time functions. For a given γ, this family of candidate 

functions is expressed by 

 21

3

21 exp)(;),,(/ F
t

FtFFFFH
f

f 




















 

For reasons which will be later explained, γ is fixed for all 

candidate functions of the two macroscopic parameters. 

The function D ∈ Hγ, which is a candidate to approxi-

mate the density-time function, is given by 

( ) exp1 2
t

D t D D
d





 
   

 
 

 

 

(20) 

where D1, τd and D2 are constants. The function v ∈ Hγ, 

which is a candidate to approximate the velocity-time 

function, is given by 

( ) exp1 2
t

v t V V
v





 
   

 
 

 

 

(21) 

where V1<0, and τv >0, V2 >0 are constants (V2 ≥ïV1½). γ 

is fixed for the two candidate functions to have an analyti-

cal time independent velocity-density relationship from 

equations (20) and (21).  D and v functions are used to fit 

separately the density and  

the velocity data in the least square sense. Figure 6 shows 

the fitted curves of the density and the velocity together 

with the macroscopic data given by IDM simulation. Pa-

rameters of these two functions, obtained with setting γ = 

0.8, are summarized in table 5. The mean, the maximum 

and the minimum absolute errors are given by table 6. The 

absolute error between data given by microscopic simula-

tion and the computed functions D and v is small com-

pared to the maximum values of each one. The IDM is 

written as 

.

,

4 2
*( , )

1
0nn

v s v vn n n
a

sv nn
v 

 
        

    
     

 

and 

 

* 0( , )
2

vn vn
s v v s vT nn n n n

a vn n


    . 

 

The solution for the velocity is given by 

 

( ) exp1 2
t

v t V V
v





 
   

 
 

 

When traffic become stable, we obtain 0nv  and  

0



v

t

e




. Then, 

   
2

4 4
2 4

2 2

0 0. .
n

n n

n

T
v V V v

s
 

 
 
 

 

  

 

(22) 

 

 And, as shown in equation (22), V2 depends on the inter-

distance and the safety time headway Tn and not from an  

and bn. 
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Figure 8 Density-time function with D function and velocity-

time function with v function 

 
Table 5 Parameters of the D and v functions with γ = 0.8 

Parameter Mean value Unit 

D1 0.8971 - 

τd 0.1205 s 

D2 0.1029 - 

V1 -48.4583 km/h 

τv  0.0813 s 

V2 48.48205 km/h 

R
2
 ( Velocity) 0.9788 - 

R
2
 ( Density) 0.9399 - 

 

 

 

 

 
Table 6 Density and velocity error 

Parameter Mean Max Min 

Density error 0.0157 0.0786 0 

Mean velocity error 0.6402 6.3786 0 

 

4. Velocity-density model synthe-

sis 
 

From the density model defined by equation (20) and the 

velocity model defined by equation (21), the VDM is 

developed analytically in this section. 

4.1 MODEL SYNTHESIS  
 

Equations (20) is given by 

 

( ) exp1 2
t

D t D D
d





 
   

 
 

 

 

(23) 

The function v ∈ Hγ, which is a candidate to approximate 

the velocity-time function, is given by 
 

( ) exp1 2
t

v t V V
v





 
   

 
 

 

  

(24) 

 

From these two equations, we get 
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Let V, the function defined as 

 

2

1

2
1
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D
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VDV

v

d
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


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(27) 

 

With slight abuse of notation, we have v (D (t)) = V (D), 

Then, the analytic velocity-density relationship can be 

written as 

 

2

1

2
1)( V

D

DD
VDv

v

d








 






 

 

(28) 

To calibrate this model, the limit conditions are ap-

plied in the next sub-section. 

 

4.2 GENERALIZED VELOCITY-

DENSITY MODEL 

 

Applying the limit conditions given by 

 


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to equation (28), we have 





















 








 

max2

1

22
1

2

1

2
1

1

VV
D

DD
V

V
D

D
V

v

d

v

d

V










 

 

 

 

(30) 

 

Equations (30) is given by (31) and (32) 

 

max2 VV    (31) 
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using (28), (31) and (32) 
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(33) 

Then, the generalized VDM can finally be expressed as 
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(34) 

Where τd>0, τv>0, D1>0, D2>0 are constants, and 

D1+D2=1. From this calibrated model, some of models 

defined in section 2 can be derived. Next subsections 

show which of these models can be obtained. 

4.3 SUB MODELS  
 From the model defined by equation (34), some of exist-

ing models in the literature can be derived by fixing some 

of its parameters. 

4.3.1 If D2=0 and eV=0 
 

In this case,  

 

v

d

DVDV
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)1()( max   

 

(35) 

 represents the Pipes model given by equation (6) where 

r=1, eV=0,

v

dm



  and Dmax=1. One of the advantages of 

the new model is the finding of the physical meaning of 

the parameter m. 

4.3.2 If D2=0, eV=0 and τd= τv  
 

In this case,  
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Equations (20) and (21) can be written as 
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Here, the relationship between velocity and density re-

mains linear. In case of the Greenshields model, Vmax=V2  

and Dmax=1. 

 

4.3.3 If D2=0, eV=0 and  
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which is the Drew model given by equation (7), 

where Dmax=1 .  Since τd and τv  are two time constants, 

then 0
v

d




. Therefore, the choice of 

2

1


p

v

d




 leads 

to have p+1 ≥ 0 and then p ≥ −1. In this study, the density 

is expressed as 

( ) exp1 2
t

D t D D
d




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 
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(41) 

It implies that when t → ∞, 21 )exp( D
t

D
d






.If D2 

→ 0, then only lower densities can be predicted. There-

fore, velocity can be estimated only in free flow condition. 

Thus, the model cannot predict lower velocities. This 

result has been proven by[Ardekani et al. (2011)], empiri-

cally and proved analytically now by our method of veloc-

ity-density synthesis and through our generic model. 

5. Conclusions 
The Velocity-density functions known from the literature 

are results of non-linear regressions, which are obtained 

by the determination of functions that fit the measured 

coherent speed-density values with the minimum error. 

The first step of the analysis we have performed in the 

field of IDM-models is also a non-linear regression, which 

was developed based on the speed and density changes 

over time. Next we have described a direct function rela-

tion for the speed-density function using a time parameter. 

There is no defined speed-density law in the IDM-model, 

so it was an important achievement to show what speed-

density function is followed by the IDM-model. 

A separate new interesting result is that the law presented 

by us has defined a more general class of function com-

pared to what was known earlier. At the same time this 

has also integrated three known speed-density relation-

ships as special cases (with the proper selection of param-

eters) [Greenshields (1934)], [Pipes (1967)] and [Drew 

(1968)].  
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We emphasize that the analysis - in terms of the develop-

ment of simulation models - led to another important 

question. The known speed-density functions are univari-

ate functions of the vehicle densities. The significant for-

mal differences between these types of functions raise the 

question whether the differences can significantly be pre-

determined by the environmental parameters, as well. An 

interesting question is whether more general classes of 

functions that integrate more known function types can be 

determined by broader measurement and analysis, and 

further IDM analysis. These known function types are 

multivariate functions that depend on the density and en-

vironmental parameters, as well, for example the one pre-

sented in [Peter & Fazekas (2014)]. The simulator dis-

cussed in this article is capable of carrying out these fur-

ther investigations. 
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