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ULTRA-WEAK VARIATIONAL FORMULATION FOR HETEROGENEOUS
MAXWELL PROBLEM IN THE CONTEXT OF HIGH PERFORMANCE
COMPUTING

SEBASTIEN PERNET!, MARGOT SIRDEY? AND SEBASTIEN TORDEUX?®

Abstract. Electromagnetic simulations on large domains require a huge memory consumption. Do-
main decomposition methods, based on Trefftz methods, could be an answer to this issue. In this
paper, we associate to heterogeneous three-dimensional Maxwell equations one variational formulation
which can be obtained either by upwind fluxes or Riemann traces. We associate to this variational
formulation an iterative Trefftz Krylov solver. The poor conditioning due to the use of plane wave basis
functions is bypassed thanks to a compression strategy. Moreover, the developed iterative solver is
accelerated thanks to a left preconditioner. The considered numerical cases illustrate the performance
of this basis reduction, which leads to the consideration of an industrial case of more than 750 millions
of degrees of freedom.

INTRODUCTION

Electromagnetic waves are present in a wide panel of applications, such as transports, high-technology or
medicine. Their numerical modeling remains a challenging topic when considering complex industrial geometries.
Some numerical methods can simulate accurately electromagnetic fields such as Finite Element Methods (FEM)
[29,87,42], or Finite Difference (FD) [b4]. However, they face two main issues: the numerical dispersion and
the memory limitation.

First, numerical dispersion, see [I, 2,35, B6], appears when the size of the domain is large with respect
to the wavelength. In such cases, wave phenomena are oscillating and non dissipative. Then, the number
of discretisation points per wavelength increases with the size of the domain to accurately approximate the
wave phase. Many methods may partially counter this problem, such as high-order FEM [1L3, 44], polynomial
Discontinuous Galerkin (DG) [[14,119,22, 28, B3,59], Boundary Element Methods (BEM) [, 45,53, 58], integral
equation collocation method [§], or Trefftz type methods [B1,49]. The latter are at main interest in this paper.
They take into account local basis functions adapted to the electromagnetic phenomena such that they reduce
numerical dispersion. In three dimensions, these methods are associated to large linear systems which are
extremely costly to invert when using LU factorization. It is then needed to choose the method depending
on the studied geometry. Condensation methods, such as Hybrid DG (HDG) methods [[12, 43, 46] have been
introduced to reduce the number of degrees of freedom. Nevertheless, these optimisations are not sufficient
to simulate electromagnetic waves on domains whose size is larger than 30 wavelengths. For BEM, this issue
has been solved thanks to compression methods like Fast Multipole [[16,[17] and Adaptive Cross Approximation

1 DTIS, ONERA
2 Makutu, EPC INRIA, €2s-UPPA, LMAP UMR CNRS 5142 - DTIS, ONERA
3 Makutu, EPC INRIA, e2s-UPPA, LMAP UMR CNRS 5142
© EDP Sciences, SMAI 2023



2 ESAIM: PROCEEDINGS AND SURVEYS

methods [{, B8], for example. But, implementation of BEM in the case of heterogeneous structures is a really
hard task.

When dealing with larger heterogeneous geometries, the indefinite property of the matrix associated to most
volumic methods prevents the use of algebraic iterative inversion. Many authors propose Domain Decomposition
Methods (DDM), see [20,57] for example, but DDM are often difficult to carry out in the context of High-Parallel
Computing (HPC) architecture. The Ultra-Weak Variational Formulation (UWVF) methods [[7,10,18,34,40,56],
developed by Cessenat-Després in [9], are conversely naturally adapted to domain decomposition since they
involve definite positive matrices. Consequently, UWVF is easily implementable in HPC framework. Trefftz
methods often use plane wave local basis functions, see [24,26,27,41], but we could have chose spherical Bessel
functions [39]. Practically, the advantage of using such basis results in an easy implementation. But plane wave
basis functions difficultly approximate high-complexity electromagnetic waves such as point effects at corners or
trapped waves in elaborated heterogeneous configurations. Moreover, they often provide ill-conditioned linear
systems, due to rounding errors caused by plane waves linear-dependency, see [15]. This may conduct to a lack
of accuracy for the numerical solution. To avoid such issue, previous works have developed strategies, for which
we propose some improvements here, see [15,40]. For homogeneous cases, the convergence of the method is well
established, see [3(].

Here, we aim at developing an iterative Trefftz solver using few memory and leading to an accurate numerical
solution. The developed method is called the heterogeneous Cessenat-Després UWVFE. This numerical method
resorts to Maxwell equations to model electromagnetic waves. In the present paper we study a dimensionless
Maxwell problem which needs to be constructed. We recall the general Maxwell formulas in absence of charges
and currents and for an isotropic linear medium

ob

v-d = 0, Vxe = 30 d = gpc,e,
d

Vb = 0, Vxh = aa—t, b = popu.h,

where g (resp. €, ) and pg (resp. u,) are the permittivity (resp. relative permittivity) and the permeability
(resp. relative permeability) of the vacuum (resp. of the medium). This system involves the electric and
magnetic field intensities e and h, the electric displacement d and the magnetic induction b. We suppose they
are all time-harmonic fields. Therefore, they can be represented by four complex valued normalised functions
E, H, D and B which are associated to their normalisation amplitudes eg, do = epeq, ho = v/€0/ 10 €0 and

bo = \/20ko €o,
e(x,t) = eoR (e“'E(x)), h(x,t) = hoR (e“'H(x)),
d(x,t) = doR (¢“'D(x)),  b(x,t)= bR (e“'B(x)),
where w is the angular frequency that accounts for time-harmonic dependency. We define the wavenumber

ko = w/co, where ¢y = (60#0)7% is the velocity in the vacuum. We get the following Maxwell normalised
problem defined on a connex Lipschitz domain  C R?

VxH=ikye,E and V XE = —ikgu,.H, on Q, (1)

where both fields are in the space H(V x, ) defined by

H(Vx,Q):= {u:Q—>(C3,/ |u|2dx<oo,/|V><u|2dx<oo}.
Q Q
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The unknown of the problem is denoted by E := (E,H). We complete by an impedance boundary condition
defined on the domain boundary 92

YE+ Zsgon x yvyH=g on 01,

where we have the following definitions and notations:

n € R? is the outward unit normal to 99,

Zaa : 00 — RT is a piecewise constant function, with a strictly non-positive real part,

wE=E— (E-n)n = (nx E) x n is the tangential component of the electric field,

vwH=H- (H-n)n = (n x H) x n is the tangential component of the magnetic field,

€, and pu, are piecewise constant functions defined on a partition of 2. The material parameters are
assumed to be constant over each mesh cell.

g : 00 = C3 is a purely tangential field in the following functional space

L2(09) = {u € (12(09)°, u-n= o}.

There exists a unique solution of problem @)7 see [42]. The main goal of this paper is to develop a numerical
method approximating accurately the solution to the Maxwell problem, with a low memory cost. In Section [l,
we introduce the mesh associated to the domain €2 and its properties. Afterwards, we design an heterogeneous
plane wave mixed DG Trefftz variational formulation based on upwind fluxes; mized in the sense that it involves
both the electric and the magnetic fields. The well-posedness of the associated problem is proved thanks to a
weak coercivity property. The well-posedness of the associated problem relies on the positivity of the variational
formulation. In Section P, we bring to the fore the equivalence between the mixed DG Trefftz formulation and
the heterogeneous Cessenat-Després UWVFE. Then, the Trefftz UWVF problem is discretised, leading to a
matricial linear system, which can be inverted with LU solver. However, due to the memory challenge, we opt
for an iterative Trefftz UWVF algorithm based on a singular regular decomposition of the matrix. In Sectionﬁ
we associate to the constructed iterative scheme a Krylov type method. The latter Krylov method, combined
with a preconditioning strategy, is proved to be convergent thanks to Galerkin theory. Thereafter, we set up a
compression strategy reducing the number of plane wave basis functions in the discrete Galerkin space, leading
to a memory cost reduction. Finally, a global preconditioning aims at accelerating the Trefftz Krylov UWVF
solver.

i

1. MIXED DISCONTINUOUS GALERKIN TREFFTZ FORMULATION

In this section, we devise a mixed DG Trefftz problem based on upwind fluxes. This goes through the
introduction of Trefftz spaces and the reciprocity formula. Finally, we establish a weak coercivity property and
show the well-posedness of the associated variational formulation.

1.1. Mesh properties and Trefftz spaces

We consider a three-dimensional mesh made of non-overlapping polyhedral elements 7" meshing the compu-
tational domain €. Indeed, we choose a mesh that follows the partitions 2,, 1 < p < P, of Q, in which &,
and p, are constant. It means that there exists a unique 1 < pg < P such that T' C §,,,, leading to piecewise
constant functions e, and p,.. We denote by 7T the set of elements T and by F the set of faces F in 2. We
define the following sets of faces:

e The set Fiy of interior faces
Fint :={0TNOK : T,K € T with T # K and area(0T N OK) # 0},

where area(I) refers to the area of the face I (that is zero for edges and vertices).
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e The set Foy of exterior faces
Fext :={0TNIQY : T € T and area(0T NOQ) # 0}.
e The set Fr of faces associated to an element T € T
Fr :=A{F € Fint U Fext : area(F NOT) # 0}.

We denote by X1 the local Trefftz space defined for T' € T as the set of functions

ET .= (ET,HT) € H(Vx,T) x H(Vx,T) satisfying (2a)
VxH" =ikpe, E'  and V xE" = —ikou,H', onT, (2b)
wET € L2(0T) and vHT € L?(9T), (2¢)

where E” and H” are the restrictions of the electric field E and the magnetic field H on the element 7.

Remark 1.1. The elliptic reqularity theory seems to restrict the numerical method of this paper to regular
solutions, ie BT, HT ¢ H%(T) However, we did not face any difficulty to apply the present method to less
regular solutions.

The space X is equipped with the inner product parametrised by o > 0 and g > 0

(BT E ) = [

(a wET -y ET 4+ gyHT %H/T) dsx,
ar

where dsy is the Lebesgue measure associated to surfaces of the three-dimensional mesh.

Remark 1.2. Due to the unique continuation theorem, the pairing (-, )x, is an inner product which means

ETENy, =0 = wE" =0andH" =0 0on T @ E' = (ET,H)=0inT.

It leads to the global discontinuous Trefftz space X+ defined element by element by

X7 = H Xr, equipped with the norm (E,E')x, := Z (ET, BTy,
TeT TeT

Remark 1.3. Every function E = (ET)rer € X7 is associated to a function defined on 2 whose restriction to
T is ET. Each ET = (ET,HT) satisfies (@) and E is generally discontinuous across faces.

1.2. Trefftz reciprocity formula

We introduce the reciprocity formula, also called the virtual work formula, which involves the restrictions on
T € T of the tangential component of the electric field and the tangential trace of the magnetic field

wET = (nT X ET) xny and ATH? :=np x yHT, (3)

where ny € R? is the outward unit normal to 7.

Proposition 1.1. For E € X7 and E' € X7, the global reciprocity formula is

r(E,E) = > ro(EE) with rr(E,E) ::/

(7§HT BT + 4 ET ~7§H’T) dsx = 0. (4)
TeT or
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Proof. The reciprocity formula takes the following form, with E” = (E”,H”) and E"" = (E'", H'") in Xr,
Wr = iko/ BT ET 4+, H' - HTAT, forTeT.
T
Since both the solution ET € Xz and the test function E'" € Xt satisfy (E), we have
WT:/V xHT-W—vXET.ﬁdT:/HT-W—ET-WdT.
T T
By subtracting these two last expressions of Wy, we have

/VXHT~W—HT~VXE’TdT+/ETonH’TfoEToH’TdT:O.
T T

Due to the Stokes formula (see [42]), we get the local reciprocity formula
rr(E,E') = / (ny x HT) "ET+ET. (nT X H’T) dsx =0, for E and E’ in X.
orT

We end the proof by using definitions (B) O

Remark 1.4. We remark that 9T can be decomposed into faces F' € Fr leading to

deSx = Z Z ‘/F‘deS)U (5)

TeT /9T TeT FEFr

for any piecewise continuous regular function f whose restriction on one element T € T is denoted by fT. The
reciprocity formula (H) is then equivalent to

mEE) =Y |

(vzHT - ET +4ET. vzH’T) dsx = 0.
FeFr F
1.3. Mixed Discontinuous Galerkin Trefftz variational formulation

Following the same approach than for polynomial mixed DG methods, see [22,B2], the mixed DG Trefftz
formulation is deduced by inserting upwind fluxes, see [47], into the reciprocity formula (if).

Problem 1. Find E € X+ such that for all B € X1

Z Z L(@.vzﬁ+@.%ﬁ)dsx:0, (6)
TeT FeFr

with interior upwind fluzes for F' € Fiy separating two elements T and K defined as

- Z Z = 1
7w E B and (V(H) = -

1
E),=——— — ET + ——— & EX
('Vt )|F ZK—FZT’YOM ZK+ZT + ) (7)

ZK ¥ ZT Yout

and boundary upwind fluzes for F' € Foxy defined as

- Zao T T Zr T Tt 1 T T 1 T
E = E e — d TH = —— E B — 8
('Yt )\F ZBQ + ZT rYout + Z6£2 + ZTg an ('7>< )\F ZBSZ + ZT 70ut + ZBQ + ZTg ) ( )
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where the general incoming and outgoing wave trace operators 'yi:g/out : X7 — L2(0T) are defined by
VLEBT .= BT + ZpyTHT and AL ET = ET — ZpylHT. 9)

Remark 1.5. For this particular choice of numerical fluzes (H) and (E), the exact solution satisfies

—

(’7tE)|F = (%ET)\F = (’WEK)|F and (’VZH)\F = ('VEHT)W == (Vi{HK)W'

Therefore, the variational formulation of Problem B encodes the continuity of its solution.

Remark 1.6. An exterior face F' € Foxy can be seen as a face interfacing an element T and a virtual_element
exterior to the domain. More precisely, denoting by Zaq = Zx and g7 = ~vE,EX | (§) can be seen as ([]).

Problem m can be interpreted as a variational problem and leads to the following proposition.

Proposition 1.2. Problemlj can be written as
Find E € X7 such that for all E' € X7 we have a(E,E') = ((E), (10)

where the sesquilinear form a and the linear form £ are given by

WEE) =3 Y / (a2 + aE + ol + ol ) sy, (11a)
TeT FeFr ' F
@) =% ¥ / (e%’F M;{’F) dsy., (11b)
TET FEFTNFoxi * F
where we have if F' € Fiyy separating two neighboring elements T and K
EE' 1 T K\ . o T EH' Zr T K TH'T
oFF = g (WET - yEN) STl = S (BT - BN THT,
7 i (12a)
' K T ’ T ZK ——
aff = g (H -G HE) BT, of i = e ( H - HE) - XH T,
and ZfF € Fext
aBE .= L%ET 7 ET oEH . L%ET . ’yTH’iT
T,F ZT + ZBQ ) T,F ZT T Z{)Q X )
/ Zoa — / Zr Zog T
= == yITHT yET, JHH = H" ATHT, 12b
T,F ZT I ZBQ T Yt T,F ZT T ZBQ’VX T ( )
’ ]_ ——— ’ ZT R S ——
(E = T, ET, (H _ T . ~THT,
T,F Zr + Z@Qg Tt T,F Zr + Z@Qg Tx
Proof. Problem m reads
Z Z /ITJ: dsx = 0, with Zpp = %/E~7£H’T+7ZH - ET,
TeT FeFr ' F
(a) If F' € Fint, using the definition of the numerical traces (B), we have
Irp = (ZiKWT ET + L’YK EK) ATH'T + (_ — AT BT ——— K EK> 7 ET.
B ZK+ZT out ZT+ZK out X ZK+ZT out ZK+ZT out



ESAIM: PROCEEDINGS AND SURVEYS 7
Taking into account the definition of the outgoing trace operator in (B), we get

_ZKk
Zg + Zr

Zy S
Trp = | ET — ZpyIHT) + 21 (yEX + Ziy TR | S THT
T,F (% TY % ) + T+ Zn (% + 2KV ) Vx

. (WET -2z THT) 4+ —— (wEX 4+ 2 THK}. ET.
+[ ZK+ZT(% Yk )+ZK+ZT(% + Zgyi HY) | -y

Expanding, we have

ZxkwBY + ZenBY) e (ZriHY + Ziey  HY) —n ’ '
( KVt TVt ) "Yz:H/T"‘ ( T x K% ) -’YtE/T _a%% —aqf{‘g .

Irrp =

Zw + Zp Ly + Zr
ZK ZT ZBQ ZT .
We then remark that + =1 and + = 1. This leads to
Zx +Zr Zg+Zr Zoq+ Zr  Zsa + Zr
Irp = wET ATHT 4+ yTHT BT — ol B — oBH — oJlE — ot (13)

(b) If F € Foxt, we have in the same way

Irr= wET ATHT + yLTHT - ET + K%F + EQI{F — a%}f; — a%ff; — a?f; — aé{g ) (14)

Proposition @ follows from (@), (@) and the reciprocity formula (@) O

1.4. Positivity and injectivity properties

The well-posedness of Problem m relies on the positivity of the sesquilinear form a defined by () It implies
the study of the problem stability through interfaces F' € Fiy involving the jump of the tangential trace (resp.
component) of the electric (resp. magnetic) field, respectively defined as

[VE]F := wE" —%E" and [v<H[r =y H" —7[HX. (15)

Proposition 1.3. The sesquilinear form a is positive since R(a(E,E)) > 0. We define the DG norm as

IElpe = VR(a(E,E)), forall EeXr, (16)

for which we have the following properties
() e = Bl + B2 with

int

1 —_— Zr LK _—
E|? = E /(7 Elr - [:E + — Hir - H )d x5
[ Hmt v Jr ZT-I-ZK[[% IF - [E]r ZT+ZK[’7X lr - [vxH]F ) ds
1 J— Zr Zya N
E|? = E /<7 E+vwvE + ——~vH- H)dsx.
|| Hext W ZT-l-ZaQ% Yt ZT+Z(')Q’Yt Tt

(ii) o(E,E)=0 = E=0.
The proof of Proposition B resorts to the following remark.

Remark 1.7. Fach face F € Fiyy is involved twice in the sum (E) of Remark . Thus, we can decompose the
integral on 0T by using a “face point of view”

T _ T T K
> | fTds= > /Ff sy + Y /Ff + f5 dsy,

TeT FeFoxt FEFint
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where, in the right-hand side, T (resp. T and K ) is one element (resp. are two elements) with one face F.

Proof. (i) Using ()7 we can write the real part of a as

EE EH , HE , HH
E § / arp+arp+app+ aT,F) dsx.

TeT FeFr
(a) We first show that

Z / (af'f + afF) dsx = 0. (17)

TeT FEFT
1'1

We evaluate I}, r by distinguishing the cases of an exterior face F' € Fexy and an interior face F' € Fiy.
For F € Fin, using the definitions of forms () and taking into account that R(zy) = R(yx), we have

Zr — Zx
1 _ T K T
The = (575 (WBT —BN) ATHT oSy BT ((THT —7THK) ).
ZT K
_ ET. THT EX . THT ET. THK)
§R(’Yt T Zr + Zrne Ve T 7o+ Zre Ve g

In a similar way, using () for F' € Fext, we get

7L %< Zr wET .ATHT + Zog +ET. 7THT) = R(uET - ATHT).

T.F Zr + Zso Zr + Zaq s

Since §R(1"T(IE E) =2 Z / %ET gHT)7 see Remark @, and summing over F' € Fr we get

FeFr
> / T pdse = L R(rr(E.E)) - > / I gK . THT 4 — 2K g5 HK) ds,..
FeFrlF I FEFrNFin ZT + Z Zr + Zk

=0 see (@)
Summing over elements, we then take the face point of view of Remark @
Z

EK .ATHT + ~ EK .~ KHT K ET .~THE + ~ ET .~ KHK )d -
Fezf:/ ZT+Z (BT - B B B g e O A B0 HE) ) ds

Remarking that 7L + & = 0, we finally have (@)

(b) It remains to evaluate

- Z/S‘EaTF Jds, and TP = 3 Z/m” ) dssc.

TeT FeFr TeT FeFr

We use again (@) and sum over elements, thus differentiating interior faces and exterior faces

Z Z / Zr + Z (%E _%EK FYtET) dsx+ Z Z / Zr + Z Z o WE ’YfET) dsy.

TeT FEFrNFint TeT FEFTNFoxt
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Assembling following a face point of view (see Remark @), we have

1 1
?= ) / v 7 OB =B BT 4 o (WBK - i) R ) d
FeFint
1
+ > / (Zr vz ® BT ) ds
FeFext

Using the electric field jump definition in (@), we get the following formula for Z2, which vanishes for F' € Fiy,

T
Z /ﬁ[{%EHF [[’YtEﬂFde+ Z /ZTT%E ’YtETde
FeFint FeFex

With a similar reasoning and the definition of the magnetic field jump in (@), we also get

VA A VAA —_—
Z / = - =<H]r - lhx H]rdsy + Z / _oreon THT -y THT dsy.
r Zr + 2Kk Zr + ZaQ

EFint FEFex

We have finally proved the proposition since [|E[|3q = R(a(E,E)) = Z? + Z°. O

Proof. (ii) Let us prove the injectivity. Since a(E,E) = 0, we have ||E||%, = 0 and therefore
[E]r = [yxH]r =0, onFe& Fy and 3E=7TH=0, onF € Foy. (18)

We recall that if ET satisfies (E) and 3F € Fr such that ET = 0 and vZH? = 0 on F, then by unique
continuation E7 = 0. Let 7 C T be the set of elements satisfying T = {T eT ‘ ET = 0}.

We will show that 7 = 7.
(a) The set T is non-empty since E7 is vanishing in any element 7' with one face F' C Fr included in the
exterior boundary Fext, see ([L§).

(b) Let T € T and K € 7 with a common face F € Fy N Fg. Let us show that 7' € 7. Due to (@), we have

ET =3, EX =0and /THT = v fH X =0on Fe FrNFx = E'=0inT = TeT.

unique continuation

(¢) It follows from the completeness of the neighborhood graph that 7 = T. Thus, we have ET = 0. O

The uniqueness of the solution to Problem E is proved in (ii) of Proposition @ Its existence is ensured by
the fact that the solution to (B), see [42], is also solution to Problem [I|. However, it does not mean that the
variational formulation (@), with the form a given by (), is well-posed for every ¢ € (X7)*. This question
remains an open problem.

Remark 1.8. The point (ii) of Proposition u implies that any finite dimensional Galerkin approximation of
Problemu is well-posed.

2. CLASSICAL TREFFTZ SOLVER

The following section aims at devising a generalisation of the UWVF for heterogeneous media, based on
Cessenat-Després trace operators (see [9]). Moreover, we show the equivalence between the Trefftz variational
formulation based on upwind fluxes, see Problem [l and the generalised Cessenat-Després UWVF.
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Outgoing trace Volumic space Incoming trace

U =k oSk

out

yl \
A} 4
Upwind flux T ~T , : A T
E out T ! in E
point of view Yout : N E ¢ : Tin
1 4 A) 1 o
Sg;t = (’yglt)71 ! ' 517;1 = (’717;1) !
Cessenat- (T - p pr L
Després flux xT U") ™ = Yout © Sin ! ! U<t
point of view ! : 3
1 1
1 1

FIGURE 1. Comparison between the upwind flux and the Cessenat-Després flux points of view.

Let us first introduce, for each T' € T, the Cessenat-Després operator U7 associating to the outgoing trace
xT' of an electromagnetic field its incoming trace U7 x” (see Figure [I|)

x! = B B~ ZrypHE and - UIXD = B 5 B ZryHE (19)

More precisely, the operator UT . L2(0T) — L2(9T) is defined by UT := ~I o ST ., with the solution operator
ST, L3(0T) — X, xT' — ET satisfying () and 41, ET = xT. Using above definitions, the electric tangential

out
component and the magnetic tangential trace can then be deduced

1
wET = - (L{TXT —|—XT) and ~yLHT = (Z/IT T xT) . (20)
2 2ZT
Problem E can be rephrased with essenat Després notations. Indeed, by artificially adding and subtracting
xT to upwind numerical fluxes H and (§), we have for F' € Fr
(0B ) = 5 (UT%)  +x7) and (TH) , = o (@), —x") (21)
2 F T 27, |F ’

—

where UTx is the Cessenat-Després numerical flux associated to the element T' defined by

p— ZK — ZT T 2ZT K

(UTX)\F = 7t ZTX + o ZTX for F' € Fint, (22a)
= Zoa — ZT 1 2Zr T

ur = = _ for F € Fext. 22b
( X)‘F Z8Q+ZTX +sz—i—ZTg or &S et (22b)

Remark 2.1. As for Remark , the formula () can be seen as the interaction with a virtual element K,
when setting Zpq = Zx and g7 = xK

When replacing numerical fluxes (Ej) in Problem m we get for all X' € LZ(0T) : H L7(0T)
TeT

T T/ T _
Z/@T UxL[x’)dsx 0.

TeT

This leads to an alternative formulation called the Cessenat-Després heterogeneous UWVF.
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Problem 2. Find x € L7(0T) such that for all x' € L}(0T) we have

/ 3 ’ o
(x7x )Lf(BT) — (UX,Z/{X >L§(8T) =0, (23)

—

—\T
where (L{x) =UTx, UX)" :=UTX'T and the weighted scalar product on L2(OT) is defined as

(X izor) = D (x"xT)r20m) = Z/ Z7'x" - XT dsy. (24)
TeT TeT’oT

As illustrated in Figure m, a link is estalished between Problem P based on heterogeneous Cessenat-Després
fluxes, see ([19) and (@), and Problem [ll based on upwind fluxes, see ([]) and (§).
Theorem 2.1. Problem 1 is equivalent to Problem 2 in the following sense

o If x is solution to Problem 4 then E defined by ET = S1  xT' is solution to Problem 1.
e IfE is solution to Problem )

then x defined by xT = ~1.ET is solution to Problem
Moreover if x is solution to Problem @ then it is also solution to the variational formulation (@)
Taking into account (@), we obtain the variational formulation of Problem E

Proposition 2.1. Find x € L?(0T) such that for all x' € L?(0T)
a(X7 X/) - l(X/), with a(x7xl) - (X?X/)Lf(BT) - k(X, X/)v (25&)
where the sesquilinear form k : L7(OT) x L?(0T) — C and the antilinear form 1: L?(0T) — C are given by

k(x,x) := (Hux,ux'> and 1(x'):= (gu,L{x') (25Db)

L2(57) £3(07)’

with Wy : L2(OT) — L2(OT) the flux operator and gy € L (OT) the second-member, both defined on each T € T
and for all F € Frp, by

. (L?T\x)‘F if F € Fins, 0 if F € Fint,

T .7 _ ™ .

(Hux)\p = (HL{X)|F = Zoa — Zr o FFeF (gu>|F = 277 o e R (26)
Zoo + Zr oxts Zoq + Z1

The next proposition will assert that k is contractant. Thus, (@) leads to a fixed point problem.

Proposition 2.2. We have
(i) The operator Iy : L2(OT) — L?(OT) satisfies |1y lzz2om) < 1.
(ii) The operator U : L (9T) — Li(OT) satisfies U] 207y = 1.
(ili) The operator k : LF(OT) x L} (8T) — C is contractant, ie |k[ 297 < 1,

where, if V is an Hilbert space, the morm of the linear operator A : V. — V and the sesquilinear form
a:V xV — C are defined by

Ax,x' /
ALy = sup sup XN faly e sup s 2

Jalx,x)v| (27)
xev\{o} xreviqoy IIXllv [1¥[lv xev\ {0} xevioy [[X[lv X' [lv



12 ESAIM: PROCEEDINGS AND SURVEYS

Proof. (i) Taking the face point of view from Remark B, we have for all x € L7(9T)
/ Z;1|HZ;X|2 + ZI_<1|H5X|2 dsy for F' € Fint,
> / Z7 [ Ex[* dsx = 3 Kp with Kp =

_ 2
TET FeF / ZT1|H5x| dsy for F' € Foxt.
'

For F € Fiy interfacing two elements T and K, we have by (@)

_ ZK — ZT 2 Q(ZT — ZK) — — 4ZT 2
K — Z1<7) T2 L 2T T KD (T SR 4 KXy g BT K g
" /F T \Zk+ Zr <] (ZK+ZT)2(X xE At x) (ZK+ZT)2|X |
_ ZT—ZK 2 K12 Q(ZK—ZT) K T T 4ZK T2
+ |z 1(7) + o (K xT 4+ xT xE) + 0 x| dsy,
/F B \Zr+ Zx | (ZT+ZK)2<X ) (ZT+ZK)2’X|
- /Z;1|XT|2 + Z K| dsy.
F

—Zr

ZiZT < 1, we obtain for F' € Feyt

Remarking that

-1 1T T2 _ -1 Z@Q_ZT>2 T2 _/ —11..T|2 _/ 4ZaQ T2
/FZT [T x" | dsx_/FZT (7ZBQ+ZT |x"|" dsy = FZT x| dsx  Zont 70 x| dsx.

Using the definition of the global scalar product (@), it follows

/ Z;l}xT|2 + Z;(1|XK|2 dsy for F' € Fin,
||HUX||?L§(6T) = Z ICF with ICF S

FeF / Z;1|XT|2 dsx for F € Fext.
F

Applying Remark E, we get an element assembling point of view leading to

Mex|Fzory < 3 D2 / P s = IxXliaor = IMulizen <1
TeT FEFr

Proof. (ii) Recalling that we have the reciprocity formula (H)7 let us remark that

Ty -1,

5 O

rT(IE,]E’):/ ( ™M . ET + yET. SQH/T)dsx:
or

with Z; and Z, defined here as

7, = / Zp'ZEET ATET ds, = / Zi (WET + Zpy kBT - (3BT + ZpyTHT ) dsy,
orT orT

T, = / A R N T / 25 (wET = ZpyfH") - (3BT — ZpyTHT ) dsy
oT aT
Consequently, for all ET € X7, E'" € X¢ and for all xT € LZ(9T), x'T € L(dT), we have

/ ZT ’YOutET ’Yout]E/T dS / ZT VIIIET rYlnE/T dS (ET,E/T)X (S utx SOTIJtX/T)XT'
orT oT

(29)
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; T
Since Sg ¢

over elements T' € T, it leads to ||x||

: L?(0T) — Xr is bijective, we notice that the space X7 can be parametrised by L?(97). Summing

%?(87) = ||Z/[X||2Lg(a7-). Therefore, we have U]l 257 = 1. a

Proof. (iii) Using the Cessenat-Després point of view, Problem E and the Cauchy-Schwarz inequality, we have

k(x,x) = (Hux,ux’> < ||HUX||L3(aT) HuX,HLg(aT) = Hx||L3(aT) HX/HLg(aT)'

L3(8T) (1), (i)

This leads to |[k[| 2(57) < 1 and ends the proof. O

Remark 2.2. Property (ii) in Proposition @ can be applied to the Cessenat-Després Problem @ More precisely,
we can replace the scalar product in the left-hand member of equation (R3). We then we get another formulation

for the heterogeneous UWVF

Find x € L2(T) such that for all X' € L2(dT), we have (Z/{x - Zjl)\(,l/lxl> — 0
L}

This variational formulation encodes the continuity of the solution, ie UTxT = (UTX).

Proposition @ does not ensure that the operator k is strictly contractant. Therefore, we have chosen to
introduce an iterative Trefftz problem only at a discrete level.

3. ITERATIVE TREFFTZ SOLVER

An iterative Trefftz method based on Cessenat-Després numerical fluxes is introduced. The convergence is
theoretically established in Proposition B.1l.
We define the global discrete Trefftz space X’%, that is a finite dimensional linear subspace of X7, as

xh = (T ¥4) c %7
TeT

The local Trefftz space X := span{v§1 € Xp,l =1, NT}, where the functions vfp are electromagnetic plane

waves, with direction dgﬂ and polarisation pgﬂ, which can be chosen as
vh = (ET,H") e Xy with ET :=pf efovarmdrx anq HT = Zp(ph x df) etfovermdex (30)

with Z7 = 4/ ul’ /el a normalised impedance defined on T. More precisely, dZT € D, a finite discrete subspace of
the unit sphere, and peT € 5S4, an orthonormal basis of the two-dimensional linear subspace (dgﬂ)l C R3. Many
different choices for the definition of D exist. Directions are given by the vertices of the triangular mesh surface
of the unit sphere, or the surface mesh of a unit cube. For a complete plane waves approximation theory, one
can refer to [32,11].

Problem é can be discretised on the finite dimensional space Y%’— C L?(07)

Y};— = H Y}%, with Yl} = 'yg:ltX}%.
TeT

More precisely, for each T € T, the local finite discrete space Y% is spanned by the incoming traces of plane
waves in X%, which are defined by (@) Since I, is a bijective operator, the space Y% is of dimension
N = dim(Yéﬂ) = dim(XZ}) = Nrp. Consequently, the basis Y% is given by

YA = {WT = 4L v such that vy € X}}} = span {w% such that wh =L v} }

(=1,N



14 ESAIM: PROCEEDINGS AND SURVEYS

The space Y? has the dimension #dof := N #elem, with #elem := card(7) the total number of elements in
the mesh. Any element x € YZL— will be represented by a complex column vector [x] of dimension #dof. Their
components [X]iglob are the amplitudes of the plane wave traces wi € Y’TL in the i*" element 7. It leads to

#dof . #elem N [X]iglob = [X}f»
x = Z [x]iglop WP = Z Z[x]fwf, with iglob := (i— 1) N 4 ¢, and . , (31)
iglob=1 i=1 ¢=1 WD = wy.
The discrete direct Cessenat-Després heterogeneous UWVF is formulated as follows.
Problem 3. Find x" € Yé‘— such that for all x' € Y, we have
a(x"x')=1x) <= A[x]=F, (32)
with A € C#dotx#dof g B € C#If defined component by component by
Aigiob jglob = a(wislob wisleby g Figiop := 1(we°P)  for iglob, jglob = 1, #dof. (33)

N
Remark 3.1. The global matriz A is composed of block matrices A;; := (Afjk) € CVXN fori,j =1, #elem

£k=1
defined as
ALf =a(wh wl) with ¢ k=1N.

]
Proposition @ leads to a singular regular decomposition of matrix A = M — N. In the homogeneous case,
it corresponds to a Jacobi-block decomposition, see [L1]. We then obtain the discrete iterative UWVF problem.

Problem 4. Compute the sequence xi¢ € Y n € N*, from the recurrence
(5 X 2o — KK, X) = 10¢), W € Y = MBS, = NP + F,  with [ =0, (34)
with M/N € C#dotx#dof defined by

Migiob,jglob := (WP, wigloP) and  Niglob jglob 1= k(WP w'°?) " for iglob, jglob = 1, #dof. (35)

L2(0T)
Remark 3.2. Support properties of DG basis functions lead to a hermitian positive block-diagonal matriz M
Mi’jk = (Wik,wf)L?(aT) di; for i,j=1,#elem and £, k=1,N,

which allows a fast direct inversion of the linear system (@)

To ensure the convergence of the discrete iterative Problem H, the matrix M~'N associated to the form
k needs to be strictly contractant. In other terms, its spectral radius, denoted by p(M~!N), has to verify
p(M~IN) < 1. Due to the conformal nature of the discretisation, ie Y4 C L?(0T), we have

_ k(x,x’
PMTIN) < idllyy = swp s X))

T e S klzzer <1 with [[x[lys = [Ix|[L2o7)-
e\ {0} xrevi\ (o} [ Xllvn 1% llyn o == T H0m

It then remains to exclude the eigenvalues on the unit circle.
Proposition 3.1. The matriz M~'N is strictly contractant, ie p(M~'N) < 1.
Proof. We suppose that it exists x € Y4 and A € C, such that x # 0 and [A| = 1. We have

k(x,x') = A(x,X) 2077, VX' €Y} <= N[x] = AM][x], with x represented by [x] through (@)
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It leads to
Mex = NA%(1 7257y = [Teex 72 o) — A U ) L2 (o7 — AU, Ux) 207 + AP (U] L2 07 -
Thanks to Proposition @ and the definition of k, see (), we obtain

e Ntxl 2 o) < 1022 0y AN 2 oy A U oy AP U oy <

= 0 = IIyx = AUx. (36)

Then, we act by contradiction. Let us show that x = 0. Let T = {T eT ' x!' = } C 7. It remains to prove

that 7 =T to obtain Proposition @
(a) Let us show that 7 is non-empty. From (B6), we have [|[Ilyx| 127 = U] L2(07) = (%[ L2(o7) since U is
unitary from Proposition R.2. From (R§) and (R9), it follows that

4Z@Q 12 T
' ' Fo7 refrnran, /P Zoo t Zr)?)
>0
Moreover, recalling the definition (@) and due to (@), we also have

1 Zyg — Z
uTXT:XﬁxT:O on F' € Fr N Fext.

Combining the two last results and using (@), we obtain v,ET = v,HT = 0 on F, leading to ET = 0 and
xT =0 in T by the unique continuation.

(b) Let T € T and K € T with a common face F' € Fr N Fg. Let us show that T € 7. Since K_€ T, we have
x% =0 and UXx¥K = 0. From (@), we have [I};x = AUTxT and IIffx = AUK XK on F. From () and (@),
we obtain

Zp— 7 27 Zyx — 7 27
2 K xK K xT = AuFxK and ZE xT T K = auU"x",
Zk + Zr Zk + Zr Zk + Zr 2k + Zr
leading to x7 = 0 and UYTx” = 0 on F, since Zrik > 0and A # 0. Thus, T' € T. Due to (@), we also obtain
wET =~ HT =0 on F, leading to ET =0 and x” = 0 in T by the unique continuation theorem.
(¢) From the completness and the connexity of the neighborhood graph, we then have 7 = T. O

Remark 3.3. A weaker contraction result has been proved in the context of an under-relaxation iterative method
by Cessenat-Després (see [10]). This result takes the form of p ((1— 8)I+BM™'N) < 1 for all 8 €]0,1[. In
particular, the Proposition refines this result by including the limit case 5 = 1.

Remark 3.4. This proof ensures the uniqueness of the solution to the variational formulation (@) Combined
with the rank-nullity theorem, it leads to the well-posedness of Problem ! which is finite dimensional.

This result makes it possible to use a Jacobi like iterative method to solve the linear system. However, the
spectral radius of the iterative matrix M~'N can be very close of 1 and can significantly slow down the iterative
algorithm as illustrated in Table m and Fig. E

Improvements proposed in Section H will show that it is related to the Cessenat-Després method.

Dq 8 20 40 80
p(Mle) 1-0.0064 | 1 —0.0022 | 1 —0.0014 | 1 —0.00054

TABLE 1. Comparison of p(Mle) thanks to the power method, on different Dg in wavelength.
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F1GURE 2. Comparison of the convergence rate of the iterative Cessenat-Despres method in
function of the size of the domain.

Remark 3.5. Unless otherwise specified, the following configuration is considered for numerical experiments
All distances or lengths are given in wavelengths, ie k = 2.
The domain is of size Dq and is decomposed into elements T which are cubes of size Dy = 1.

The reflexion coefficient on O is denoted by Raq. In particular, we set Zsa = (1 — Roa)/(1 + Raq)
with Rgo = 0.9.

The number of plane wave basis functions is N = 52, that are homogeneously distributed in space.

4. NEwW ITERATIVE TREFFTZ SOLVER

In the present section, we propose alternatives to ensure the development of a robust Trefftz iterative method,
even with the presence of rounding errors. First, we will guarantee its convergence thanks to a preconditioned
Krylov method. Then, we resort to a reduction strategy to consider less basis functions providing a lower
numerical cost. Finally, we set up a global preconditioner to improve the convergence rate of the method.

4.1. Preconditioned iterative Trefftz solver

A large amount of Krylov type methods exist, see [b0]. In this paper, we focus on one based on the positivity
of the matrix A, e [x]*A[x] > 0. It is a variational method that resorts to Krylov spaces to reduce the
dimension of the Galerkin space, see [b1,52]. It can be interpreted as an iterative numerical method which
does not require the computation of the inverse of the matrix A. When associated to a restart strategy, this
method has a low memory cost and is appropriated to large numerical cases. Moreover, it is perfectly suited to
real positive matrices, thus adapted to the inversion of Problem J which satisfies [x]*A[x] > 0. The Galerkin
framework of the UWVF method leads to the introduction of the following iterative Krylov UWVF problem.

Problem 5. Setting xo = 0, compute the sequence (X, ), cn- such that x,, € K,, is the solution of

Find x, € K,, a(x,,x") =1(x), VX' € K,, <= Find [x,] € [K,], [x]"Alx,] = [X'|'F, V[x'] € [K,], (37)
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with K,, a linear subspace of Y%’- defined as: x,, € K,, is represented by [x,] € [Kn] through the bijection defined
by (@), where [Kn] is the Krylov space associated to A defined as

[K.] := span (AFF) =span{F, AF, A’F, ..., A" 'F}. (38)
0<k<n-—1

The convergence theory of Problem a is established thanks to the Galerkin theory of the UWVF Problem E
Proposition 4.1. Letx" € Y’%— and x, € K, be the solutions of Problems @ and B, respectively. The convergence
of the iterative Krylov UWVF method is ensured by

[x" — xn|pe < \/iynel%él %" = yll207)- (39)

Proof. Let us recall that we have ||x" —x, 3¢ = R(a(x" —x,,x" — x,)). Since a(x" —x,,,%x, —y) = 0 for all
y € K,,, we have
[x" = xn|De = R(ax" — x,,x" —y)) = R(x" — y]*Ax" — x,,]).

Since M is symmetric positive definite, we have

N

" =y AR x,] = [y MEM AR - x) = (M2 —y]) MTFAR" - x,].

Then, we apply the Cauchy-Schwarz inequality and we get

X" = xal2 < /(M3 [xh—y]) Mz[xh — y]/ (M~ A[x" — x,]) M~2 A[x — x,,],

< VI yFMXE —y] /(AR - x,]) MLAXE - x,).

Let us now prove that, for all [x] € C#dof (A[x])*Mfl(A[x]) < 2R([x]*Alx]). Using the Cessenat-Després
decomposition A = M — N, we get

(A[x])*M’l(A[x]) = [x]*M[x] — [x]*N[x] — [x]*N*[x] + [x]*N*M'N[x].

Let us take [z] € C#4°f set as [z2] = M~'N[x]. It leads to [x]*N*M~!N[x] = [z]*N[x] = k(x,z). Due to (iii)
of Proposition @, we have

X*N*MIN[x] < [|x]| 207 2]l 1207 = /[21"Mz] /[ Mx] < y/[x]*N*M-IN[x]/[x]“M][x].

Therefore, we get [x]*N*M~!N[x] < [x]*M][x], leading to

*

(AR]) M (AlX]) < 2[x]"M[x] - 2R([x]"N[x]) = 2R([x]"Alx]) = 2||x|[Bc-

The result follows from ||x" — x,|lpc < V2|x" — yllzzom)- O

We have not succeed to obtain an optimal estimate for the right-hand side of (@) Many convergence bounds
of the Krylov residual exist in the literature, see [21]. But these bounds are generally pessimistic. Practically,
Krylov solver often has a much better behaviour. Although we are aware of this aspect, we use the general
convergence theory of Krylov methods, see [52], to estimate the right-hand side of (@?

Proposition 4.2. Suppose that A is diagonalisable, ie A = XDX ™!, we have for x" € Y?—

o . p(A)
ylgﬁgllx —¥llz2(97) < min max A' £(M) £(X) 11y ) (40)

pEPY Aeoh
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A

where PY is the set of polynomials of degree < n satisfying p(0) = 1, o™ is the spectrum of A, k(-) is the

condition number and (Y%)* is the dual space of Y.

Proof. Let y € K,,. Thus, it exists ¢ a polynomial of degree n — 1 such that y = ¢(A)F. Since A is assumed
to be diagonalisable, ie A = XDX ™!, we have

X ([x"—y]) =D —¢(D)X'F.

Noting that the Euclidian norm of a diagonal matrix is the highest absolute value of its coefficients:

X7 " = y]f] < max

1 -1
5~ o] X

and using the estimate:

1" = y] I < XX [x" —y]
we can write
Ag(A)

1—
11" = 11 < o |52 w00 .

AEoh
with £(X) := [|X|| |[X~!|| the condition number of X.
We end the proof by using these following statements:
e the bijection ¢ € P,,_1 — p(z) = 1 — zq(x) € PY,
o Vz € Y,

I e

7 < l2llZe o) = (2" M [2] < M| [=1)°
O

The convergence rate depends on the spectrum of A and draws a particular attention to eigenvalues close to
0, see in red in Figure B. The fact that A is diagonalisable is theoretically discutable, even if it appears to be
in practice.

In the continuation, we introduce a preconditioned iterative Krylov UWVF method.

Problem 6. Setting x *° = 0, compute the sequence (x0'°°), . solution to: Find x5 € KP™°, or equivalently
[xbre] € [KPrec], such that we have

a(xP x') =1(x'), VX ekl «— [X]ARY]=[X]F, V[x]e [Ky], (41)

where the finite dimensional space KP™° is the image of [KP ] through (@) The space [KP*°] is defined by

~ ~ ke~ ~ ~n—lo
[KPree] .= M*%[Kgr“] with  [KP™] ;=  span <A F) = span{F,AF, ...,A F }, (42)
0<k<n-—1
where A = M~2AM~% and F = M~ 3F, leading to [KP*¢] = span{M~'F, ..., (M_lN)n_lM_lF}.

We remark that [x}2°] € C#9°f satisfying Problem H, also belongs to [KPrc], ie xja¢ € KP¢. Thus, we obtain
a convergence theorem for the preconditioned Krylov UWVF problem.

Theorem 4.1. The preconditioned Krylov UWVF method converges minimally at the same rate than the
iterative UWVF method. We have

%" = xP*IIpa < V2[x" — x| 1207 WS U (43)

Remark 4.1. From Proposition @ the convergence rate of xJ2¢ € Yh to x" € YT s p(M_%NM_%) <1
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Remark 4.2. The definition of KP*¢ in (@) and the Theorem B put forward the advantage to perform a
symmetric preconditioning of A with M-z,

The convergence rate of the preconditioned Krylov UWVF (resp. iterative UWVF ) solver depends on the
spectrum of A (resp. A), see Figure H (resp. Figure E) The spectrum of A is_contained into the unity circle
and graphically justifies the use of the convergence Proposition @ on Problem ff. We believe that the presence
of fewer eigenvalues close to 0 results in a faster convergence of the Krylov solver, see Figure Y. Moreover, A
has a lower condition number than A, see Table P, which testifies its better convergence properties.

(M)

ROA)

FiGURE 3. Real and complex parts, FIGURE 4. Real and complex parts,
resp. R(AY) and I(AY), of the spec- resp. R(X*) and I(X*), of the spec-
trum A of matrix A for Dg = 6. trum X of matrix A for Dg = 6.

Do || 1 | 2 | 3 |4 |5 |6
K(A) || 18.5 | 23.4 | 45.1 | 60.7 | 88.8 | 113
k(A) || 4.82 | 10.9 | 25.6 | 29.9 | 59.8 | 60.9

TABLE 2. Comparison of the condition number of A and A according to Dg in wavelength.

4.2. Basis reduction strategy

The preconditioning of the UWVF matrix A ensures the convergence of the preconditioned Krylov solver, see
Theorem {.1|. Previous work, see [3,[15, 10, 48], have shown that plane wave basis functions can be numerically
linearly-dependant in the sense that M has small eigenvalues. A rounding error on smallest eigenvalues of M
gives rise to a large error on M2 and impacts the convergence of the Krylov solver. Thus, we reduce the
Galerkin space Y’;— by keeping only the eigenvectors associated to the highest eigenvalues. This will ensure a
representation of x € Y%L— filtering the numerical noise in the plane wave basis, through (Bll). The diagonalisation
of the hermitian matrix M representing the L?(97) scalar product, see (BH), is

M = TAT* with T € C#IX#l and A e CHoPx#dol,
where T is the orthogonal eigenvector matrix and A is the diagonal eigenvalue matrix satisfying

AL > Ao > o 2> Apdor With Aj = Ay
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When performing the basis reduction, the orthogonal matrix then becomes rectangular

(Tred)i,j = (T)i’j for i= 1, #dOf andj =1, #dofred, with )\#dof > e > )‘#dofredJrlv

red —

where the small threshold coefficient € selects the largest eigenvalues. It leads to the following reduced iterative
UWVF Galerkin problem. This problem involves less unknowns and is therefore less costly to solve numerically.

Problem 7. Let Y?—yred be the linear subspace of Y?— parametrised by [Xyeq] € CFOfed | Any element X,eq €
YhTJed is given through

#dof .
x = Y KigopW5?,  with [x]:= Trea A3 [Xyeal- (44)
iglob=1

Find Xieq € Yhﬁred, or equivalently [Xyeq] € C#4ted | such that we have
a(xred7x;ed) = l(xied)7 VX;ed € Y'}7L’,red — [x;ed]*Ared [Xred} = [X;ed]*Fred7 V[X;ed] € (C#dOfred’ (45)

with
1 1 1
Ared =A 3T AT ca A, and Freg:=A ;T F. (46)

Since Y?—’red C YhT, the convergence theory established in Proposition @ remains true for the reduced system
(@) Therefore, Theorem leads to a convergent iterative reduced preconditioned Krylov UWVF method.

Remark 4.3. Let us notice that M becomes the identity matriz of dimension #dof eq

_1
2
red’

1

Lieq := Arej :edMTredA
which leads to a significant memory gain, particularly for large cases ie (DQ)S > 1003 in wavelength cube, since
the iterative algorithm (B4]) becomes

[xjs_f_l] = N,oq[xI%] + Freq, with Nyeq := Ar:j T;‘edNTredA;ec%1 and [X%ac] =0.

The number of basis functions after reduction, denoted by Nyeq, depends on the value of the threshold e
and on the size Dy of each element, see Table . When the threshold ¢ is sufficiently small, ie ¢ < 1074, the
convergence rate is the same, see Figure [1, leading to the same accuracy of the numerical solution visualised in
Figure . As soon as € > 1072, the convergence is faster in terms of iterations. But, the obtained numerical
solution does not approximate the physical phenomenon anymore, see Figure H where e = 1072. Consequently,
to get a numerical solution of a given accuracy, the solver can use 16.5 GB instead of 275 GB without reduction,
ie Nyeq = 48 instead of N = 196 basis functions, see Table fl. In any reduced configuration, the iterative or the
direct solver is also faster in terms of time since we perform less costly matrix vector products, see Table {.

Remark 4.4. Figures B, B, B and are given for Do = 40 and Dr = 0.25 in wavelength, and respect the
configuration mentioned in Remark |3.4.

4.3. Global algebric left-preconditioner

The non-local aspect of wave propagation encourages to set up a global preconditioner. A popular approach
has been introduced in [b5]. We propose an alternative which is based on the different subsets of faces of the
cubic elements.

Definition 4.1. Let us consider an element T € T. We denote by
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“ll10-16|10-2%|10-13| 10~ | 107 | 10-7 | 105 | 10~ | 102 | 102

Dr
025 | 180 | 175 | 154 | 126 | 96 | 70 | 48 | 36 | 30 | 16
0.5 196 | 196 | 190 | 186 | 174 | 132 | 96 | 84 | 70 | 48
1 196 | 196 | 196 | 196 | 196 | 190 | 180 | 174 | 148 | 114

TABLE 3. Values of N..q when reducing the basis of size N = 196 according to € and Dy in wavelength.

€ 1076 {107 107" | 107 | 1077 | 107> | 107* | 1073 | 1072

Nred 180 | 154 | 126 96 70 48 36 30 16
Time (s) 4121 | 2936 | 1888 | 1085 | 496.1 | 254.9 | 141.8 | 99.68 | 25.61
Memory cost (Gb) || 0.151 | 0.129 | 0.105 | 0.080 | 0.058 | 0.04 | 0.03 | 0.02 | 0.01

TABLE 4. Numerical data: basis reduction treshold e, number of basis functions after reduction
Nieq, time to get the numerical solution, for the reduced Krylov solution, with a size of Krylov
space set to 100, in function of the chosen basis reduction treshold e for Dy = 5\, Dy = 0.25
and V = 196.

) (CCCERK

Electromagnetic Field Magnitude Electromagnetic Field Magnitude
0.0e+002 4 6 8 1lle+0l 0.0e+002 4 6 8 1lle+0l
FI1GURE 5. Magnitude of the electro- FIGURE 6. Magnitude of the electro-
magnetic field in a slice view of a magnetic field in a slice view of a
three-dimensional cup for N,.q = 24. three-dimensional cup for N,.q = 48.

(i) FI the set of the left and right faces of T,
(ii) ]-'yT the set of the front and back faces of T,
(iii) FZI the set of the bottom and top faces of T.

The set T is divided into one-dimensional subsets, either in x, y or z direction, see Figure . These one-
dimensional subdomains lead to three singular regular decompositions M — N of matrix A (see [L1]) which are
associated to the following sesquilinear forms.



22 ESAIM: PROCEEDINGS AND SURVEYS
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Number of GMRES iterations

FI1GURE 7. Comparison of the convergence rate of the preconditioned Krylov UWVF with basis
reduction for different values of the threshold €.

Definition 4.2. For all x € Y}% and for all X' € Y, we define the three sesquilinear forms K*/¥/% and their
associated matrices N*/¥/2 g C#dofxitdof ¢

Y2 (x, %) = Z Z (HuX,UTX/>L2(F) = [X]N¥Y/7[x].
TeT Fe]:g;y/zﬁ}—int '

Moreover, we define the associated three reqular matrices as MX/Y/% .= A + N*/¥/z,

Cessenat-Després decomposition Decomposition in y direction

=,
H
Hy

Z[ y x direction
Decomposition in x direction Decomposition in z direction : (

Nt Z—/ “HAA ¥

M N*

2 1
N \\ H

Hy

z direction y direction

FIGURE 8. Matrices structures for the Cessenat- FIGURE 9. Global
Després decomposition and the decompositions in x,y one-dimensional sub-
or z direction, for Dg = 3 in wavelength. domains in a cube, for

Dq = 5 in wavelength.
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S(APreahsea)

i R(APreatired)
0 0f. 2
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Ficure 10. Real and complex parts, Ficure 11. Real and complex parts,
resp.  R(AAved) and F(AAwed), of the resp. R(APreahred) and F(APreahred),
spectrum AAred of A 4, for Dy = 6. of the spectrum APreafAred of P A ed,

for DQ = 6.

Then we get three iterative schemes, leading to left preconditioners
MY/2[x, 1] = F + NY/7[x,].

By applying successively each of these one-dimensional preconditioners, we get a global preconditioner in-
volving the three directions x,y and z. The latter associates F to [y] thanks to intermediate solution vectors
[x%.,] and [x} ] through the following iterative scheme

M), = F + N°F
My[x711+1] =F+ NY[X2+1]7
M7y = F + NZ[X,ILJFI].

Thus, we obtain an iterative method of the form [x,+1] = P¥*F + Q¥*[x,]. Taking [xo] = 0, it leads to
an approximation of the solution to the problem A[x] = F. Therefore, this iterative method defines a global
preconditioner that can be applied to the non preconditioned Problem ,

PY*Alx] = PYF, where P¥%:= (M%)~ — (M?) 'N*(MY)"

+ (V7)) TINE (W) TN (V)
where we choose to use left-preconditioning. We can resort to the same method for the preconditioned Problem B
or the reduced preconditioned Problem [. We do not provide any theory ensuring the convergence of the reduced
left-preconditioned Krylov solver associated to PY5. However, it is well-known that few isolated eigenvalues
do not cause any problem to the Krylov solver. In the numerous numerical cases that we considered, the
spectrum of PfgéAred is concentrated around 1 (see Figure [L1)), removing the small eigenvalues of A,qq (in red
in Figure [LJ) which are slowing down the convergence (see the blue curve in Figure @) The results shown in
Figure [L2 point out the smaller amount of Krylov iterations when using the reduced left-preconditioned matrix
P A

CONCLUSION

In this paper, we have introduced an heterogeneous iterative Trefftz method solving three-dimensional
Maxwell equations. As all iterative methods, the present solver does not need to store the LU factorisation
of A and can be matrix-free. The latter speed-up accelerates the convergence such that it takes a few minutes
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F1GURE 12. Comparison of the convergence rate of the preconditioned Krylov UWVF using
either A, eq or P:ZéAred.

to solve Maxwell equations on small heterogeneous domains, 7.e. up to Dg = 40. This memory gain has been

strengthened thanks to a basis reduction proposed in Section . This compression method turned out to
be a successful development, reducing the memory cost of the heterogeneous preconditioned Krylov UWVF
solver. It enables to consider large complex geometries, see Figure [L3. Nevertheless, this basis reduction should

be applied reasonably (ie a good choice is ¢ = 107%) to use enough basis functions to describe the numerical
solution. Moreover, the introduced Trefftz Krylov method is accelerated thanks to a new global preconditioner.

However, on some configurations, direct methods outperform iterative solvers since they can deal with many
right-hand sides, see [@] Judicious choices should then be made depending on the numerical case. But research
on Krylov solvers efficiently dealing with multiple right-hand sides remains an active topic, see [E,@] It could
then be preferable to use Krylov methods instead of direct solvers in the future.

To end this paper, let us consider an industrial application which consists of a radar echo on a boat. This
large heterogeneous configuration is a boat surrounded by an homogeneous domain of size D = 24 X 61 x 154 in
wavelength and satisfying Zsq = 1. The boat has a perfect metal surface, such that the incident electromagnetic
wave perfectly reflects when striking its top, see Figure [L3. This large three-dimensional case is sped up thanks
to a Cessenat-Després preconditioner. It also requires a restart strategy to fit into a 1 Terabyte Broadwell Intel
Xeon CPU E5-2650 node. Our ways of checking the accuracy of this result are limited due to its dimensions,
see Table . We ensure that the Krylov residual is 1073. The large dimensions, and the heterogeneity of this
numerical case both emphasize the robustness of the developed iterative Trefftz method.

FIGURE 13. Visualisation of an electromagnetic wave striking the top of a boat.
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#elem Nied | N #dof eq #dof Krylov iterations | Memory cost | Total duration

>14.4x 105 | 46 |52 | > 663 x 105 | > 750 x 106 473 ~ 836 GB 37.8 hours

(1]

TABLE 5. Numerical data and results associated to the boat case, see Figure B
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