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Decentralized resolution of finite-state, non-convex, and aggregative
optimal control problems

Kang Liu Nadia Oudjane Laurent Pfeiffer

Abstract— A general class of large-scale, nonconvex, and non-
smooth optimization problems is introduced. It has the form
of a multi-agent problem, where the agents interact through
an aggregative term. A convex relaxation of the problem is
provided together with an estimate of the relaxation gap. A
numerical method, called stochastic Frank-Wolfe algorithm, is
presented. The method allows to find approximate solutions of
the original problem in a decomposed fashion. The convergence
of the method is guaranteed from a theoretical point of
view. An aggregative deterministic optimal control problem is
formulated, with discrete state-space and discrete time. It is
shown that the stochastic Frank-Wolfe algorithm can be applied
to the optimal control problem; in particular, it amounts to
solve at each iteration a series of small-scale optimal control
problems, corresponding to each agent. These sub-problems
are solved by dynamic programming. Numerical results are
presented, for a toy model of the charging management of a
battery fleet.

I. INTRODUCTION

This article is dedicated to a class of aggregative optimal
control problems. They will be formulated as particular
instances of optimization problems of the following form:

inf
x∈X

J(x) := f(G(x)), (P)

where: X =

N∏
i=1

Xi and G(x) =
1

N

N∑
i=1

gi(xi).

We will first focus on this general form; later on, the variables
xi will be state-control trajectories. In the general problem
(P), the sets Xi are given and the maps gi are defined from
Xi to some Hilbert space E . The function f is defined from
E to R. An interpretation of problem (P) is as follows: N is
the number of agents; the agents are indexed by i and each
variable xi ∈ Xi corresponds to the decision attributed to
agent i. The mapping gi is the contribution of agent i to some
common good, defined by 1

N

∑N
i=1 gi(xi). We will refer to

it as the aggregate. The function f is the cost associated
with the aggregate. We refer to it as the social cost. We
will only assume that f is convex, differentiable, with a
Lipschitz-continuous gradient. Concerning the sets Xi and
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the mappings gi, only the boundedness of gi(Xi) will be
required.

Various application problems take this general form, see
[10]. In energy applications, the agents i are small production
or consumption units. The contribution gi(xi) is typically a
vector containing the operational cost (incurred by agent i)
and its energy production. The aggregate is then the average
cost of the agents and their average production (over time).

Problem (P) was investigated by Mengdi Wang in [10].
She introduced a convex relaxation of the problem and ob-
tained a relaxation gap based on Shapley-Folkman’s lemma
[9]. Other works in the literature have used this lemma to
find estimates of duality gaps, let us mention the pioneering
work by Aubin and Ekeland [2]. Wang proposed in [10] a
numerical method based on a resolution of the dual of the
problem. We recently obtained an improvement of the gap
estimate of Wang in [4] and proposed a different algorithm,
based on the relaxed optimization problem (rather than on the
dual). We demonstrated the convergence of our algorithm. A
thorough comparison of the two numerical approaches can
be found in [4, Section 4.3]. A common property of the
numerical methods of [4] and [10] is the following: they
are iterative; at each iteration, N subproblems of small scale
are solved independently from each other. For this reason,
we describe our method as decentralized (the terminology
distributed is also employed in the literature). There is an
important literature on decentralized algorithms for aggrega-
tive problems, in various application settings, let us mention
for example [6], for a flight formation problem and [1], for a
smart-grid management problem. Let us underline that most
contributions do not provide convergence results.

The main novelty of this article, in comparison with
our work [4], is the introduction of a general model for
aggregative and deterministic optimal control problems with
finite state-space and discrete time. They are of the form
(P). These optimal control problems cannot be addressed
with the standard dynamic programming approach, since the
complexity increases exponentially with N ; this phenomenon
is the well-known curse of dimensionality. Instead, we show
that our stochastic Frank-Wolfe algorithm can be conve-
niently applied to the aggregative problem: at each iteration,
N optimal control sub-problems of small size need to be
solved, which can be done by dynamic programming. We
focus here on finite state-space and discrete-time optimal
control problems for their simplicity. Many applications
involve continuous dynamical systems (possibly nonlinear)
which can be naturally discretized in the general discrete
form investigated in this article. Let us emphasize that only



the social cost f needs to be convex and smooth, thus our
methodology can be applied to aggregative optimal control
problem with agents with nonconvex individual preferences.

The idea of decomposing a large-scale optimal control
problem into small-size optimal control problems which are
tractable by dynamic programming can be found in [3] and
in [7] in the context of convex stochastic optimal control
problems. Let us mention that several works propose to
approximate large-scale optimal control problems by a mean-
field optimal control problem, which can be understood as
a limit model as the number of agents go to infinity. The
mean-field model involves the distribution of the agents with
respect to their state variable, at each time. See for example
[8]. We do not follow this approach from a numerical point
of view, but a connection between our relaxed problem and
a mean-field approximation could be established (see the
discussion in Remark 2).

II. ABSTRACT OPTIMIZATION PROBLEM AND
ASSUMPTIONS

We first make some non-restrictive structural assumptions
on (P). The aggregate space E is assumed to be the Cartesian
product of M Hilbert spaces E1, . . . , EM . Moreover, we
suppose that f is of the form

f(y) =

M∑
j=1

fj(yj), ∀y = (y1, . . . , yM ) ∈ E .

The functions fj are defined from Ej to R, for j =
1, . . . ,M . Finally, the contribution mappings gi are of the
form gi(xi) = (gij(xi))j=1,...,M . Therefore, the cost func-
tional J writes:

J(x) =

M∑
j=1

fj

(
1

N

N∑
i=1

gij(xi)

)
.

Some general notations will be used all along the article:
given two subsets A and B ⊆ E , we denote by A+B their
Minkowski sum. Given λ ∈ R, we denote λA the set defined
by {λa | a ∈ A}. We denote by conv(A) the convex hull
of A. Next we introduce the main assumptions of the work.
For any i = 1, . . . , N and for any j = 1, . . . ,M , we denote

Yij =
{
gij(xi) | xi ∈ Xi

}
and Yj =

1

N

N∑
i=1

Yij .

Assumption A. For i = 1, 2, . . . , N and j = 1, 2 . . . ,M :
• The range set Yij has finite diameter dij .
• The function fj is Lj-Lipschitz on conv(Yj).
• The function fj is continuously differentiable on a

neighborhood of conv(Yj), and ∇fj is L̃j−Lipschitz
on conv(Yj).

We next define two constants C0 > 0 and C1 > 0 by

C0 =

M∑
j=1

(
Lj max

1≤i≤N
{dij}

)
,

C1 =
1

N

M∑
j=1

(
L̃j

N∑
i=1

d2ij

)
.

Assumption B. For all j = 1, . . . ,M , the function fj : Ej →
R is convex.

Assumption C. For all i = 1, . . . , N and for all y ∈
conv(G(X )), the problem

inf
xi∈Xi

〈∇f(y), gi(xi)〉 (1)

has at least a solution. For all i = 1, . . . , N , we fix a map
Si : conv(G(X )) 7→ Xi such that, for any y ∈ conv(G(X )),
Si(y) is a solution to (1).

III. CONVEX RELAXATION

We introduce in this section a convex relaxation of prob-
lem (P). It will motivate the stochastic Frank-Wolfe algorithm
presented in the following section. The reader only interested
in a practical implementation of the algorithm can move to
the next section. We first need to reformulate problem (P).
Let us define

Yi = gi(Xi), ∀i = 1, . . . , N, and Y =
1

N

N∑
i=1

Yi.

Problem (P) is equivalent to

inf
y∈E

f(y), subject to: y ∈ Y.

Indeed, by definition of Y , any y ∈ E lies in Y if and only if
there exists x ∈ X such that y = 1

N

∑N
i=1 gi(xi). For such

an x, we have f(y) = J(x). It is natural to consider the
following relaxation:

inf
y∈E

f(y), subject to: y ∈ conv(Y). (PR)

Under Assumption B, the relaxed problem is a convex
optimization problem. Let J∗ denote the value of problem
(P) and let J ∗ denote the value of problem (PR). We have
the following result.

Proposition 1. Let Assumption A hold true. Then

J ∗ ≤ J∗ ≤ J ∗ +
C1

2N
.

Proof. The first inequality is straightforward, and the second
one is proved in [4, Proposition 2.6].

Let us mention that a more precise upper bound is given in
[4, Theorem 4.4]. The result of Proposition 1 is to be related
to Shapley-Folkman’s lemma and more precisely to Starr’s
corollary, which gives a bound of the distance to Y of a point
in conv(Y). Assuming that the coefficients dij (appearing in
Assumption A) are uniformly bounded, we see that C1 is
also bounded, and thus the gap estimate C1

2N goes to zero as
N goes to infinity. In words, there is a convexification of the
problem as the number of agents increases.
Remark 2. Consider the particular case where the sets Xi
and the contribution functions gi do not depend on i. Then,
Y1 = . . . = YN . It follows that

conv(Y) = conv

(
1

N

N∑
i=1

Y1

)
=

1

N

N∑
i=1

conv(Y1)

= conv(Y1).



In this case, the relaxed problem does not depend on N ,
it can be interpreted as a mean-field relaxation, i.e., it can
be interpreted as the limit problem as the number of agents
N →∞.

From Proposition 1, we note that any ε-solution of prob-
lem (PR) is an ε-solution of problem (P) as soon as it is feasi-
ble for problem (P). Since problem (PR) is convex, it is easier
to handle numerically. Algorithm 1 generates a minimizing
sequence (yk)y∈N in conv(Y) for the relaxed problem, by
a direct application of the Frank-Wolfe algorithm [5]. The
general idea of Algorithm 2 is to introduce an approximation
step at each iteration, to recover points in Y .

Algorithm 1: Frank-Wolfe Algorithm for the relaxed
problem

Initialization: y0 ∈ conv(Y);
for k = 0, 1, 2, . . . do

Find a solution ȳk to the subproblem

inf
y∈conv(Y)

〈∇f(yk), y〉 (2)

Choose ωk ∈ [0, 1];
Set yk+1 = (1− ωk)yk + ωkȳ

k;
end

The algorithm is known to converge for various choices of
the parameter ωk. In particular, for ωk = 2/(k+ 2), one can
show the existence of a constant C > 0 such that for any k,
f(yk) ≤ J ∗ + C

k . Besides the guaranty of convergence of
the algorithm, its interest lies in the decomposability of the
sub-problems to be solved at each iteration. Problem (2) is
indeed equivalent to

inf
x∈X

〈
∇f(yk),

N∑
i=1

gi(xi)
〉
. (3)

Obviously, x is a solution if and only if xi is a solution to
(1) (with y = yk). Therefore a solution to (2) is given by

ȳk =
1

N

N∑
i=1

gi
(
Si(yk)

)
. (4)

Note that ȳk ∈ Y . However, even if yk also belonged to Y ,
there would be no reason to have yk+1 ∈ Y .

The stochastic Frank-Wolfe algorithm (Algorithm 2) in-
troduced in the next section allows us to overcome this diffi-
culty. At the iteration k, a point xk has been constructed, with
aggregate yk = 1

N

∑N
i=1 gi(x

k
i ). The same sub-problems are

solved, yielding a point x̄k = (S1(yk), . . . ,SN (yk)) with
aggregate ȳk. Next, the algorithm generates a sample of nk
points independently and identically distributed (i.i.d.) in X ,
denoted x̂k,j = (x̂k,ji )i=1,...,N , with j = 1, . . . , nk. The point
x̂k,ji is equal to xki with probability 1−ωk and to x̄k,ji with
probability ωk. In practice, we simulate Nnk i.i.d. random
variables λk,ji ∼ Bern(ωk), where Bern(ωk) denotes the
Bernoulli distribution of parameter ωk ∈ [0, 1] and we set

x̂k,ji = (1− λk,ji )xki + λk,ji x̄ki .

Then xk+1 is taken as a minimizer of J over the union of
the set of points randomly generated and {xk}.

IV. STOCHASTIC FRANK-WOLFE ALGORITHM

We provide in Algorithm 2 an explicit implementation of
our stochastic Frank-Wolfe algorithm.

Algorithm 2: Stochastic Frank-Wolfe Algorithm

Initialization: x0 ∈ X ;
for k = 0, 1, 2, . . . do

Step 1: Resolution of the subproblems.
Compute yk = 1

N

∑N
i=1 gi(x

k
i );

for i = 1, 2, . . . , N do
Compute x̄ki = Si(yk);

end

Step 2: Update.
Choose nk ∈ N∗ and ωk ∈ [0, 1];
for j = 1, 2, . . . , nk do

for i = 1, 2, . . . , N do
Simulate λk,ji ∼ Bern(ωk), independently
of all previously defined random
variables;

Set x̂k,ji = (1− λk,ji )xki + λk,ji x̄ki ;
end
Set x̂k,j = (x̂k,ji )i=1,...,N ;

end
Find xk+1 ∈ argmin{J(x)

∣∣x ∈ Xk}, where
Xk = {x̂k,j , j = 1, 2, . . . , nk} ∪ {xk};

end

We have the following result, proved in [4, Theorem 3.7].

Theorem 3. Let Assumptions A, B, and C hold true. Assume
that ωk = 2

k+2 , for all k ∈ N in Algorithm 2. Then, for all
K = 1, . . . , 2N ,

E[γK ] ≤ 4C1

K
, where γK = J(xK)− J ∗.

Moreover, for all ε > 0,

P
[
γK <

4C1

K
+ ε
]
≥ 1− exp

(
−ε2N

2(vK + εmK/3)

)
,

where the constants mK and vK are given by

vK =
2C2

0

K2(K + 1)2

(
K−1∑
k=1

,
k(k + 1)2

nk

)

mK =
C0

K(K + 1)

(
max

k=1,...,K−1

(k + 1)(k + 2)

nk

)
.

Note that the constants vK and mK can be made arbitrarily
small by choosing sufficiently large values of (nk)k=0,...,K .
Thus for arbitrarily small values of ε > 0 and ε′ > 0, one
can choose appropriate numbers of random simulations so
that P

[
γ2N < 2C1

N + ε
]
≥ 1− ε′.

Remark 4. Theorem 3 focuses on the choice of stepsize
ωk = 2/(k + 2), which we have utilized in the numerical



simulations. It is also possible to determine ωk by line search,
see [4, Remark 3.10].

V. AGGREGATIVE OPTIMAL CONTROL

In this section we describe a general aggregative optimal
control problem with finite state-space and discrete time. The
time steps of the problem are denoted {0, 1, . . . , T}.

A. State-control sets

We fix in this subsection an agent i and describe its state-
control feasible set Xi. For the description of Xi, we need
the following:
• a finite set, called state set, denoted Si,
• a finite set, called control set, denoted Ui
• a sequence of (T+1) subsets of Si, called feasible state

sets, denoted (Sti )t=0,1,...,T

• for each t = 0, 1, . . . , T − 1, a mapping U ti : Sti → 2Ui

(i.e. for sti ∈ Sti , U ti (sti) is a subset of Ui) called feasible
controls at state sti.

• for each t = 0, 1, . . . , T − 1, a function πti : Si ×Ui →
Si, called transition function.

We call feasible state-control trajectory an element xi =
(si, ui), where si = (s0i , . . . , s

T
i ) ∈ (Si)

T+1 and ui =
(u0i , . . . , u

T−1
i ) ∈ (Ui)

T , such that
• sti ∈ Sti , for t = 0, . . . , T

• uti ∈ U ti (sti), for t = 0, . . . , T − 1

• st+1
i = πti(s

t
i, u

t
i), for t = 0, . . . , T − 1.

We denote by Xi the set of feasible state-control trajecto-
ries. We assume that it is non-empty. We set X =

∏N
i=1 Xi.

The non-emptyness of Xi can be verified by constructing
a sequence of sets (S̃ti )t=0,...,T with the following backward
procedure. Set S̃Ti = STi . For t = T − 1, . . . , 0, define S̃ti as
the set of points sti ∈ Sti for which there exists uti ∈ U ti (sti)
such that πti(s

t
i, u

t
i) ∈ S̃

t+1
i . Then, Xi is non-empty if and

only if S̃0
i is non-empty. Obviously, one can replace the sets

Sti by the sets S̃ti in the definition of Xi, without changing the
resulting set of feasible state-control trajectories. Therefore,
without loss of generality, we can consider the following
assumption.

Assumption 1. The sets (Sti )t=0,...,T are non-empty. More-
over, for all t = 0, . . . , T − 1, for all sti ∈ Sti , there exists
uti ∈ U ti (sti) such that πti(s

t
i, u

t
i) ∈ S

t+1
i .

B. Cost and contribution functions

Let us consider again an agent i. Its individual cost is
described by T + 1 functions:

• `ti : Si × Ui → R, for t = 0, . . . , T − 1

• `Ti : Si → R
A sequence of Hilbert spaces (Et)t=0,...,T is supposed to be
given. The T + 1 contribution functions of the agent i are
as follows:
• hti : Si × Ui → Et, for t = 0, . . . , T − 1

• hTi : Si → ET .

C. The aggregative problem

Finally, T+1 coupling functions ft : Et → R are supposed
to be given. The optimal control problem of interest is:

inf
x∈X

J(x) :=
1

N

N∑
i=1

(
T−1∑
t=0

`ti(s
t
i, u

t
i) + `Ti (sTi )

)

+

T−1∑
t=0

ft

(
1

N

N∑
i=1

hti(s
t
i, u

t
i)

)
+ fT

(
1

N

N∑
i=1

hTi (sTi )

)
.

(5)

This problem is a particular instance of problem (P). To
see this, define fT+1 as the identity function on ET+1 := R.
For t = 0, . . . , T + 1, define git(xi) as follows:

• if t < T , git(xi) = hti(s
t
i, u

t
i)

• if t = T , git(xi) = hTi (sTi )

• if t = T + 1, git(xi) =
(∑T−1

τ=0 `
t
i(s

τ
i , u

τ
i )
)

+ `Ti (sTi ).

Then we have

J(x) =

T+1∑
t=0

ft

( 1

N

N∑
i=1

git(si)
)
.

As before, we denote gi(xi) = (git(xi))t=0,...,T+1, E =∏T+1
t=0 Et and for y ∈ E , f(y) =

∑T+1
t=0 ft(yt). For any

i = 1, . . . , N and for any t = 0, . . . , T + 1, we denote

Yit =
{
git(xi) | xi ∈ Xi

}
and Yt =

1

N

N∑
i=1

Yit.

Assumption 2. For i = 1, 2, . . . , N and for t =
0, 1, . . . , T + 1,

• ft is Lt-Lipschitz on conv(Yt),
• ft is continuously differentiable on a neighborhood of

conv(Yt), ∇ft is L̃t-Lipschitz on conv(Yt)
• ft is convex on conv(Yt).

Assumptions 1 and 2 imply Assumptions A and B for
problem (5). Assumption C is trivially satisfied since Xi is
a finite set.

Remark 5. Let us note that from a theoretic point of view,
problem (5) could be addressed by dynamic programming.
This would allow the computation of an exact solution.
However, this would require to compute a value function
of the form V t(st), where st = (st1, . . . , s

t
N ) ∈

∏N
i=1 S

t
i .

The resulting complexity, of order
∑T
t=0

∏N
i=1 card(Sti ), is

prohibitive even for moderate values of N . In contrast, the
complexity of each iteration of the stochastic Frank-Wolfe
algorithm is linear with respect to N , while the accuracy of
the algorithm improves as N increases.

D. Resolution of the sub-problems

We explain now how to solve the sub-problems (1) asso-
ciated with the aggregative optimal control problem (5). Let
y ∈ E . Let µ ∈ E be defined by µt = ∇ft(yt). By definition



of fT+1, µT+1 = 1. The sub-problem (1) reads:

inf
xi∈Xi

(
T−1∑
t=0

`ti[µ
t](sti, u

t
i)

)
+ `Ti [µT ](sTi ), (6)

where :

{
`ti[µ

t](sti, u
t
i) = `ti(s

t
i, u

t
i) + 〈µt, hti(sti, uti)〉,

`Ti [µT ](sTi ) = `Ti (sTi , u
T
i ) + 〈µT , hTi (sTi )〉.

The sub-problem (6) can be solved by dynamic program-
ming. Algorithm 3 yields a solution to (6). It consists of
two steps: first in a backward pass, a sequence of value
functions (V ti )t=0,...,T+1 is computed, where V ti : Sti → R.
A globally optimal solution is obtained in a forward pass.
Note that the value of the optimization problem (7) is finite
as a consequence of Assumption 1.

Algorithm 3: Dynamic programming algorithm

Step 1: Backward pass.
for sTi ∈ STi do

Set V Ti (sTi ) = `Ti [µT ](sTi );
end
for t = T − 1, T − 2, . . . , 0 do

for sti ∈ Sti do
Define V ti (sti) as the value of the problem

min
ut
i

`ti[µ
t
i](s

t
i, u

t
i) + V t+1

i

(
πti(s

t
i, u

t
i)
)
,

s.t.:

{
πti(s

t
i, u

t
i) ∈ S

t+1
i ,

uti ∈ U ti (sti).

(7)

end
end

Step 2: Forward pass.
Find s̄0i ∈ argmin

s0i∈S0
i

V 0
i (s0i );

for t = 0, . . . , T − 1 do
Find a solution ūti to the problem

min
ut
i

`ti[µ
t
i](s̄

t
i, u

t
i) + V t+1

i

(
πti(s̄

t
i, u

t
i)
)
,

s.t.:

{
πti(s̄

t
i, u

t
i) ∈ S

t+1
i ,

uti ∈ U ti (s̄ti).

Set s̄t+1
i = πti(s̄

t
i, ū

t
i).

end

Remark 6. Algorithm 2 can be applied to a more general
class of aggregative optimal control problems. For i =
1, . . . , N and xi ∈ Xi, denote

hi(xi) =
(
h0i (s

0
i , u

0
i ), . . . , h

T−1
i (sT−1i , uT−1i ), hTi (sTi )

)
.

Next consider the following generalization of (5):

inf
x∈X

1

N

N∑
i=1

(
T−1∑
t=0

`ti(s
t
i, u

t
i) + `Ti (sTi )

)
+f
( 1

N

N∑
i=1

hi(xi)
)
.

Note that it is not even possible to formulate a dynamic
programming principle in that case, however, the associated

sub-problems are still of the form (6) and can be solved with
Algorithm 3.

VI. APPLICATION EXAMPLE

Let us now turn to the problem of the charging of a
fleet of batteries. We propose a very simple model which
is essentially illustrative, rather than realistic. However, it
is emphasised that the proposed approach can easily in-
corporate more realistic constraints on battery operation
(e.g. taking into account limits on cycles numbers). Indeed,
these refinements remain localized at the sub-problem level
(impacting only the dynamic programming Algorithm 3).
They consist either in adding a state variable or in modifying
the local costs in order to penalise undesired behaviour.
Suppose that there are N batteries to be charged. Let sti
be the state of charge (SoC) for the battery i at the time t.

A. Dynamics of the batteries

The dynamics of each battery is characterized by three
parameters: an initial state of charge sin

i ∈ N, a maximal
state of charge smax

i ∈ N, a maximal load speed umax
i ∈ N.

We define:

• Si = {sin
i , . . . , s

max
i }, Ui = {0, . . . , umax

i }
• S0

i = {sin
i } if t = 0, otherwise, Sti = Si

• U ti (s
t
i) = {0, . . . ,min(umax

i , smax
i − sti)}

• πti(s
t
i, u

t
i) = sti + uti.

In words: the initial condition sin
i is given, the charging of

the battery is additive, the charging speed is bounded by umax
i

and is such that sti can never exceed smax
i .

B. Cost and contribution functions

Some positive coefficients (βi)i=1,...,N , (αt)t=0,...,T−1,
and (ct)t=0,...,T−1 are given. The individual costs are

`ti(s
t
i, u

t
i) = 0, ∀t = 0, . . . , T − 1,

`Ti (sTi ) = βi(s
max
i − sTi )2.

The contribution functions are defined by hTi (sTi ) = 0 and

hti(s
t
i, u

t
i) = uti, ∀t = 0, . . . , T − 1.

The social costs ft are defined by fT (yT ) = 0 and

f t(yt) = αt(yt − ct)2, ∀t = 0, . . . , T − 1.

Therefore, the cost function J(θ) writes

T−1∑
t=0

αt

(( 1

N

N∑
i=1

uti

)
− ct

)2

+
1

N

N∑
i=1

βi
(
sTi − smax

i

)2
.

The cost function has two contributions, one depends on the
average of charging levels of all the batteries, the other one
depends on the individual final SoC of each battery. To be
more precise, for t ≤ T−1, the average charging level needs
to approach some target power ct. For t = T , the batteries
expect to approach their maximum SoCs.
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Fig. 1. Frank-Wolfe Algorithm with 500 iterations for the relaxed problem.

C. Numerical simulations

The parameters are chosen as follows:

• N = 100, T = 24

• sin
i is chosen randomly and uniformly in {0, 1, . . . , 20}

• smax
i is chosen randomly and uniformly in
{20, 21, . . . , 40}, umax

i = 4

• αt is chosen randomly and uniformly in [1, 2]

• ct = 1.5bsin(πt/12) + 1c
• βi is chosen randomly and uniformly in [0, 1] .

Thus, for t = 0, 1, . . . , 23, the diameter of the range set Yit
is less than umax

i = 4, and the Lipschitz constant L̃t is 2αt,
which is less than 4. Then, we have the following upper
bound for the relaxation gap C1/2N :

C1

2N
≤ 1

200
∗ 1

100
∗

23∑
t=0

(
4 ∗

100∑
i=1

42

)
= 7.68.

Fig. 1 shows the outcome of Algorithm 1 with 500
iterations to get an approximation of the minimum J ∗ of the
relaxed problem. The curve represents the relaxed cost. Fig.
2 shows the outcome of Algorithm 2, for different choices
of nk with 100 iterations. Since the algorithm is stochastic,
we ran it 50 times independently to evaluate its efficiency;
the curves represent the average value of γk = J(xk)−J ∗.
The standard deviation is displayed on Fig. 3. In all cases,
an average value of the gap significantly smaller than 7.68
can be reached; the standard deviation is also significantly
smaller than 7.68 at the last iterations. We have initialized
the algorithm with values of x0i such that uti = 0, for any
t = 0, . . . , T − 1.
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