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aLaboratoire de Mathématiques Pures et Appliquées, University Mouloud Mammeri, Tizi-Ouzou, BP N◦ 17 RP 15000, Algeria.

bUniversity of Lorraine, 186, rue de Lorraine, CRAN UMR CNRS 7039, 54401 Longwy, France.

cComputer, Electrical and Mathematical Science & Engineering Division (CEMSE), King Abdullah University of Science and
Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.

Abstract

In this paper, we propose a high-gain observer design for nonlinear systems with time-varying delayed output measurements.
Based on a recent high-gain like observer design method, called HG/LMI observer, a larger bound of the time-delay is allowed
compared to that obtained by using the standard high-gain methodology. Such a HG/LMI observer adopts a lower value of the
tuning parameter, which results in the reduction of the value of the observer gain, and an increase in the maximum bound of the
delay required to ensure exponential convergence. Indeed, an explicit relation between the maximum bound of the delay and
the observer tuning parameter is derived by using a Lyapunov-Krasovskii functional jointly with the Halanay inequality. Such
a relation shows clearly the superiority of HG/LMI observer design methodology. An application to nonlinear systems with
sampled measurements is provided. Furthermore, the proposed methodology is extended to systems with nonlinear outputs.
This extension provides more general synthesis conditions and encompasses the linear case as a particular situation. Finally,
two numerical examples are proposed to illustrate the performance of the proposed observer design procedure, and comparison
to standard approaches is also provided.

Key words: Nonlinear systems, high-gain observer, delayed output measurements, linear matrix inequalities (LMIs),
Lyapunov-Krasovskii functionals.

1 Introduction

For many decades, the interest of automatic control
community to nonlinear observers continues to grow
because of their crucial role in the design of control
schemes, namely trajectory tracking, fault diagnosis,
and health monitoring (Parisini, 1997), (Alcorta-Garcia
and Frank, 1997), (Gao and Ho, 2006). Due to the in-
troduction of new technologies and the complexity of
novel industrial infrastructures, the use of nonlinear ob-
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servers has been emerged in modern applications such as
synchronization of multi-agent systems, cyber-attacks
detection, and control of cyber-physical systems (Zhu
and Basar, 2011), (Teixeira et al., 2010), (An and Liu,
2014). More recently, data-driven or learning-based
neuro-adaptive observers have been introduced, build-
ing a synergy between data and model-based meth-
ods (Chakrabarty et al., 2019), (Koga et al., 2019), (Liu
et al., 2018). Despite the various methodologies of
nonlinear observer in the literature, namely the ex-
tended Kalman observer Kalman (1960), Luenberger
observer (Luenberger, 1971), (Huong et al., 2019),
high-gain observer (Gauthier and Kupka, 1994), sliding
mode observer (Alessandri, 2003), and LMI-based ob-
servers (Zemouche and Boutayeb, 2013), (Mazenc et
al., 2017), for instance, these solutions are not general
and can be applied only on a specific class of systems.
The high-gain observer is particularly interesting due
to its easy implementation because it depends on only
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one single tuning parameter, which requires a specific
condition, to ensure exponential convergence. Despite
this simplicity of implementation, the high-gain ob-
server is far from being a perfect solution to nonlinear
estimation, and it has three limitations that should be
highlighted: 1) numerical problems because for high
dimensional systems due to the high values of the ob-
server gain; 2) the presence of peaking phenomenon;
and 3) the high sensitivity to output disturbances (mea-
surement noise, delayed outputs, sampled data,. . . ).
Many research activities have been interested in this
research area aiming to propose solutions overcoming
such drawbacks of the high-gain observer (Zemouche
et al., 2019), (Alessandri and Rossi, 2015), (Astolfi
and Marconi, 2015), (Khalil, 2017), (Boizot et al.,
2010), (Nguyen and Trinh, 2016), (Trinh et al., 2004).
In this paper, we focus only on the use of high-gain
methodologies for systems with delayed outputs. In-
deed, such a problem is complex when the goal is to
provide an observer with a maximum allowable value
of the time-delay, which is the main motivation of this
paper. Several efficient solutions, based on high-gain
methodology, have been proposed in the literature to
cope with this issue (Ahmed-Ali et al., 2009), (Van Ass-
che et al., 2011). Since systems with sampled output
measurements can be rewritten in an equivalent form as
systems with delayed outputs, similar results have been
proposed in (Ahmed-Ali et al., 2013a), (Ahmed-Ali et
al., 2013b), (Bouraoui et al., 2015), (Zhang and Shen,
2017), (Ahmed-Ali et al., 2014).

In (Ahmed-Ali et al., 2009), the authors proposed a cas-
cade high-gain observer based on the Lyapunov method
in which explicit relations between the delay and the
number of cascade observers have been proposed. Subse-
quently, an extension to high-gain observer design with
time varying-delay and sampled data cases where the de-
lay is sufficiently small has been presented in Van Assche
et al. (2011). Although the maximum value of the allow-
able delay is improved, however, it still remains small
due to the high value of the tuning parameter required by
the standard high-gain observer. On the other hand, the
maximum bound of the delay is obtained by solving an
ordinary differential equation that depends on the design
tuning parameter. The proposed work in this paper has
been motivated by this issue, namely establishing a high-
gain like design method with a lower tuning parameter,
which leads to a higher maximum value of the delay. To
this end, we proposed an observer design method, which
covers the standard high-gain observer, used in the above
papers, as a particular case. This is based on the ex-
ploitation of the LMI-based approach combined with the
standard high-gain technique, called HG/LMI observer,
which allows introducing a compromise index js. This
index js offers the possibility to adjust the value of the
tuning high-gain parameter ensuring exponential con-
vergence for larger values of delay. The convergence anal-
ysis is performed by using a Lyapunov-Krasovskii func-
tional. To reach less conservative bounds, the Halanay

inequality is applied on the integral term containing the
derivative of the error, instead of developing strong up-
per bounds to make it vanish from the Lyapunov anal-
ysis. The obtained results show explicitly the effective-
ness of the proposed HG/LMI observer-based technique,
due to the mathematical relation between the tuning pa-
rameter of the observer and the maximum bound of the
delay. An extension to nonlinear systems with sampled
measurements is given as an application of the result.

Compared to the short version of this manuscript pre-
sented in the conference paper (Adil et al., 2020), the
present paper contains the following contributions, in
addition to the detailed proofs of the main results:

• a general design method for nonlinear systems with
multi-nonlinearities based on the proposed HG/LMI
observer framework is presented. The standard high-
gain observer is covered as a particular solution.

• extension to systems with nonlinear outputs is estab-
lished by using the mean value theorem and suitable,
but not conservative assumptions.

• extension to nonlinear systems with sampled measure-
ments is developed.

• a numerical observer design procedure is added to
show how the observer parameters are computed.

• extensive numerical evaluations are provided. The
theoretical results are illustrated through two numeri-
cal examples, with comparisons between the proposed
HG/LMI approach, the standard high-gain observer
design, and the high-gain observer method proposed
by (Van Assche et al., 2011).

The extension to systems with nonlinear outputs is par-
ticularly a new contribution and a non-straightforward
extension. The generalization is based on the use of
the differential mean value theorem and some judicious
mathematical arrangements. The extension leads to
more general design conditions, which can be reduced
easily to those of the linear case. This extension is sim-
ple to implement, and therefore it is appropriate for
applications to real-world models.

The rest of the paper is organized as follows. In Section
2, the problem is formulated and the class of systems
under consideration is presented. The high gain observer
is then recalled and its convergence is analyzed in Section
3. Section 4 presents and discusses the proposed observer
design strategy using the HG/LMI observer with a lower
value tuning parameter highlighted with the observer
design procedure. Extensions to systems with sampled
measurements and systems with nonlinear outputs are
also provided in Section 4. Two numerical examples with
comparisons to the standard high-gain observer and the
observer presented in (Van Assche et al., 2011) are given
in Section 5. Finally, we end the paper with a conclusion
summarizing the main contributions and some future
works.
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2 Preliminaries and Problem Formulation

In this section, we introduce some useful preliminaries
and formulate the estimation problem.

2.1 Preliminaries

We will recall some lemmas, which are necessary for the
mathematical developments given in the next sections.

Lemma 1 (Zemouche and Boutayeb (2013))
Considering the function Ψ : Rn −→ Rn, the two fol-
lowing items are equivalent

• Ψ is γΨ−Lipschitz with respect to its argument, i.e.:

‖Ψ(X)−Ψ(Y )‖ 6 γΨ‖X − Y ‖,∀X,Y ∈ Rn.

• For all i, j = 1, . . . , n, there exist functions ψij :
Rn×Rn −→ R and constants γ

ψij
and γ̄ψij , such that

∀X,Y ∈ Rn

Ψ(X)−Ψ(Y ) =

n∑
i=1

n∑
j=1

ψijHij(X − Y ),

and
γ
ψij

6 ψij 6 γ̄ψij ,

where

ψij , ψ(XYj−1 , XYj ) and Hij = vn(i)v>n (j),

vn(i) is the ith vector of the canonical basis of Rn.

We also recall some useful inequalities exploited in the
proof of some results.

Lemma 2 (Jensen’s Inequality (Gu, 2000)) For
any constant symmetric and positive definite ma-
trix M ∈ Rn×n, scalars t1, t2 and vector function
v : [t1, t2]→ Rn, then the following inequality holds

(∫ t2

t1

v(β)dβ

)T
M

(∫ t2

t1

v(β)dβ

)
6 (t2 − t1)

(∫ t2

t1

v>(β)Mv(β)dβ

)
.

Lemma 3 (Young’s Inequality(Nguyen and Trinh, 2016))
Let X and Y be two matrices of appropriate dimensions.
Then, for every invertible matrix S and scalar µ > 0, we
have

X>Y + Y >X 6 µX>SX +
1

µ
Y >S−1Y.

2.2 Problem formulation

We consider the class of nonlinear systems described by

ẋ =



ẋ1

ẋ2

...

ẋn−1

ẋn


=



x2 + f1(x1)

x3 + f2(x1, x2)
...

xn−1 + fn−1(x1, x2, xn−1)

fn(x1, . . . , xn)


y = x1(t− τ(t)),

(1)

where x(t) ∈ Rn is the state vector of the system and
y(t) ∈ R is the measured output. We assume that τ(t)
is a known time-varying delay satisfying

0 < τ(t) 6 τM .

The functions fi : Ri −→ R, i=1,. . . ,n, satisfy the fol-
lowing Lipschitz property:

|fi(x1 + ∆1, . . . , xi + ∆i)− fi(x1, . . . , xi)| 6
i∑

j=1

kj |∆j |

where kj is the Lipschitz constant and ∆j ∈ R,∀j =
1, . . . , n.
For simplicity of the presentation, system (1) can be
rewritten under the following form{

ẋ(t) = Ax(t) + f(x(t))

y(t) = Cx(t− τ(t)),
(2)

where the matrices A and C are defined by

C =
[

1 0 . . . 0
]
, (A)i,j =

{
1 if j = i+ 1,

0 if j 6= i+ 1,

and

f(x(t)) =



f1(x1)

f2(x1, x2)
...

fn−1(x1, x2, xn−1)

fn(x1, . . . , xn)



Let us introduce the following Luenberger observer

˙̂x(t) = Ax̂(t) + f(x̂(t)) + L[y(t)− Cx̂(t− τ(t))], (3)
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where x̂(t) represents the state estimation and L is the
observer gain.

The dynamics of the estimation error e(t) = x(t)− x̂(t)
is given as follows

ė(t) = Ae(t) + [f(x(t))− f(x̂(t))]−LCe(t− τ(t)). (4)

The objective consists in designing a high-gain observer
for system (1) that provides stability of the estimation
error. We also provide an expression of the maximum
bound of the allowable delay and the design parameter
under which the proposed observer converges exponen-
tially.
To establish the exponential convergence, the following
lemma is useful.

Lemma 4 (Halanay (1966)) If there exist a positive
Lyapunov-Krasovskii functional V (e(t)) such that

d

dt
V (e(t)) 6 −αV (e(t)) + β sup

s∈[t−τM ,t]
V (e(s)),

where α > β > 0, then there exit two scalars η > 0 and
δ > 0 such that

V (e(t)) 6 ηe−δ(t−t0) for all t > t0.

3 PreliminaryResults Based on StandardHigh-
Gain Observer

This section is devoted to the preliminary results shared
into several intermediate results. Indeed, after some pre-
liminary and useful mathematical lemmas and proposi-
tions related to delay systems theory, we propose a new
LMI-based observer design procedure. The latter pro-
vides conditions on the maximum upper bound of the
allowed delay guaranteeing exponential convergence of
the observer. The design technique is based on the use
of the standard high-gain observer methodology. First,
as in (Gauthier and Kupka, 1994), the observer gain L
is written as follows:

L , T (θ)K; θ > 1, (5)

where

T (θ) := diag(θ, . . . , θn) and K ∈ Rn.

Moreover, the estimation error is transformed into

ē := T−1(θ)e,

where T−1(θ) is the inverse of T (θ) given by

T−1(θ) := diag

(
1

θ
, . . . ,

1

θn

)
.

The dynamics of the transformed error is given by

˙̄e(t) = θ(A−KC)ē(t) + T−1(θ)∆f

− θKC(ē(t− τ(t))− ē(t)), (6)

with
∆f := f(x)− f(x− T (θ)ē).

From the fact that θ > 1 and by using the Lipschitz
condition (2.2), it was shown in (Alessandri and Rossi,
2013) that there exists a positive constant kf , indepen-
dent of θ, such that

‖T−1(θ)∆f)‖ 6 kf‖ē‖. (7)

Before presenting the main theorem corresponding to
the use of the standard high-gain observer, we will in-
troduce first a series of intermediate results. Such inter-
mediate results will improve the clarity and readability
of the first main theorem.

Lemma 5 Let f be a nonlinear function satisfying (7).
Then for any symmetric and positive definite matrix P
and a vector ē of appropriate dimensions, we have

He
{(
T−1(θ)∆f

)>
ē
}
≤ 2kfλmax

(
P
)
ē>ē, (8)

where He
{
S
}

:= S + S>.

PROOF. The proof is omitted. It is straightforward
by applying the well-known Cauchy-Schwarz inequality
and the fact that θ ≥ 1.

Proposition 6 Let Y be an arbitrary matrix of appro-
priate dimension. Define Γ as

Γ , ē>(t)Y >C
(
ē(t)− ē(t− τ(t))

)
+
(
ē(t)− ē(t− τ(t))

)>
C>Y ē(t),

where ē(t) is the transformed estimation error satisfy-
ing (6). Then there exist three positive scalars µi > 0, i =
1, . . . , 3 such that Γ satisfies the following inequality:
Γ 6

1

µ1
ē>(t)Y >Y ē(t)

+ µ1

(
1 +

1

µ2

)
τMθ

2

∫ t

t−τM
(ē2(s))2ds

+ µ1

(
1 +

1

µ3

)(
1 + µ2

)
k21τM

∫ t

t−τM
(ē1(s))2ds

+ µ1

(
1 + µ2

)(
1 + µ3

)
τMK

2
1θ

2

∫ t

t−τM
(ē1(s− τ(s)))2 ds

(9)

where ē1 and ē2 are the first and second components of the
estimation error vector ē, and K1 is the first component
of K.
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PROOF. By applying the Young inequality, given in
Lemma 3, on Γ, we obtain

Γ 6 µ1

(
ē(t)− ē(t− τ(t))

)>
C>C

(
ē(t)− ē(t− τ(t))

)
+

1

µ1
ē>(t)Y >Y ē(t), (10)

for any given scalar µ1 > 0. By using the Newton-Leibniz
integration formula

ē(t)− ē(t− τ(t)) =

∫ t

t−τ(t)

˙̄e(s)ds,

inequality (10) can be rewritten as follows:

Γ 6 µ1J(t) +
1

µ1
ē>(t)Y>Y ē(t). (11)

where

J(t) ,

(∫ t

t−τ(t)

˙̄e(s)ds

)>
C>C

(∫ t

t−τ(t)

˙̄e(s)ds

)
.

From Jensen Inequality introduced in Lemma 2 and the
fact that Cē(s) = ē1(s) and

˙̄e1(s) =
(
θē2(s)+

1

θ
∆f1 − θK1ē1(s− τ(s))

)
, (12)

we obtain an upper bound of J(t) as follows:

J(t) 6 τ(t)

∫ t

t−τ(t)
˙̄e(s)>C>C ˙̄e(s)ds,

6 τM

∫ t

t−τM

(
˙̄e1(s)

)2
ds,

= τM

∫ t

t−τM

(
θē2(s)+

1

θ
∆f1 − θK1ē1(s− τ(s))

)2
ds,

6
(

1 +
1

µ2

)
τMθ

2

∫ t

t−τM
(ē2(s))2ds

+
(

1 + µ2

)
τM

∫ t

t−τM

(
1

θ
∆f1 − θK1ē1(s− τ(s))

)2

ds

6
(

1 +
1

µ2

)
τMθ

2

∫ t

t−τM
(ē2(s))2ds

+
(

1 +
1

µ3

)(
1 + µ2

)
k21τM

∫ t

t−τM
(ē1(s))2ds

+
(

1 + µ2

)(
1 + µ3

)
τMK

2
1θ

2

∫ t

t−τM
(ē1(s− τ(s)))2 ds

(13)

where µ2 and µ3 come from the application of Young
inequality. By substituting (13) in (11), inequality (9) is
inferred. This ends the proof of Proposition 6.

Lemma 7 Let X(t) be a positive and continuous func-
tion. Let τ(.) be a positive time-delay with τ(t) ≤ τM .
Then the following inequality holds:∫ t

t−τ(t)

X
(
s− τ(s)

)
ds ≤ τM sup

s∈[t−2τM , t]

{
X
(
s
)}
. (14)

PROOF. The proof is straightforward. Indeed, if s ∈
[t− τM , t] and τ(s) ≥ 0, then we have

s− τ(s) ∈ [t− 2τM , t].

Proposition 8 Consider the Lyapunov function
V1(ē(t)) , ē>(t)P ē(t), where P = P> > 0. Then the
derivative of V1 along the trajectories of (6) satisfies the
following inequality:

d

dt
V16 θē>(t)

[
A>P + PA− C>Y − Y>C

+
1

µ1
Y>Y

]
ē(t) + 2kfλmax

(
P
)
ē>(t)ē(t)

+µ1

(
1 +

1

µ2

)
τMθ

3

∫ t

t−τM
(ē2(s))2ds

+$
(
µ1, µ2, µ3

)
τ2
M sup
s∈[t−2τM , t]

V1

(
s
)
, (15)

where

$
(
µ1, µ2, µ3

)
,

µ1

λmin

(
P
) [(1 +

1

µ3

)(
1 + µ2

)
k2

1θ

+
(

1 + µ2

)(
1 + µ3

)
K2

1θ
3
]
, (16)

and
Y = K>P.

PROOF. The proof can be obtained straightforwardly
from Lemma 5, Proposition 6, and Lemma 7.

Lemma 9 Let us define the function

ϑ(z) ,
∫ t

t−τM

∫ t

ξ

z(s)dsdξ,

where z(s) ∈ R+ and τM > 0 is a scalar constant. Then
the two following equations hold:

ϑ(z) 6 τM

∫ t

t−τM
z(s)ds. (17a)

d

dt
ϑ(z(t)) = τMz(t)−

∫ t

t−τM
z(s)ds. (17b)

5



PROOF. The first inequality (17a) is obvious and can
be obtained by integrating with respect to ξ and the fact
that t− s ≤ τM for s ∈ [t− τM , t].

Now we are ready to state the preliminary result summa-
rized in the following theorem providing new LMI condi-
tions ensuring exponential convergence of the observer.

Theorem 10 Assume there exist a positive definite ma-
trix P , a matrix Y of appropriate dimension and real
constants µi> 0, i = 1, . . . , 3, λ> 0, τM > 0 such that
the following conditions hold
He
{
PA− Y>C

}
+ τMR>R+ λI Y>

Y −µ1

 6 0, (18)

θ > max

(
1,

2kfλmax(P )

λ

)
, (19)

τM ≤ min(τ1, τ2) (20)

where

τ1 ,

√√√√ [
λθ − 2kfλmax(P )

]
λmax(P )$

(
µ1, µ2, µ3

) (21)

τ2 ,
1

µ1

(
1 + 1

µ2

)
θ2 +

[λθ − 2kfλmax(P )]

λmax(P )

(22)

with

$
(
µ1, µ2, µ3

)
,

µ1

λmin

(
P
) [(1 +

1

µ3

)(
1 + µ2

)
k2

1θ

+
(

1 + µ2

)(
1 + µ3

)
K2

1θ
3
]
, (23)

R = [0 1 01×n−2], (24)

K = P−1Y> = [K1 . . .Kn]>. (25)

Then the observer (3) converges exponentially and the
observer gain is given by L = T (θ)K.

PROOF. Consider the following Lyapunov-Krasovskii
functional

V (t) = V (ē(t)) = V1(ē(t)) + θV2(ē(t)), (26)

where
V1(t) = ē>(t)P ē(t),

and

V2(t) =

∫ t

t−τM

∫ t

ξ

(ē2(s))2dsdξ.

From Schur lemma (Boyd et al., 1994), LMI (18) is equiv-
alent to

ATP +PA−CTY −YTC+
1

µ1
YTY + τMRTR < −λI.

Hence, by substituting this inequality in the derivative
of V (ē(t)) and from Proposition 8 and Lemma 9, we get
the following inequality:

d

dt
V (t) 6 −

(
θλ− 2kfλmax

(
P
))
ē>(t)ē(t)

− θτM
(

1

τM
− µ1

(
1 +

1

µ2

)
θ2

)∫ t

t−τM
(ē2(s))2ds

+$
(
µ1, µ2, µ3

)
τ2
M sup
s∈[t−2τM , t]

V1

(
s
)
,

for any positive scalarsµi, i = 1, . . . , 3, where$
(
µ1, µ2, µ3

)
is defined in (16). From (22), we deduce that

1

τM
− µ1

(
1 +

1

µ2

)
θ2 > 0.

Then by applying Lemma 9, Lemma 7, and since V1(s) ≤
V (s), we obtain

d

dt
V (t) 6 −

(
θλ− 2kfλmax

(
P
))
ē>(t)ē(t)

− θ
(

1

τM
− µ1

(
1 +

1

µ2

)
θ2

)
V2(t)

+$
(
µ1, µ2, µ3

)
τ2
M sup
s∈[t−2τM , t]

V
(
s
)
.

Finally, from (19) and the inequality below

−ē>(t)ē(t) ≤ − 1

λmax

(
P
)V1(t),

we get

d

dt
V (t) 6 −αV (t) +$

(
µ1, µ2, µ3

)
τ2
M sup

[t−2τM ,t]

V (s),

where

α , min

(
θλ− 2kfλmax

(
P
)

λmax

(
P
) ,

1

τM
− µ1

(
1 +

1

µ2

)
θ2

)

$
(
µ1, µ2, µ3

)
is defined in (16). From (21) and (22) we

have $
(
µ1, µ2, µ3

)
< α. Consequently, we deduce from

Lemma 4 that there exist two positive scalars η and δ
such that

V (ē(t)) 6 ηe−δ(t−t0), ∀ t > t0,

which means that the estimation error is exponentially
stable to zero. This ends the proof.
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Remark 11 All the scalar positive quantities µi, i = 1, 3
come from the application of Young inequality appropri-
ately. The variable µ1 is considered as a decision variable
in the LMI (18), while the µ2 and µ3 appear in (21)-(22).
They should be fixed adequately to increase the value of
the tolerated τM . However, since they are involved non-
linearly, it is difficult to optimize their computation. To
simplify the computation of τ1 and τ2, we chose as values
of µ2 and µ3 those often used in the Young inequality,
namely µ2 = µ3 = 1. Therefore, (21)-(22) are simplified
as follows:

τ1 ,

√√√√√λmin(P )
[
λθ − 2kfλmax(P )

]
4µ1θλmax(P )

[
k2

1 +K2
1θ

2
] (27)

τ2 ,
1

2µ1θ2 +
[λθ − 2kfλmax(P )]

λmax(P )

. (28)

Remark 12 In the particular case where the system con-
tains only one nonlinearity in the last component (fi ≡
0, i = 1, . . . , n − 1), then Theorem 10 with k1 = 0 can
be applied to get larger values of the tolerate τM . Indeed,
in such a situation, the dynamics of ē1 in (12) does not
contain the term 1

θ∆f1.

Notice that the upper bound of the delay can be very
small for high values of θ. This means that for relatively
important delays, the considered observer cannot guar-
antee the exponential convergence of the estimation er-
ror. Indeed, an exponential observer with a high value
of θ tolerates small upper bound τM of the delay. In the
next section, to overcome this problem, we propose to
use the high-gain like-observer with lower tuning param-
eter introduced in (Zemouche et al., 2019).

4 HG/LMI Observer based Design

In this section, we extend the HG/LMI observer method-
ology developed in (Zemouche et al., 2019) for nonlin-
ear systems to system (1) with the objective of improv-
ing the allowable value of τM while ensuring exponential
convergence of the observer.

4.1 HG/LMI-based transformation

From the LPV/LMI method in (Zemouche and
Boutayeb, 2013), each nonlinear component ∆fi in (6)
can be rewritten under the following form (Zemouche
et al., 2019):

∆fi =

i−ji∑
j=1

θjψij ēj +

ji∑
j=1

θki(j)ψiki(j)ēki(j),

where
ki(j) = i− (ji − j), 0 6 ji 6 i.

It follows that ∆f is written as

∆f =

for HG︷ ︸︸ ︷
n∑
i=1

i−ji∑
j=1

θjψijvn(i)ēj︸ ︷︷ ︸
∆f1

+

for LPV/LMI︷ ︸︸ ︷
n∑
i=1

ji∑
j=1

θki(j)ψiki(j)vn(i)ēki(j),

Therefore, the error dynamics (6) is rewritten as follows:

˙̄e(t) = θ(A(Ψθ)−KC)ē(t) + T−1(θ)∆f1

− θKC(ē(t− τ(t))− ē(t)),
(29)

with

A(Ψθ) = A+

n∑
i=1

ji∑
j=1

ψθijvn(i)enki(j),

Ψθ =



ψθ11

...

ψθ1j1

ψθ21

...

ψθ2j2
...

ψθnjn



∈ R
∑n

i=1
ji ,

and

ψθj =
ψiki(j)

θ1+(ji−j)
.

Define the convex bounded set

Hσjs =

{
Φ ∈ R

∑n

i=1
ji :

γ
γiki(j)

σ1+(ji−j)
≤ Φij 6

γ̄γiki(j)

σ1+(ji−j)

}
,

for which the set of vertices is defined by

VHσ
js

=

{
Φ ∈ R

∑n

i=1
ji : Φij ∈

{ γ
γiki(j)

σ1+(ji−j)
,
γ̄γiki(j)

σ1+(ji−j)

}}
.

where γ̄γiki(j) ≥ 0 and γ
γiki(j)

≤ 0 are, respectively, the

lower and the upper bounds of the bounded parameter
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ψiki(j). Then, for two positive scalars σ1, σ2, we have

σ1 ≤ σ2 =⇒ Hσ1
js
⊃ Hσ2

js
.

It follows that

lim
σ→+∞

Hσjs = {0}.

On the other hand, we can show that there exists a
constant kjs independent from θ such that the following
inequality holds:

‖T−1(θ)∆f1‖ 6
kjs
θjs
‖ē‖. (30)

4.2 HG/LMI synthesis conditions

This section is devoted to the main theorem, which pro-
vides sufficient synthesis conditions guaranteeing expo-
nential convergence of the estimation error. The design is
based on the use of the HG/LMI technique for the class
of nonlinear systems with delayed outputs given in (1).

Theorem 13 Assume there exist a positive definite ma-
trix P , a matrix Y of appropriate dimension and real
constants µi> 0, i = 1, . . . , 3, λ> 0, τM > 0 such that
the following conditions hold


He
{
PA(Ψ)− Y>C

}
+ τMR>R+ λI Y>

Y −µ1

 6 0,

(31)

θ > max

(
σ,

1+js

√
2kjsλmax(P )

λ

)
, (32)

τM ≤ min(τ1, τ2) (33)

where

τ1 ,

√√√√√ [
θλ− 2kjsλmax(P )

θjs

]
λmax(P )$

(
µ1, µ2, µ3

) (34)

τ2 ,
1

µ1

(
1 +

1

µ2

)
θ2 +

[
θλ− 2kjsλmax(P )

θjs

]
λmax(P )

(35)

with

$
(
µ1, µ2, µ3

)
,

µ1

λmin

(
P
) [(1 +

1

µ3

)(
1 + µ2

)
k2

1θ

+
(

1 + µ2

)(
1 + µ3

)
K2

1θ
3
]
, (36)

R = [0 1 01×n−2], (37)

K = P−1Y> = [K1 . . .Kn]>. (38)

Then the observer (3) converges exponentially and the
observer gain is given by L = T (θ)K.

PROOF. Consider the following Lyapunov-Krasovskii
functional

V (t) = V1(t) + θV2(t),

where
V1(t) = ē>(t)P ē(t),

and

V2(t) =

∫ t

t−τM

∫ t

ξ

(ē2(s))2dsdξ.

From Schur lemma (Boyd et al., 1994), LMI (31) is equiv-
alent to

A(Ψσ)>P + PA(Ψσ)− C>Y − Y>C +
1

µ1
Y>Y

+ τMR>R 6 −λI.

By analogy to the proof of Theorem 10, the derivative
of V along the trajectories of (29) satisfies

d

dt
V (t) 6 −

(
θλ−

2kjsλmax

(
P
)

θjs

)
ē>(t)ē(t)

− θ
(

1

τM
− µ1

(
1 +

1

µ2

)
θ2

)
V2(t)

+$
(
µ1, µ2, µ3

)
τ2
M sup
s∈[t−2τM , t]

V
(
s
)

for any positive scalarsµi, i = 1, . . . , 3, where$
(
µ1, µ2, µ3

)
is defined in (16).
Therefore

d

dt
V (t) 6 −αV (t) +$

(
µ1, µ2, µ3

)
τ2
M sup

[t−2τM ,t]

V (s),

with

α , min

θλ− 2kjsλmax(P )

θjs

λmax(P )
,

1

τM
− µ1

(
1 +

1

µ2

)
θ2

 .

From (34) and (35) we have $
(
µ1, µ2, µ3

)
< α. Hence,

Lemma 4 allows concluding exponential convergence to
zero of the estimation error. This ends the proof.
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Remark 14 The previous proof shows the role of the
”compromise index” js. It allows reducing the tuning pa-
rameter value of the observer. Since the expression of the
delay depends on the tuning parameter, reducing this later
increments the value of the maximum delay τM compared
to the standard high-gain observer.

Remark 15 One important property of the standard
high gain observers is the fast exponential convergence.
However, such fast convergence has several drawbacks:
high sensitivity to measurement noise; peaking phe-
nomenon; and time-delay in the output. Indeed, high
values of delay affect the convergence of the observer.
It is important to keep in mind that the standard high-
gain observer is a particular solution to the proposed
methodology. It corresponds exactly to the case js = 0.
This means that if for a given value of the delay τ , the
standard high-gain observer converges, then also the
proposed HG/LMI based observer converges with the
same convergence rate. The proposed observer offers
the possibility to adjust the values of js and θ to have
a good tradeoff between ensuring analytically the expo-
nential convergence, with adjustable convergence rate,
and allowing large values of the delay, while standard
high-gain observer does not have this possibility. A large
value of the delay could make the standard high-gain
observer diverge, while the proposed observer can con-
verge by increasing the index js to adjust the value of
θ. This analysis comes from the interpretation of the
design conditions given in Theorem 10 and Theorem 13,
and supported by the numerical results provided in Sec-
tion 5. Furthermore, by adjusting θ and js, the proposed
observer is able to avoid the peaking phenomenon, to
reduce the sensitivity to high-frequency measurement
noise, and to enhance the convergence rate if necessary.

4.3 Application to sampled-data case

Theorem 13 can be applied straightforwardly to the case
of systems with sampled output measurements. The out-
put is sampled at instants tk satisfying

0 6 t0 < . . . < tk < tk+1 < . . .

with lim
t→+∞

tk = +∞. In this case, the sampling period

τk = t−tk is positive with τk 6 τM ,∀k > 0. To apply the
results of the previous sections, we write the sampled-
output as a delayed-output, where the delay satisfies all
the required conditions. Indeed, the output y(tk) can be
written as

y(tk) = y
(
t− τ(t)

)
with τ(t) = t− tk. For all t ∈ [tk tk+1], we have

0 < τ(t) ≤ τM .

Hence, Theorem 13 can be applied to build an observer
for system (2) based on the sampled-measurements

y(tk). This application is summarized in the following
corollary.

Corollary 16 Let us consider the following ob-
server (39) corresponding to system (2):

˙̂x(t) = Ax̂(t) + f(x̂(t)) + L(y(tk)− Cx̂(tk)),

t ∈ [tk, tk+1[, (39)

where L is given by (5). Assume there exist a positive
definite matrix P and a matrix Y of appropriate dimen-
sions and real constants µi > 0, i = 1, . . . , 3, λ> 0, and
τM > 0 such that the conditions (31)-(42) of Theorem 13
hold. Then the observer (39) converges exponentially.

4.4 Extension to systems with nonlinear output

This section provides an extension of the result to non-
linear output case. Hence we consider system (1) with
output measurement

y(t) = h(x1(t− τ(t))) (40)

where h : R 7→ R is a strictly monotonic nonlinear func-
tion. That is we assume that there exists 0 < δ ≤ 1 such
that

∂h

∂z
(z) ≥ δ, ∀z ∈ R. (41)

Notice that without condition (41), we lose local
observability of the system. Assume also that h is
γh−Lipschitz. Without loss of generality, we assume
that

γh , max
z∈R

(∣∣∣ ∂h
∂z

(z)
∣∣∣) = 1. (42)

Indeed, if (42) is not satisfied, then instead of y(t), we
can use as measurement the new output

yh(t) ,
y(t)

max
z∈R

(∣∣∣ ∂h∂z (z)
∣∣∣) , h̄(x1(t− τ(t))) (43)

with

h̄(x1(t− τ(t))) ,
h(x1(t− τ(t)))

max
z∈R

(∣∣∣ ∂h∂z (z)
∣∣∣)

satisfying

max
z∈R

(∣∣∣ ∂h̄
∂z

(z)
∣∣∣) = 1.

Now consider the observer corresponding to (1) and (40)
as follows:

˙̂x(t) = Ax̂(t) + f(x̂(t)) + L [y(t)− h(x̂1(t− τ(t)))] ,
(44)

where x̂ represents the state estimation and L is the
observer gain.
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From the differential mean value theorem, there exists
z(t) ∈ Co

(
x1(t− τ(t)), x̂1(t− τ(t))

)
such that

h(x1(t− τ(t)))− h(x̂1(t− τ(t))) = θ
∂h

∂z
(z)Cē(t− τ(t)),

where Co
(
x1(t − τ(t)), x̂1(t − τ(t))

)
is the convex hull

defined by x1(t − τ(t)) and x̂1(t − τ(t)). Then, the dy-
namics of the transformed error, ē(t), is given by

˙̄e(t) = θ
(
A− ∂h

∂z
(z)KC

)
ē(t) + T−1(θ)∆f

+ θ
∂h

∂z
(z)KC

(
ē(t)− ē(t− τ(t))

)
. (45)

By using the HG/LMI technique, the error dynam-
ics (45) can be written under the form:

˙̄e(t) = θ(A(Ψθ)− ∂h

∂z
(z)KC)ē(t) + T−1(θ)∆f1

+θ
∂h

∂z
(z)KC

(
ē(t)− ē(t− τ(t))

)
, (46)

Following the same steps than the previous section, will
lead to the following theorem.

Theorem 17 Assume there exist a positive definite ma-
trix P , a matrix Y of appropriate dimension and real
constants µi> 0, i = 1, . . . , 3, λ> 0, τM > 0 such that
the following conditions hold

a) The following LMI conditions (47)-(48) are satisfied:
He
{
PA(Ψ)− Y>C

}
+ τMR>R+ λI Y>

Y −µ1

 6 0,

(47)


He
{
PA(Ψ)− δY>C

}
+ τMR>R+ λI Y>

Y −µ1

 6 0;

(48)

b) θ satisfies (32), subject to (47)-(48);
c) τM satisfies, (33)-(35), subject to (47)-(48);
d) The observer gain matrix K is given by K = P−1Y>.

Then the observer (44) converges exponentially.

PROOF. The proof follows exactly the same steps of
the previous section. On the other hand, assuming (42)

is important and allows using the same developments
established in Theorem 13 with slight modifications. In-
deed, due to (42), the term ∂h

∂z (z) appears only in the ma-

trix block He
{
PA(Ψ)− ∂h

∂z (z)Y>C
}

. Since this matrix

is convex in ∂h
∂z (z), then from the convexity principle, it

is sufficient to solve the LMIs with max
z∈R

(
∂h
∂z (z)

)
= 1 and

min
z∈R

(
∂h
∂z (z)

)
= δ. Hence the two LMIs (47)-(48).

Remark 18 The linear case can be deduced straightfor-
wardly from the nonlinear output case by taking δ = 1.
Indeed, h(.) is linear if and only if ∂h

∂z (z) ≡ Constant.
∂h
∂z (z) is identically constant if and only if

max
z∈R

(
∂h

∂z
(z)

)
= min

z∈R

(
∂h

∂z
(z)

)
.

From (42), ∂h
∂z (z) is constant if δ = 1. In this case,

LMIs (47) and (48) are identical, and then reduced
to (47) only, which corresponds to the linear case.

4.5 Numerical design procedure

This section is devoted to a numerical observer design
procedure. Due to the presence of several decision vari-
ables as observer parameters, in the previous theorems,
a well-structured numerical design procedure will help
the users to implement the proposed methodology. The
proposed design procedure is based on the use of the
gridding method. We introduce a bijective change of
variables % = σ

1−σ , (σ = %
1−% ) where the new variable

% ∈
]

1
2 1
]
. The proposed procedure allows obtaining a

lower design parameter, θ, and a larger upper bound on
the delay, %, provided by Theorem 13 (which is applica-
ble also on Corollary 16). To solve LMI (31), we use Mat-
lab LMI Toolbox and YALMIP. Furthermore, LMI (31)
are always feasible (Zemouche et al., 2019), however they
have an infinite number of solutions and depend on σ
(or equivalently, on %). Then the gridding method will
return the solution giving a lower value of θ, and a larger
bound on %. On the other hand, it is worth noting that
LMI (31) depends on τM , which is computed by (33)-
(35) after solving the (31). Then, to solve the LMI (31)
independently from τM , we need to introduce a new vari-
able τ̄ > 0, and solve (31) with τ̄ > 0 instead of τM , i.e.:
He
{
PA(Ψ)− Y>C

}
+ τ̄R>R+ λI Y>

Y −µ1

 < 0,

(49)

Hence, by chosing

τM = min(τ̄ , τ1, τ2) (50)
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we guarantee exponential convergence of the observer
because LMI (31) still feasible for any τM ≤ τ̄ . Further-
more, inequality (49) can return a τ̄ value very close to
zero, which is not suitable because the objective is to get
a value of τ̄ large enough to force τM to take either the
value of τ1 or that of τ2. To this end, a solution consists in
fixing τ̄ in (49). Indeed, we cannot maximise τ̄ because
it is obvious to show that if (49) is feasible for τ̄ = 1,
then it still remains feasible for any τ̄ > 0. A change of
variable to eliminate τ̄ from (49) cannot be performed
since µ1 is used to calculate τ1 and τ2. The procedure is
summarized in Algorithm 1, which will be implemented
in Section 5 to show the performances of the proposed
methodology, compared to those of the standard high-
gain observer.

Algorithm 1: A numerical design procedure

Step 1. Choose a small ε > 0 for the gridding, take

% =
1

2
, appropriate values for λ > 0, µ1 > 0, and a

sufficiently high value vgain > 0 and go to Step 2;
Step 2. While %+ ε < 1, take % := %+ ε and go to
Step 3;
Step 3. Solve LMI (49) with respect to
λ, P > 0, % > 0, for a given τ̄ > 0.

Step 4. Take σ =
%

(1− %)
,K = P−1Y> and

compute

• θ = max

(
σ,

1+js

√
2kjsλmax(P )

λ

)
;

• L = T (θ)K;
if vgain > ‖L‖ then

put vgain := ‖L‖ and go to Step 2

else
return

• τ1 =

√√√√√ [
θλ− 2kjsλmax(P )

θjs

]
λmax(P )$

(
µ1, µ2, µ3

) ;

• τ2 =
1

µ1

(
1 +

1

µ2

)
θ2 +

[
θλ− 2kjsλmax(P )

θjs

]
λmax(P )

;

• τM = min(τ̄ , τ1, τ2).

Remark 19 There are several methods applicable for
the same class of systems studied in this paper that
avoid bounds on the delay by either using chain of ob-
servers (Germani et al., 2002), (Cacace et al., 2014) or
by using predictors (Ahmed-Ali et al., 2013b), (Khos-
ravian et al., 2015). These papers proposed effective
methods based on elegant mathematical arguments over-
coming the problem of presence of arbitrarily long delay
in the output. What we propose in this paper can be
viewed as an alternative method, which improves ex-
isting results in the literature. Anywhere the standard
high-gain observer is used for systems with delayed out-

puts, the proposed methodology can be applied to improve
the results while ensuring exponential convergence for
large values of the delay. The choice of Lyapunov based-
functional can lead to delay-independent stability condi-
tions. For instance, the chain of observers (Germani et
al., 2002), (Cacace et al., 2014) and observer-predictor
in (Ahmed-Ali et al., 2013b), (Khosravian et al., 2015)
can be effective for the compensation of the delay. How-
ever, the determination of an implementable form for
the observer-predictor feedback gains over the past time
interval can be challenging. Furthermore, the construc-
tion of Lyapunov-Krasovskii functional for exponential
stability analysis of the observer error dynamics under
the observer-predictor scheme is difficult to carry due to
the output delayed measurement state. It is worth men-
tioning that the practical implementation of the high-
gain predictor-observer requires the future values of the
measurement state, which can significantly increase the
computation. On the other hand, the proposed observer
in this paper is simple to implement on real-world mod-
els without any computational complexity. The observer
design parameters are also easy to compute.

Remark 20 The methodology established in the pa-
per may open the door to further contributions and
new ideas to solve other control problems, namely out-
put feedback stabilization; reference trajectory track-
ing; self-synchronization in networks of multi-agent
systems. More importantly, the proposed methodology
can be used as a design tool in several alternative ap-
proaches, like those using a chain of observers (Germani
et al., 2002), (Ahmed-Ali et al., 2009), (Cacace et al.,
2014), or those using prediction part (Ahmed-Ali et al.,
2013b), (Khosravian et al., 2015).

5 Numerical Comparisons

To show the effectiveness of the proposed methodology,
we present in this section two numerical examples. We
will provide some comparisons between the standard
high-gain observer, the high-gain observer method pre-
sented in (Van Assche et al., 2011) and the proposed
HG/LMI based observer. The simulations will be carried
out by using MATLAB.

5.1 Example 1

The aim of this example is to compare the proposed ap-
proach to the standard high-gain design and the high-
gain observer proposed in (Van Assche et al., 2011). We
consider the following fifth order nonlinear system with
only a single nonlinearity in the last component includ-
ing a delay at output measurement:{

ẋ(t) = Ax(t) +Bf(x(t))

y(t) = Cx(t− τ(t)),
(51)
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Table 1
Comparison between the proposed HG/LMI observer (HG/LMI), the standard (SHG) high-gain observer and the high-gain
observer (VVA) proposed in (Van Assche et al., 2011) for different values of kf .

Methods kf js σ θ τM ‖L‖

VVA

0.1

0 / 3407 3.3760× 10−11 4.5906× 1017

SHG 0 / 6.3638 2.3661× 10−06 15875

HG/LMI 1 2.5088 2.5088 8.2499× 10−05 269.5916

2 1.8571 1.8571 1.6505× 10−04 89.7547

VVA

1

0 / 34070 3.0255× 10−12 4.5906× 1022

SHG 0 / 42.3560 1.5305× 10−07 5.2321× 1008

HG/LMI 1 7 7 2.3810× 10−05 84446

2 4.1282 4.1282 3.6851× 10−05 9330.5

VVA

5

0 / 170350 3.9542× 10−13 1.4346× 1026

SHG 0 / 186.6738 9.0240× 10−09 1.8313× 1012

HG/LMI 1 17.1818 17.1818 3.8231× 10−06 1.9828× 1007

2 10.7647 10.7647 4.1180× 10−06 3.3268× 1006

where

(A)i,j =

{
1 if j = i+ 1,

0 if j 6= i+ 1.

B =
[

0 0 0 0 1
]>

and C =
[

1 0 0 0 0
]
.

The nonlinearity is defined by

f(x) =
kf
5

5∑
i=1

sin(xi). (52)

In the sequel, we will provide comparisons between the
standard high-gain observer, the observer by (Van Ass-
che et al., 2011) and the HG/LMI based design.
The comparison results are shown inTable 1, which il-
lustrates how the values of the tuning parameter are de-
creased and the maximum bounds on the delay become
larger. For js = 2, the value of the tuning parameter θ
is significantly reduced to θ = 1.8571, compared to θ =
3407 obtained by (Van Assche et al., 2011), for kf = 0.1.
It is also reduced from θ = 170350 with (Van Assche et
al., 2011) to θ = 10.7647 for kf = 5. Meanwhile, in com-
parison to the standard high-gain observer, the design
parameter θ is decreased from θ = 6.3638 to θ = 1.8571
for kf = 0.1 and from θ = 186.6738 to θ = 10.7647
for kf = 5. On the other hand, the maximum bound
on the delay given by the observer in (Van Assche et
al., 2011) and the standard high-gain observer consid-
erably increased from τM = 3.3760×10−11 and τM =
2.3661×10−6, respectively, to τM = 1.6505×10−4 for
kf = 0.1 with HG/LMI approach. The previous values
are decreased more by increasing the value of the com-
promise index js. We notice that the HG/LMI observer
gain is considerably reduced compared to the standard
high gain observer and the observer in (Van Assche et

al., 2011). For instance, for kf = 0.1, the norms of the
gains obtained by the standard high-gain observer and
the observer in (Van Assche et al., 2011) are significantly
decreased from 15875 and 4.5906×1017, respectively, to
89.7547 with the HG/LMI approach for js = 2.

Table 2 provides percentage of reduction/increment of
the design parameter and the maximum bound of the
delay, according to the following formulas:

∆θ,i =
θi − θHG/LMI

θi
%, (53)

∆τ,i =
τM,HG/LMI − τM,i

τM,HG/LMI
%, (54)

where θM,i, τi, θHG/LMI , and τM,HG/LMI stand for the
design parameter and the maximum bound of the delay
of the observer in (Van Assche et al., 2011), the stan-
dard high-gain observer, and the HG/LMI observer, re-
spectively. The index i refers to VVA or SHG. We notice
that the percentage of reduction of the design parame-
ter is up to 90.2536% for js = 2 and kf = 1 in compari-
son to the initial value given by the standard high-gain
observer. It is also up to 99.99.9879% in comparison to
the initial value provided by the observer in (Van Ass-
che et al., 2011). Meanwhile, the improvement of the
maximum bound of the delay is greater than 99.5846%
and 99.999991% for js = 2 and kf = 1, compared to
both the standard high-gain observer and the observer
by (Van Assche et al., 2011), respectively.

Simulations have been carried out with kf = 1, and
comparisons between the HG/LMI based observer and
the standard high-gain observer are provided. The sim-
ulation with the approach proposed in (Van Assche et
al., 2011) cannot occur due the the high value of the
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Table 2
Percentage of reduction/increment for different values of js = 0, 1, 2.

Methods kf js θ ∆θ,SHG ∆θ,V V A τM ∆τ,SHG ∆τ,V V A

VVA 0 3407 / 0 3.3760× 10−11 / 0

SHG 0 6.3638 0 / 2.3661× 10−06 0 /

HG/LMI 0.1 1 2.5088 60.5770 99.9264 8.2499× 10−05 97.1319 99.999959

2 1.8571 70.8178 99.9455 1.6505× 10−04 98.5664 99.999979

VVA 0 34070 / 0 3.0255× 10−12 / 0

SHG 0 42.3560 0 / 1.5305× 10−07 0 /

HG/LMI 1 1 6 85.8344 99.9824 2.3810× 10−05 99.3572 99.999987

2 4.1282 90.2536 99.9879 3.6851× 10−05 99.5846 99.999991

0 0.5 1 1.5 2
Time [sec]
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2

4
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Fig. 1. Behaviour of x1 and its estimates for kf = 1, λ = 1
and µ1 = 25.

gain and numerical instabilities.
By using MATLAB, the obtained value of the de-
sign parameter of the standard high-gain observer is
θ = 42.3560. By choosing the compromise index as
js = 2, the obtained value of the tuning parameter
by applying the HG/LMI approach is θ = 4.1282,
which is significantly reduced compared to that ob-
tained by the standard high-gain based approach.
In addition, the maximum bound on the delay ob-
tained with the standard high-gain based approach is
τM = 1.5310×10−7, while with the HG/LMI observer
we got a larger value, τM = 3.6851×10−5. Denote

by x̂LMI = [x̂1,LMI , x̂2,LMI , x̂3,LMI , x̂4,LMI , x̂5,LMI ]
>

and x̂HG = [x̂1,HG, x̂2,HG, x̂3,HG, x̂4,HG, x̂5,HG]
>

the
state estimates for the system (51) by using the ob-
server design method proposed in the present pa-
per and the standard high-gain observer, respec-

tively. Let x̂LMI(0) = [−1,−1,−1,−1,−1]
>

and

x̂HG(0) = [−2,−2,−2,−2,−2]
>

. The simulation results
are depicted in Figures 1-5, which provide the behav-
iors of xi and its estimates x̂i,LMI , x̂i,HG, i = 1, . . . , 5,
respectively. It is quite clear that both estimated states
converge to the actual states, however, the proposed
HG/LMI based observer considerably reduces the peak-
ing phenomenon.

5.2 Example 2
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Fig. 2. Behaviour of x2 and its estimates for kf = 1, λ = 1
and µ1 = 25.
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Fig. 3. Behaviour of x3 and its estimates for kf = 1, λ = 1
and µ1 = 25.

To evaluate the performance and superiority of the
proposed HG/LMI observer based design method, com-
pared to the observer developed in (Van Assche et al.,
2011) for systems with multi-nonlinearities, we consider
the example studied in (Van Assche et al., 2011) with a
slight modification on the last component to cope with
the same class of system investigated in this paper. The
system is described by the following equations:

ẋ1(t) = x2(t)− l1x1(t)

ẋ2(t) = c1c2 sin(x1(t)) + c1c3 cos(x2(t))− c1c4u(t)

y(t) = x1(t− τ(t)),

(55)

13
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Fig. 4. Behaviour of x4 and its estimates for kf = 1, λ = 1
and µ1 = 25.
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Fig. 5. Behaviour of x5 and its estimates for kf = 1, λ = 1
and µ1 = 25.

The values of the parameters are set to c1 = 1, c2 =
c3 = 0.02, c4 = 8, l1 = 0.04. The input function is
u(t) = sin(0.35t). System (55) is in the canonical form{

ẋ(t) = Ax(t) + f(x(t), u)

y(t) = x1(t− τ(t)),
(56)

with

A =

[
0 1

0 0

]
, f(x, u) =

(
f1(x, u)

f2(x, u)

)

where{
f1(x, u) = −l1x1

f2(x, u) = c1c2 sin(x1) + c1c3 cos(x2)− c1c4u(t).

The Lipschitz constants of the nonlinearities are kf1 =
kf2 = 0.04. In (Van Assche et al., 2011), the following
high gain observer design was proposed:

 ˙̂x(t) = Ax̂(t) + f(x̂, u)− θ∆−1S−1CT (Cx̂(t− τ(t))− y))

y(t) = x1(t− τ(t)),

(57)

where

∆ = diag
(

1,
1

θ

)
, θ > 1,

S = ST > 0, C =
[
1 0
]
.

The matrix S =

[
1 −1

−1 2

]
is determined by solving the

following equation

SA+ATS − CTC = −S. (58)

Table 3 illustrates the results obtained by the approach
in (Van Assche et al., 2011) and the HG/LMI based
observer design.

Table 3
Percentage of reduction/increment of θ and τM , respectively.

Methods θ τM

VVA observer 1.55 0.01

HG/LMI observer 1.0202 0.0202

Relative error 34.18% 50.49%

We can see that the HG/LMI-based observer decreases
the value of the tuning parameter θ by more than 34.18%
compared to the one obtained by the observer proposed
in (Van Assche et al., 2011). In addition, the maximum
bound on the delay is increased by 50.49%. It should be
mentioned that the reduction/increment of the design
parameter θ and the maximum bound on delay τM using
the HG/LMI observer is obtained with js = 1.

6 Conclusion

In this paper, we considered the problem of observer de-
sign for a class of nonlinear systems with time-varying
delayed output measurements. The delay is assumed to
be time-varying. The objective was to develop a state
observer with a small tuning parameter allowing a max-
imum bound of the delay as high as possible while ensur-
ing exponential convergence. To this end, we extended
the HG/LMI observer design introduced in (Zemouche
et al., 2019) for delayed output measurements, which led
to a considerably higher allowable maximum bound on
the delay compared to the standard high-gain method-
ology. The convergence analysis is established by using a
Lyapunov-Krasovskii functional, depending on the tun-
ing parameter of the observer, jointly with the Halanay
inequality. On the other hand, the explicit relation be-
tween the tuning parameter of the observer and the max-
imum bound of the delay provided in this note, show an-
alytically the superiority of the proposed method with
respect to the standard high-gain observer design. Two
example s are provided to illustrate the performance of
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the proposed observer design procedure in comparison
to the standard high-gain and to the high-gain observer
proposed by (Van Assche et al., 2011). Moreover, exten-
sions to systems with nonlinear outputs and to systems
with sampled measurements are established.
As a future work, we aim at improving the result by
exploring new ideas on high-gain observers, namely the
introduction of specific nonlinear transformations to de-
crease the value of the tuning parameter. We also plan to
extend this result to systems with event-triggered mea-
surements. This will allow the application of the observer
to industrial real-world applications such as wastewater
treatment plants and petrochemical systems.
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A Some Details on the Proof of Theorem 17

The proof is based on the same LyapunovKrasovskii
functional as defined in (26). From Schur lemma (Boyd
et al., 1994), the inequality

He
{
PA(Ψσ)− ∂h

∂z
(z)Y>C

}
+

1

µ1
Y>Y

+τMR>R 6 −λI, ∀Ψσ ∈ Hσjs .

is satisfied if the following one hold:
He
{
PA(Ψσ)− ∂h

∂z (z)Y>C
}

+ τMR>R+ λI Y>

Y −µ1

 6 0.

(A.1)

Using the fact that

δ ≤ ∂h

∂z
(z) ≤ 1, ∀z ∈ R, (A.2)

and Ψσ ∈ Hσjs , we deduce that (A.1) is satisfied if the
following two of LMIs hold:
He
{
PA(Ψσ)− Y>C

}
+ τMR>R+ λI Y>

Y −µ1

 6 0,


He
{
PA(Ψσ)− δY>C

}
+ τMR>R+ λI Y>

Y −µ1

 6 0.

By following the steps of the proof of Theorem (13),
we obtain d

dtV (t) < 0,∀x(t) 6= 0 if θ and τM satisfy
conditions of Lemma 4. Then the conditions on θ and τM
are derived similarly as in the previous theorems. This
ends the proof.
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