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ULTRA-WEAK VARIATIONAL FORMULATION FOR HETEROGENEOUS
MAXWELL PROBLEM IN THE CONTEXT OF HIGH PERFORMANCE
COMPUTING

SEBASTIEN PERNET!, MARGOT SIRDEY? AND SEBASTIEN TORDEUX?

Abstract. Electromagnetic simulations on large domains require a huge memory consumption. Do-
main decomposition methods, based on Trefftz methods, could be an answer to this issue. In this
paper, we associate to heterogeneous three-dimensional Maxwell equations two equivalent variational
formulations. One is based on upwind fluxes and the other one is based on fluxes introduced by O.
Cessenat and B. Després. We associate to these variational formulations an iterative Trefftz GMRES
solver. The poor conditioning due to the use of plane wave basis functions is bypassed thanks to a
compression strategy. Moreover, the developed iterative solver is accelerated thanks to a left precondi-
tioner. The considered numerical cases illustrate the performance of this basis reduction, which leads
to the consideration of an industrial case of more than 750 millions of degrees of freedom.

INTRODUCTION

Electromagnetic waves are present in a wide panel of applications, such as transports, high-technology or
medicine. Their numerical modeling remains a challenging topic when considering complex industrial geometries.
Some numerical methods can simulate accurately electromagnetic fields such as Finite Element Methods (FEM)
[29,[37,142], or Finite Difference (FD) [53]. However, they face two main issues: the numerical dispersion and
the memory limitation.

First, numerical dispersion, see [1,[2|35,|36], appears when the size of the domain is large with respect
to the wavelength. In such cases, wave phenomena are oscillating and non dissipative. Then, the number
of discretisation points per wavelength increases with the size of the domain to accurately approximate the
wave phase. Many methods may partially counter this problem, such as high-order FEM [13}/44], polynomial
Discontinuous Galerkin (DG) [14}/19.122,[28}33,[58], Boundary Element Methods (BEM) [6}45./52,|57], integral
equation collocation method [5], or Trefftz type methods [31,|49]. The latter are at main interest in this paper.
They take into account local basis functions adapted to the electromagnetic phenomena such that they reduce
numerical dispersion. However, these methods are associated to linear systems which are often inverted thanks to
direct methods. More precisely, the three-dimensional aspect leads to matrices with a large skeleton. Therefore,
their LU factorisation is extremely costly to store. It is then needed to choose the method depending on the
studied geometry. Condensation methods, such as Hybrid DG (HDG) methods [12}/43//46] have been introduced
to reduce the number of degrees of freedom. Nevertheless, these optimisations are not sufficient to simulate
electromagnetic waves on domains whose size is larger than 30 wavelengths. For BEM, this issue has been solved
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thanks to compression methods like Fast Multipole [16}/17] and Adaptive Cross Approximation methods [4,38|,
for example. But, implementation of BEM in the case of heterogeneous structures is a really hard task.

When dealing with larger heterogeneous geometries, the indefinite property of the matrix associated to most
volumic methods prevents the use of algebraic iterative inversion. Many authors propose Domain Decomposition
Methods (DDM), see [20,56] for example, but DDM are often difficult to carry out in the context of High-Parallel
Computing (HPC) architecture. The Ultra-Weak Variational Formulation (UWVF) methods [7}/10}/18})34,40,55],
developed by Cessenat-Després in [9], are conversely naturally adapted to domain decomposition since they
involve definite positive matrices. Consequently, UWVF is easily implementable in HPC framework. Trefftz
methods often use plane wave local basis functions, see [24126}27,/41], but we could have chose spherical Bessel
functions [39]. Practically, the advantage of using such basis results in an easy implementation. But plane wave
basis functions difficultly approximate high-complexity electromagnetic waves such as point effects at corners or
trapped waves in elaborated heterogeneous configurations. Moreover, they often provide ill-conditioned linear
systems, due to rounding errors caused by plane waves linear-dependency, see |15]. This may conduct to a lack
of accuracy for the numerical solution. To avoid such issue, previous works have developed strategies, for which
we propose some improvements here, see |15/40]. For homogeneous cases, the convergence of the method is well
established, see [30].

Here, we aim at developing an iterative Trefftz solver using few memory and leading to an accurate numerical
solution. The developed method is called the heterogeneous Cessenat-Després UWVE.

This numerical method resorts to Maxwell equations to model electromagnetic waves. In the present paper
we study a dimensionless Maxwell problem which needs to be constructed. We recall the general Maxwell
formulas in absence of charges and currents and for an isotropic linear medium

ob
v-d = 0, Vxe = T d = ¢pere,
V-b = 0, Vxh = ?9—(:, b = pop-h,

where g (resp. &, ) and pg (resp. p,) are the permittivity (resp. relative permittivity) and the permeability
(resp. relative permeability) of the vacuum (resp. of the medium). This system involves the electric and
magnetic field intensities e and h, the electric displacement d and the magnetic induction b. We suppose they
are all time-harmonic fields. Therefore, they can be represented by four complex valued normalised functions
E, H, D and B which are associated to their normalisation amplitudes eg, dy = eoeq, ho = v/€0/ 10 €0 and

bo = \/€ofo €0,
e(x,t) = eoR (exp(iwt)E(x)), h(x,t) = hoR (exp(iwt)H(x)),

d(x,t) = doR (exp(iwt)D(x)), b(x,t) = boR (exp(iwt)B(x)),

where w is the angular frequency that accounts for time-harmonic dependency. We define the wavenumber
1

ko = w/co, where ¢y = (eguo)~ 2 is the velocity in the vacuum. We get the following Maxwell normalised

problem defined on a connex Lipschitz domain Q C R?

VxH=ikje,E and V xE=—ikou.H, on, (1)

where both fields are in the space H(Vx, ) defined by

H(Vx,Q):= {u:Q—>(C3,/ |u|2dx<oo,/|V><u|2dx<oo}.
Q Q
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The unknown of the problem is denoted by E := (E, H). The problem ([1) is well-posed (see [42]) when completed
by an impedance boundary condition defined on the domain boundary 0f2

YwE+ Zsgon x vyH=g on 09,

where we have the following definitions and notations:

n € R? is the outward unit normal to 0%,

Zaq : 00 — RT is a piecewise constant function, with a strictly non-positive real part,
wE=E— (E-n)n=(nx E) xn is the tangential component of the electric field,
v+H=H—- (H -n)n = (n x H) x n is the tangential component of the magnetic field,

e, and j, are piecewise constant functions defined on a partition of €, which is Q = 1U Pﬁp, with P
p=1,...,

subdomains denoted by ,, and Q, N Q, =0, if p # q.
g : 9Q — C3 is a purely tangential field in the following functional space

L2(09) = {u € (£2(09)°, u-n= o}.

The main goal of this paper is to develop a numerical method approximating accurately the solution to the
Maxwell problem, with a low memory cost. In Section [T} we introduce the mesh associated to the domain € and
its properties. Afterwards, we design an heterogeneous plane wave mixed DG Trefftz variational formulation
based on upwind fluxes; mized in the sense that it involves both the electric and the magnetic fields. The
well-posedness of the associated problem is proved thanks to a weak coercivity property. In Section [2} we bring
to the fore the equivalence between the mixed DG Trefftz formulation and the heterogeneous Cessenat-Després
UWVF. Then, the Trefftz UWVF problem is discretised, leading to a matricial linear system, which can be
inverted with LU solver. However, due to the memory challenge, we opt for an iterative Trefftz UWVF algorithm
based on a singular regular decomposition of the matrix. In Section [3| we associate to the constructed iterative
scheme a General Minimal RESidual (GMRES) method. The latter method, combined with a preconditioning
strategy, is proved to be convergent thanks to Galerkin theory. Thereafter, we set up a compression strategy
reducing the number of plane wave basis functions in the discrete Galerkin space, leading to a memory cost
reduction. Finally, a global preconditioning aims at accelerating the Trefftz GMRES UWVF solver.

1. MIXED DISCONTINUOUS GALERKIN TREFFTZ FORMULATION

In this section, we devise a mixed DG Trefftz problem based on upwind fluxes. This goes through the
introduction of Trefftz spaces and the reciprocity formula. Finally, we establish a weak coercivity property and
show the well-posedness of the associated variational formulation.

1.1. Mesh properties and Trefftz spaces

We consider a three-dimensional mesh made of non-overlapping polyhedral elements T' meshing the compu-
tational domain €). Indeed, we choose a mesh that follows the partitions €2,, 1 < p < P, of €2, in which e,
and pu, are constant. It means that there exists a unique 1 < pg < P such that T' C ,,,, leading to piecewise
constant functions €, and p,.. We denote by T the set of elements T" and by F the set of faces F' in Q. We
define the following sets of faces:

e The set Fiy of interior faces
Fint :={0TNOK : T,K € T with T # K and area(0T N IK) # 0},

where area(I) refers to the area of the face I (that is zero for edges and vertices).
e The set Fext of exterior faces

Fext :={0T NN : T € T and area(0T N ON) # 0}.
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e The set Fr of faces associated to an element T € T
Fr :={F € Fint U Fext : area(FNIT) # 0}.

We denote by Xr the local Trefftz space defined for T' € T as the set of functions

ET .= (ET,HT) € H(Vx,T) x H(Vx,T) satisfying (2a)
VxH" =ikye,E'  and V xE" = —ikopu,H', onT, (2b)
vET € L2(0T) and vHT € L2(07), (2¢)

where E7 and H” are the restrictions of the electric field E and the magnetic field H on the element 7. The
space Xp is equipped with the inner product parametrised by o« > 0 and 5 > 0

ET,ET)x, = / (oz wET . ~ET 4+ gyHT . ’ytH’T) dsy,
or
where dsy is the Lebesgue measure associated to surfaces of the three-dimensional mesh.

Remark 1.1. Due to the unique continuation theorem, the pairing (-, )x, s an inner product which means

ETENx, =0 = ~vE'=0andyH" =0 on 0T E' = (BT, H)=01inT.

It leads to the global discontinuous Trefftz space X7 defined element by element by

Xy = H Xr, equipped with the norm (E,E')x, := Z (ET, BT,
TeT TeT

Remark 1.2. Every function E = (ET)rer € X7 is associated to a function defined on 2 whose restriction to
T is ET. Each ET = (ET,HT) satisfies and E is generally discontinuous across faces.

We define the global discrete Trefftz space X/, that is a finite dimensional linear subspace of X7, as

xth = ([T ¥4) < X7
TeT

The local Trefftz space X% = span{veT € Xp,l =1, NT}, where the functions vgn are electromagnetic plane

waves, with direction d4 and polarisation p%., which can be chosen as
vh = (ET,HT) € X¢ with ET :=pf efovemdix and HT := Zy(ph x df) ehovamde=(3)

with Zp = y/€l' /ul a normalised impedance defined on T'. More precisely, dZT € D, a finite discrete subspace of
the unit sphere, and pr € S4, an orthonormal basis of the two-dimensional linear subspace (d%«)l C R3. Many
different choices for the definition of D exist. Directions are given by the vertices of the triangular mesh surface

of the unit sphere, or the surface mesh of a unit cube. For a complete plane waves approximation theory, one
can refer to [32,/41].

1.2. Trefftz reciprocity formula

We introduce the reciprocity formula, also called the virtual work formula, which involves the restrictions on
T € T of the tangential component of the electric field and the tangential trace of the magnetic field

wET = (nT X ET) x nr and ’yZHT =np x v, HT, (4)
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where ny € R3 is the outward unit normal to 9T .

Proposition 1.1. For E € X7 and E' € X7, the global reciprocity formula is
r(B,E) =Y rp(EE) with rp(E,E):= / (VZHT BT + 4 ET ~7£H’T> dsx = 0. (5)
TeT or

Proof. The reciprocity formula takes the following form, with E* = (E”,H”) and E”" = (E"7,H'") in X7,
Wr = ik:o/T &ET BT+, HT -HTAT, forTeT.

Since both the solution ET € X; and the test function E'T € Xy satisfy , we have

WT:/TV ><HT-ﬁ—vxET.ﬁdT:/THT.W—ET-WdT.
By subtracting these two last expressions of Wy, we have

/Tv xHT-W—HT-WdT+/TET-W—V x ET-H'TdT = 0.

Due to the Stokes formula (see [42]), we get the local reciprocity formula

rr(E,E') = /aT(nT xHT)-ET+E" (ny x HT)ds, =0, for E and E’ in X7.

We end the proof by using definitions . O
Remark 1.3. We remark that 0T can be decomposed into faces F € Fr leading to

> anTdsx => > /Fdesx, (6)

TeT TeT FEFT

for any piecewise continuous reqular function f whose restriction on one element T € T is denoted by f*. The
reciprocity formula 1s then equivalent to

re(E,E) = Y / <7§HT -ET +4ET . WZH’T) ds, = 0.
FeFr F

1.3. Mixed Discontinuous Galerkin Trefftz variational formulation

Following the same approach than for polynomial mixed DG methods, see [22,[32], the mixed DG Trefftz
formulation is deduced by inserting upwind fluxes, see |47], into the reciprocity formula .

Problem 1. Find E € X1 such that for all E' € Xy

S S [ (B ATHT 4+ TH BT g "
TeT FeFr '

with interior upwind fluzes for F' € Fiy separating two elements T and K defined as

- = Z Z = 1
(%E)|F = T_fZTVgutET ——— T EX and (VEH) p = = Yo"

T K
= E 8
e ¥ Zi + Zr "  (®)

Y - ¢
+ ZK + ZT’Yout
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and boundary upwind fluxes for F € Fexy defined as

o Zasz T T ZT

1
E = =% +
(n )‘F ZBQ‘FZT’Y ¢ ZaQ+ZTg

1
T T T
= s E + =
|F Z@ A out ) (9)

oond (vH) ZaQ—I—ZTg

where the general incoming and outgoing wave trace operators Wij;l/out : Xp — L2(0T) are defined by

YmE" =BT+ ZpylHT and AL BT =y ET - Zpy[HT (10)

Remark 1.4. For this particular choice of numerical fluzes and @D, the exact solution satisfies

(’YtE)|F = ('VtET)|F = (%EK)|F and (’YZH)\F = (VZHT)W == (7§HK)|F'
Therefore, the variational formulation of Problem[] encodes the continuity of its solution.

Remark 1.5. An exterior face F' € Fexy can be seen as a face interfacing an element T' and a virtual element
exterior to the domain. More precisely, denoting by Zaoq = Zx and gt = vK EX, @ can be seen as .

Problem [I] can be interpreted as a variational problem and leads to the following proposition.

Proposition 1.2. Problem[]] can be written as
Find E € X7 such that for all E' € X7 we have a(E,E’) = ((E'), (11)
where the sesquilinear form a and the linear form £ are given by

WEE) =3 Y / (a2 + Bt + ol ol ) sy, (12a)
TeT FeFr ' F

@) =% ¥ / (e%jF M;{’F) dsy., (12b)
T€T FEFrNFoxs ¥
where we have if F € Finy separating two neighboring elements T and K

/ 1 —— ’ ZT T
afF = g (WET - yBY) BT, eff = = (WBT - BN - H T,
(13a)
oHE .= 7ZK (WTHT _ »),THK) -y ET qHH . M(VTHT _ 'yTHK) ATH'T
T, F ZT 4 ZK X X ’ T, F ZT 4 ZK X X X ’
and if F' € Fext
BB = _ wET . ET,  oFH = _r wET - ATHT
o Zr + Zog CohE Zr + Zoo S
/ Zo9) —F ' Zr Zoq T
HE  ._ TyxT T HH' ._ TyT A TyT
a — 29 THT LET, q = LT 200 TyT JTHT, 13b
T.F Zr + Zsa T " nE Zr + Zoa T (13b)
’ 1 E—— ’ ZT e S ———
E = —— ol . FET Iz =" T . NTHIT,
T,F Zr + Zan Tt ) T,F Zr + Zagg T

Proof. Problem [1] reads

% /Imdsx =0, with Zpp = 3E-7THT +4TH - 5,ET.
TeT FeFr ' F
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(a) If F € Fing, using the definition of the numerical traces , we have

’YIutET + ZK7+ Zr ’YcﬁtEK) - ET

VA Z — 1

Zx + Zr Zr + Zi

Taking into account the definition of the outgoing trace operator in 7 we get

ZK T TyyT ZT K Ty K T TyvT
7 :[7 ET — Z2,0THT) + — 2T (EX + 7,7 TH ]-TH’T
= (e Ty H) + Tt 7 7 kY HY) 2]
1 1 S
+[—7 ET — 22 THT) + —— (EX + ZrTH } BT,
7 7 (7t ryH) + T 7 (e kYEHR) | -y

Expanding, we have

(ZgwE" + ZrnEX) (ZryEHT + Zgy T HE)

T = . TH/T . E/T __ _EE’ __HH’
T,F ZK + ZT T + ZK T ZT Yt QT P aT -
Z Z Z Z
We then remark that K T d it X = 1. This leads to

+ =1 an +
Zx+Zr Zg+Zr Zoa + Zr  Zpa + Zr
Irp = wET A THT + 4 THT . ET — o8 (B0 HE I (14)

(b) If F € Fext, we have in the same way

Trp = wE" -/ THT 4/ JH" 4 BT + (7 + 7 —aff —aflf — ol f —off. (15)
Proposition follows from , and the reciprocity formula . O

1.4. Weak coercivity property

The well-posedness of Problemrelies on the coercivity of the sesquilinear form a defined by ((12a)). It implies
the study of the problem stability through interfaces F' € Fiy¢ involving the jump of the tangential trace (resp.
component) of the electric (resp. magnetic) field, respectively defined as

[vE])r := wET —%EX and [v<H]p := +ITH? —7THE, (16)

Proposition 1.3. The sesquilinear form a is positive since R(a(E,E)) > 0. We define the DG norm as

IEllpc = /R(a(E,E)), forall E e X, (17)

for which we have the following properties

() EIRc = IElZ; + IElZ with

E — E B ZrZk_ H o ds,

Bl = 3 [ (G bl BiElr + 222 [y, e FoHE ) b,
Zr Zoq

E = —yE-yE ——:H- H)dx

I szj/ B R 2 ) 6

(i) «(E,E)=0 = E=0.
The proof of Proposition resorts to the following remark.
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Remark 1.6. Fach face F' € Fiy is involved twice in the sum @ of Remark . Thus, we can decompose the
integral on 0T by using a ”face point of view”

Z desx— > /desx+ > /fT-i-desx,

TeT FeFoxt FEFint

where, in the right-hand side, T' (resp. T and K ) is one element (resp. are two elements) with one face F'.

Proof. (i) Using (12a]), we can write the real part of a as

Z Z / aTF+aTF+aTF+aTF)de

TeT FeFr
(a) We first show that

Z / (af'f + af F) dsx = 0. (18)

TeT FeFr
_Il

We evaluate I}’ r by distinguishing the cases of an exterior face F' € Fox and an interior face F' € Fips.
For F' € Fint, using the definitions of forms ([L3al) and taking into account that R(z7) = R(yT), we have

Zr T

e = R(g 7 7 B = uBY) ATHT + 225 BT ((THT -1 THF)),

B §R(%ET STHT - 2 g STHT . W)
x Jr + Zx X Zr + Zg X
In a similar way, using (13b|) for F' € Fext, we get

Zr S
Il = %<7 ET HT el L L ET THT) _ §R ET- THT ]

T.F 77+ Zon Mt + Zn + Z Tt v (e yTHT)

Since §R(rT(]E E)) =2 Z / %ET EHT), see Remark and summing over F' € Fr we get

FeFr
Z/ITFdsx:%%(rT(E,E))— > / ~ Z —— yEX. fHT+%%ET HK)dsx
FeFr N————— FEFrNFint T+ T+ K
=0 see (5)

Summing over elements, we then take the face point of view of Remark

TwaT “KTiT ZK —_ [
FeEFint
Remarking that 77 + 7% = 0, we finally have (I8).

(b) It remains to evaluate

- Z/%aTF Jds, and TP = 3 Z/ma” ) dssc.

TeT FEFr TeT FEFT
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We use again (|13)) and sum over elements, thus differentiating interior faces and exterior faces

=2 2 / ZT+Z 7tz (B nER) ”YtET> dsxtd Y / ZT+Za Tt o B %ET) dsx.

TeT FEFrNFint TeT FEFTNFoxt

Assembling following a face point of view (see Remark , we have

1 1
72 = = (wET - EE).ET 4 - (EE — 4ET EK)dx
F;/ ZT+Z(t YEX) v, S (e YET) v, s
1
) _ - ET. ET>dx
+ i / 7+ Zoo Ve Yt s

Using the electric field jump definition in , we get the following formula for Z2, which vanishes for F' € Fiy,

=) /7[[%E]]F [vElrdse + > /7 v ET - 3 ET ds,.
FeFint Zr +Z FEFoy ZT+ZBQ

With a similar reasoning and the definition of the magnetic field jump in , we also get

ZrZ ZrZ. R
=Y /Z T+§ [v<H]r - [7<Hlpdsx + Y /Z T+ZQ 7B -y THT ds,.
FEFint T FEFoxt T o

We have finally proved the proposition since [|[E[|3q = R(a(E,E)) = Z? + Z°. O

Proof. (ii) Let us prove the injectivity. Since a(E,E) = 0, we have ||E[%, = 0 and therefore
[E]r =[vxH]r =0, onF € Fy and yE= 'yZH =0, onF € Fet. (19)

We recall that if ET satisfies and 3F € Fr such that wET = 0 and vZH? = 0 on F, then by unique
continuation E7 = 0. Let 7 C T be the set of elements satisfying T = {T eT ‘ ET = O}.
We will show that 7 = 7.

(a) The set T is non-empty since ET is vanishing in any element T with one face F' C Fr included in the
exterior boundary Fext, see ((19).

(b)) Let T € T and K € T with a common face F € Fy N Fx. Let us show that T € 7. Due to (19), we have

WET =y EX =0and vTHT = v fHX =0omn Fe FrNnFx = E'=0inT = TeT.

unique continuation

(¢) It follows from the completeness of the neighborhood graph that 7 = T. Thus, we have ET = 0. (]

The uniqueness of the solution to Problem [1|is proved in (ii) of Proposition Its existence is ensured by
the fact that the solution to , see [42], is also solution to Problem However, it does not mean that the
variational formulation , with the form a given by , is well-posed for every ¢ € (X7)*. This question
remains an open problem.

2. CLASSICAL ITERATIVE TREFFTZ SOLVER

The following section aims at devising a generalisation of the UWVF for heterogeneous media, based on
Cessenat-Després trace operators (see [9]). Moreover, we show the equivalence between the Trefftz variational
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Outgoing trace Volumic space Incoming trace

Vi 1 1 \
. h) 4
Upwind flux T ET L , BT : yvE ATET
3 : out 1 1 in
point of view . \ L 1
o 1 r Al 1
S(z;t (’YOut ) ! : : ST (711’1) !
Cessenat- (T — - : :
Després flux x7 UT) ™t =AL 0 SE ' ' UTx"
point of view : : — — 3
: : ut = f)/in © Sout

FiGure 1. Comparison between the upwind flux and the Cessenat-Després flux points of view.

formulation based on upwind fluxes, see Problem [I} and the generalised Cessenat-Després UWVF. Then, an
iterative Trefftz method based on Cessenat-Després numerical fluxes is introduced. Finally, we construct a
discrete direct problem and a discrete iterative solver whose convergence is theoretically established.

2.1. Cessenat-Després heterogeneous Ultra Weak Variational Formulation

Let us first introduce, for each T' € T, the Cessenat-Després operator U7 associating to the outgoing trace
xT' of an electromagnetic field its incoming trace U7 x” (see Figure |1)

Yout () Ve T’Yx ’7m ' Ve T’7>< ( )

More precisely, the operator UT : L2(dT) — L?(9T) is defined by UT := 4L o ST with the solution operator

ST L3(0T) — X, xT' +— ET satisfying and v ,ET = xT. Using above definitions, the electric tangential
component and the magnetic tangential trace can then be deduced
1
wET = = (UTXT +x") and yLH" = U"x" —x"). (21)
2 2ZT

Problem [I] can be rephrased with Cessenat-Després notations. Indeed, by artificially adding and subtracting
x” to upwind numerical fluxes and @D, we have for F' € Fp

— — —_— 1

(0B )y = 5 (U7%),, +x7) and (1H) , = 57 (U7 —x"), (22)

where UTx is the Cessenat-Després numerical flux associated to the element T defined by

e ZK—ZT T QZT

T o K .
(Z/{ X)‘F = 7. +ZTX + 7 +ZTX for F' € Fint, (23a)
e Z(')Q — ZT T QZT T
UTx == x' 4+ for F' € Foxi- 23b
( )‘F Zoa + Zr ZaserZTg * (23b)

Remark 2.1. As for Remark the formula (23b]) can be seen as the interaction with a virtual element K,
when setting Zoo = Zx and g' = xK
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When replacing numerical fluxes in Problem we get for all X' € L2(9T) : H L(0T)
TeT

T T/ T -0
Z/BT UxZ/lx’)dSXO

TET

This leads to an alternative formulation called the Cessenat-Després heterogeneous UWVE.

Problem 2. Find x € L7(dT) such that for all x' € LZ(dT) we have
/ 7 ’ _
(x,x )L?(m_) — (UX,UX )Lf(aT) =0, (24)

—\T —
where <L{x) =UTx, UX)" :=UTX'T and the weighted scalar product on L2(T) is defined as

(x,x)20m) = Z(XT ") 20m) = Z/ Z %" x'T ds,. (25)

TET TeT

As illustrated in Figure[T] a link is estalished between Problem [2] based on heterogeneous Cessenat-Després
fluxes, see and , and Problem based on upwind fluxes, see and @D

Theorem 2.1. Problem 1 is equivalent to Problem 2 in the following sense

e Ifx is solution to Problem|q then E defined by ET ST . xT is solution to Problem |1
e IfE is solution to Problem |l then x defined by xT' = 4L \ET is solution to Problem |2

Moreover if x is solution to Problem @ then it is also solution to the variational formulation .
Taking into account , we obtain the variational formulation of Problem

Proposition 2.1. Find x € L?(9T) such that for all x' € L?(9T)
a(x,x') = 1(x'), with a(x,x')=(x,X)2(07) — k(x,%x'), (26a)
where the sesquilinear form k : L?2(9T) x L?(0T) — C and the antilinear form 1 : L?(0T) — C are given by

. / AN /
k(x,x') := (HuX,Z/{X >L§(8T) and 1(x') := (gu,l/{x >L$(8T)7 (26b)

with Ty : L2(OT) — L2(OT) the flux operator and gy € L?(OT) the second-member, both defined on each
T €T and for all F € Fr, by

U N 0 if F € Fin,

T .7 _ TN ._

(HZ,[X>|F = (HuX)\F = Zoq — ZTXT FFeF (gu)‘p = 27+ T oyper. (27)
Zoa + Zr ext Zoq + Zr

The next proposition will assert that k is contractant. Thus, leads to a fixed point problem.

Proposition 2.2. We have
(i) The operator Ty : L(OT) — LF(OT) satisfies [Tyl 1207 < 1.
(ii) The operator U : L{(9T) — L{(IT) satisfies U] 207y = 1.
(iti) The operator k : L7 (OT) x L}(dT) — C is contractant, ie |[k[ 127 <1,
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where, if V is an Hilbert space, the norm of the linear operator A : V. — V and the sesquilinear form a :

V xV — C are defined by
[(Ax,x")y |

la(x, x")v|
I Al == sup sup ————-— and |[la|ly := sup SUp
xev\{o} xevi{oy IX[v [Ix[lv xev\{o} x'evifoy IX[lv [IX'[lv

Proof. (i) Taking the face point of view from Remark we have for all x € LZ(0T)

/ 2o Ex]” + Zi x| dsy for F € Fin,

Z/;ﬁm%W%:Z&wmm:
oT

_ 2
TET FeF / ZTllﬂax’ dsy for F' € Foys.
F

For F € Fiu interfacing two elements T and K, we have by

_1(Zx —Z7rN\2, p2 . 2(Zr— Zk) — —= 4Zr 2
Kr = Z 1(7) xT|" 4 2 2o (x T x K 4 x5 xT) + ————— x5 dsy
r /F " \Zk+Zr <7l (ZK+ZT)2( ) (ZK+ZT>2| |
1/ 2 — Zr\? 2 2(ZK*ZT) K 7 T 47§ T2
+ Z 1(7) K7 5 T (xF xT pxT xE) 0 |xT | dsy,,
L K ZT+ZK | | (ZT+ZK)2( ) (ZT+ZK)2| |
_ /z;1|xT|2 + Zi xK[ dsy
F

Zoq — 2L
Remarking that 200 — AT < 1, we obtain for F' € Feyy
Zaq + Zr

/Zfl|H5XT’2d5x:/Zfl(M)2|XT|2de=/Z;1|XT|2dsx—/Azffodsx.
F F F P ( )

Zoq + Zr Zoq + Zr

Using the definition of the global scalar product , it follows

/ ZYXT P + Zi x| dsy for F € Fin,
”Huxnig(m’) = Z Kr with Kp <

FeF / Z;1|XT|2 dsy for F' € Foxs.
F

Applying Remark we get an element assembling point of view leading to

— 2
||Hux||ig(afr) < Z Z /FZT1|XT} dsx = ||X||i§(37) = |||Hu|||L%(8T)§1~
TeT FEFT

Proof. (ii) Recalling that we have the reciprocity formula , let us remark that

LT

5 Y

rr(E,E') = / (+7HT - 3BT + 1 ET ATHT) ds,
aT
with Z; and Z defined here as

7 ::/ Z;lfyglET ALE'T dsy = /
oT orT

Zz" (WE” + ZpyHT) - (3BT + ZpTHT ) dsy,

(28)
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T, = / 2y ET ST ET dsy = / Zi (wET = ZpyfH") - (3BT — ZpyTHT ) dsy
oT

aT
Consequently, for all ET € X7, E'" € X¢ and for all xT € L?(9T), x'T € L?(9T), we have

/ Z’;l’yg;tET VoutE/T de - / ZT VlnET i%;EIT dSX = (ET’E/T) (Soutx Sg:nX/T)XT‘
oT oT

Since S, : L?(0T) — Xr is bijective, we notice that the space Xz can be parametrised by L2(97). Summing

over elements T' € T, it leads to ||x||L2 o) = ||L{x||L2 o7)- Therefore, we have el Lz o7y = 1. O

Proof. (iii) Using the Cessenat-Després point of view, Problem [2| and the Cauchy-Schwarz inequality, we have

k(x,x') = (HMX’UX/>L§(QT) < | MXHLZ((?T) 1223 HL2 T) HXHLZ(aT) [t HL2 o1’

@ )
This leads to |[k||z2(57) < 1 and ends the proof. O

Remark 2.2. Property (ii) in Proposz'tion can be applied to the Cessenat-Després Problem @ More precisely,
we can replace the scalar product in the left-hand member of equation . We then we get another formulation
for the heterogeneous UWVF

Find x € L}(9T) such that for all X' € L?(0T), we have (Ux — &?{,Ux’) o) =
Lt
This variational formulation encodes the continuity of the solution, ie UTxT = (UTX)

Proposition does not ensure that the operator k is strictly contractant. Therefore, we have chosen to
introduce an iterative Trefftz problem only at a discrete level.
2.2. Discrete direct and iterative Trefftz solver

Problem [2| can be discretised on the finite dimensional space Y?— C L?(07)

Vi o= [ Yk, with Y} =72, X}.
TeT

More precisely, for each T' € T, the local finite discrete space YSE is spanned by the incoming traces of plane
waves in X’ﬁ which are defined by . Since 71, is a bijective operator, the space Y% is of dimension N :=
dim(Y%) = dim(X%) = Ny. Consequently, the basis Y/ is given by

YA = {WT =72 vy such that vy € X}}} = span {wfp such that w = yg;tveT}.
(=1,N

The space YSL— has the dimension #dof := N #elem, with #elem := card(7) the total number of elements in
the mesh. Any element x € Y%L— will be represented by a complex column vector [x] of dimension #dof. Their
components [X]igion are the amplitudes of the plane wave traces Wf € Y% in the i*" element 7. It leads to

#dof . #elem N [X]iglob = [X]iea
x = Z [%]iglob W8> = Z Z ‘wt,  with iglob := (i — 1) #elem + ¢, and lob . (31)
iglob=1 i=1 ¢=1 WP = w.

The discrete direct Cessenat-Després heterogeneous UWVF is formulated as follows.
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Problem 3. Find x" € Y%’- such that for all X' € Y%, we have

a(x",x')=1x) <= A[x]=F,
with A € C#dotx#dof g B € C#If defined component by component by
Aigiob jglob = a(

nglob7 nglob)
defined as

(32)

Remark 2.3. The global matriz A is composed of block matrices A; ;
k

and  Figiop 1= 1(w'el°P)  for iglob, jglob = 1, #dof.

0k
Ai_’j =a(w

= (A,
l

(33)
£k=1
wi)  with £ k=1,N.
Proposition leads to a singular regular decomposition of matrix A = M — N. In the homogeneous case,

€ CVXN fori,j =1, #elem

Problem 4. Compute the sequence xJ2¢ € Y’;-, n € N*, from the recurrence
with M[/N € C#dofx#dot defined by

it corresponds to a Jacobi-block decomposition, see |[11]. We then obtain the discrete iterative UWVF problem.
(Xﬁlvx/)Lf(aT) — k(x> x) =1(x'), vx' € Y}

—  M[x*

n+1
L jglob iglob
Miglob,jglob = (ng , W g )

] = N[x2] + F, with [x7°]=0, (34)
L2er) @ Niglob jgiob = k(wielob wigloby  foriglob, jglob = 1, #dof. (35)
M} = (wh,wi) 2o iy for

i,j =1, #elem

Remark 2.4. Support properties of DG basis functions lead to a hermitian positive block-diagonal matriz M
k
1

which allows a fast direct inversion of the linear system .

and (k=1 N,

sup sup

To ensure the convergence of the discrete iterative Problem [4] the matrix M~!N associated to the form
_ [k(x, x')|

PM7IN) < Iy =

xeY2\{0} x’eYh\{0}

k needs to be strictly contractant. In other terms, its spectral radius, denoted by p(M~!N), has to verify
p(M~IN) < 1. Due to the conformal nature of the discretisation, ie YA C L?(9T), we have

[l 15T
It then remains to exclude the eigenvalues on the unit circle.

k(X7 X,) =\ (X, X/)Lf(aT)v

< [kllzzom) <1, with [[xllyn = [[x[|L207)-
Proposition 2.3. The matriz M~'N is strictly contractant, ie p(M~'N) < 1.
Proof. We suppose that it exists x € Yg- and A € C, such that x # 0 and |\| = 1. We have
It leads to

vx' €Y <<= N[x] = AM][x], with x represented by [x] through (3I)).
Mex = NAx(1 7257y = [Teex 72 o7y — A Ux Tux) L2 (o7 — AW, UX) 1207 + A U] 22 07 -
Thanks to Proposition and the definition of k, see (26b]), we obtain
Mex=MAx| L2 o7 < %72 0 = AN X T2 0= AN x| 72 0y AP U720 <

IAl=

0 = Iyx = A\Ux. (36)
1
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Then, we act by contradiction. Let us show that x = 0. Let T = {T eT ' xT' = O} C T. It remains to prove

that 7 = 7 to obtain Proposition
(a) Let us show that T is non-empty. From (36]), we have T L2 a7y = [Ux||L2(o7) = |IXI|L2(57) since U is
unitary from Proposition From and , it follows that

47
_ 2 2 _ o0 T2 T _
0= Wl Welizon = 2 2 | s T s = xT =0 o Fe Frn F
T ext
>0

Moreover, recalling the definition and due to , we also have

1 Zygo — Z
MTXT:X%XTZO on I' € Fr N Fext-

Combining the two last results and using , we obtain v, ET = v,HT = 0 on F, leading to ET = 0 and
xT =0in T by the unique continuation. B B

(b) Let T € T and K € T with a common face F' € Fpr N Fg. Let us show that T € T. Since K € T, we have
x¥ =0 and UK¥xX = 0. From 7 we have Hg;x = AUTXT and H{,{x = AUEXE on F. From (23a]) and ,
we obtain

Zr — 7 27 Zg — 7 27
T KK K xT = AUBXE  and K TxT T

X X' 4+ xK = xuTxT,
Zx + Zrp Zx + Zr Zx + Zr Zix + Zr

leading to x = 0 and UTx” =0 on F, since Zr/x > 0 and A # 0. Thus, T € 7. Due to (1)), we also obtain
wET = ~v,HT =0 on F, leading to E” = 0 and x” = 0 in T by the unique continuation theorem.
(¢) From the completness and the connexity of the neighborhood graph, we then have T = T. O

Remark 2.5. A weaker contraction result has been proved in the context of an under-relaxation iterative method
by Cessenat-Després (see [10]). This result takes the form of p (1 — )L+ BM™'N) < 1 for all 8 €]0,1[. In
particular, the Proposition[2.3 refines this result by including the limit case 3 = 1.

Remark 2.6. This proof ensures the uniqueness of the solution to the variational formulation . Combined
with the rank-nullity theorem, it leads to the well-posedness of Problem [ which is finite dimensional.

However, rounding errors can slow down or even make diverge the iterative algorithm. As illustrated in
Table |1} Proposition holds true only theoretically. Surprisingly, the iterative algorithm numerically diverges
in random cases, see Table [I] for D = 80 in wavelength.

Improvements proposed in Section [3| will show that it is related to the Cessenat-Després method.

Dq 10 30 50 80 100
p(M_lN) 1—-0.0097 | 1 —0.0033 | 1 —0.0024 | 14-0.00064 | 1 — 0.00043

TABLE 1. Comparison of p(M’lN) thanks to the power method, on different D in wavelength.

Remark 2.7. Unless otherwise specified, the following configuration is considered for numerical experiments

e All distances or lengths are given in wavelengths, ie k = 2.

e The domain is of size Dq and is decomposed into elements T which are cubes of size Dp = 1.

e The reflexion coefficient on 0X) is denoted by Roq. In particular, we set Zpo = (1 — Roq)/(1 + Raq)
with Rga = 0.9.

e The number of plane wave basis functions is N = 52, that are homogeneously distributed in space.
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3. NEw ITERATIVE TREFFTZ SOLVER

In the present section, we propose alternatives to ensure the development of a robust Trefftz iterative method,
even with the presence of rounding errors. First, we will guarantee its convergence thanks to a preconditioned
GMRES method. Then, we resort to a reduction strategy to consider less basis functions providing a lower
numerical cost. Finally, we set up a global preconditioner to improve the convergence rate of the method.

3.1. Preconditioned iterative Trefftz solver using GMRES method

A GMRES method is a variational method that resorts to Krylov spaces to reduce the dimension of the
Galerkin space, see [50,/51]. It can be interpreted as an iterative numerical method which does not require
the computation of the inverse of the matrix A. When associated to a restart strategy, this method has a
low memory cost and is appropriated to large numerical cases. Moreover, it is perfectly suited to real positive
matrices, thus adapted to the inversion of Problem [3| which satisfies [x]*A[x] > 0. The Galerkin framework of
the UWVF method leads to the introduction of the following iterative GMRES UWVF problem.

Problem 5. Setting xo = 0, compute the sequence (X,), cn- such that x,, € Ky, is the solution of
Find x, € K,, a(x,,x") =1x'), Vx' € K,, <= Find [x,] € [K,], [X]*A[x,] = [x']'F, V[X] € [K,.], (37)

with K,, a linear subspace of Y’%— defined as: x,, € K,, is represented by [x,] € [Kn] through the bijection defined
by , where [Kn] s the Krylov space associated to A defined as

[K,] == span (A*F) =span{F, AF, A’F, ..., A" 'F}. (38)
0<k<n-—1

The convergence theory of Problem [p|is established thanks to the Galerkin theory of the UWVF Problem
Proposition 3.1. Letx" ¢ Y’%— and x,, € K,, be the solutions of Pmblems and@ respectively. The convergence
of the iterative GMRES UWVF method is ensured by

[x" — x,[lpe < \/53{161]113 %" = yll267)- (39)

Proof. Let us recall that we have [|x" — x,[|3¢ = R(a(x" — x,,,x" —x,,)). Since a(x" — xp, %, —y) = 0 for all
y € K,,, we have

" = xa 36 = R(a(" —x0,x" —y)) = R(K" -y Alx" - x,.]).

Since M is symmetric positive definite, we have

[N

x" — y]*A[x" — x,] = [x" - y]*M%M*%A[xh —x,) = (M [x" — y])*M*%A[xh — Xp].

Then, we apply the Cauchy-Schwarz inequality and we get

IN

Ix" = xulfq V(M — y]) M3 [x! - y]y/ (M2 AKE - x,]) M2 AKE - x,],

IN

VIxP = y]FM[xh — y}\/(A[xh - xn])*M—lA[xh — Xp].
Let us now prove that, for all [x] € C#%f (A[x])"M~!(A[x]) < 2R([x]*A[x]). Using the Cessenat-Després
decomposition A = M — N, we get

*

(A[x]) M_l(A[X]) = [x]"M[x] — [x]*"N[x] — [x]*"N*[x] + [X]*N*M_lN[X].
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Let us take [z] € C#4°f, set as [z] = M~IN[x]. It leads to [x]*N*M~!N[x] = [z]*N[x] = k(x,z). Due to (iii)
of Proposition we have

X" N'MN[x] < (%]l 207 2l 20 = /[2)*Mz]y/[x]*M[x] < /[x]*N*M-IN[x]y/[x]* M[x].
Therefore, we get [x]*N*M~!N[x] < [x]*M][x], leading to
(A[x})*Mfl(A[x]) < 2[x]"MIx] — 2§R([x]*N[x]) = 2§R([x]*A[x]) =2 ||x||%G.

The result follows from ||x" — x,[[pec < V2|[x" — yllzzom)- O

We have not succeed to obtain an optimal estimate for the right-hand side of . Many convergence bounds
of the GMRES residual exist in the literature, see [21]. But these bounds are generally pessimistic. Practically,
GMRES solver often has a much better behaviour. Although we are aware of this aspect, we use the general
convergence theory of GMRES methods, see [51], to estimate the right-hand side of (39).

Proposition 3.2. Suppose that A is diagonalisable, ie A = XDX ™', we have for x" € Yi‘r

. h .
min ||[X~ — < min max
yelKn” y”LQ(OT) T pePY Acoh

P M) 100 (10)

where PY is the set of polynomials of degree < n satisfying p(0) = 1, o®

condition number and (Y5)* is the dual space of Y.

is the spectrum of A, k(-) is the

The GMRES method convergence depends on the spectrum of A and draws a particular attention to eigen-
values close to 0, see in red in Figure [2} The fact that A is diagonalisable is theoretically discutable, even if it
appears to be in practice.

In the continuation, we introduce a preconditioned iterative GMRES UWVF method.

Problem 6. Setting x{'*° = 0, compute the sequence (x2'°°), . solution to: Find x0'¢ € KP™°, or equivalently
[xbre] € [KPrec], such that we have
a(xP x') =1(x'), VX eKP'* <= [XJAXE]=X]F, V[x]e K], (41)

where the finite dimensional space KP™° is the image of [KE™] through (31)). The space [KE™°] is defined by

~ ~ ~k~ ~ ~~ ~n—1~

5] = MR with [K) = span (A'F) =span{F,AF, ... A" 'F}, (42)
0<k<n—1

where A = M~3AM~% and F = M~*F, leading to [KE™°] = span{M~'F, ..., (M~!N)""'M~'F}.

We remark that [x}2°] € C#9°f satisfying Problem also belongs to [KP™], ie xJ2¢ € KP™. Thus, we obtain
a convergence theorem for the preconditioned GMRES UWVF problem.
Theorem 3.1. The preconditioned GMRES UWVE method converges minimally at the same rate than the
iterative UWVF method. We have

Ix" = xBllpe < V2Ix" = x5l 2ory — 0. (43)

n—-+oo

Remark 3.1. From Proposition the convergence rate of xJ*° € YSL— to x" € Y?— is p(M_%NM_%) < 1.

Remark 3.2. The definition of KP'*° in and the Theorem put forward the advantage to perform a
symmetric preconditioning of A with M-z,
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The convergence rate of the preconditioned GMRES UWVF (resp. iterative UWVF ) solver depends on the
spectrum of A (resp. A), see Figure |3| (resp. Figure . The spectrum of A is contained into the unity circle
and graphically justifies the use of the convergence Proposition [2.3]on Problem [6] We believe that the presence
of fewer eigenvalues close to 0 results in a faster convergence of the GMRES solver, see Figure |3l Moreover, A
has a lower condition number than A, see Table [2] which testifies its better convergence properties.

S(AA)

ROA)

FIGURE 2. Real and complex parts, FIGURE 3. Real and complex parts,
resp. R(AY) and I(AY), of the spec- resp. R(X*) and I(X*), of the spec-
trum A of matrix A for Dg = 6. trum M of matrix A for Do = 6.

Do || 1| 2] 3 | 4|5 |6
K(A) || 18.5 | 23.4 | 45.1 | 60.7 | 88.8 | 113
k(A) || 4.82 | 10.9 | 25.6 | 29.9 | 59.8 | 60.9

TABLE 2. Comparison of the condition number of A and A according to Dg in wavelength.

3.2. Basis reduction strategy

The preconditioning of the UWVF matrix A ensures the convergence of the preconditioned GMRES solver,
see Theorem Previous work, see , have shown that plane wave basis functions can be numerically
linearly-dependant in the sense that M has small eigenvalues. A rounding error on smallest eigenvalues of M
gives rise to a large error on M2 and impacts the convergence of the GMRES solver. Thus, we reduce the
Galerkin space Y’% by keeping only the eigenvectors associated to the highest eigenvalues. This will ensure a
representation of x € Y’;- filtering the numerical noise in the plane wave basis, through . The diagonalisation
of the hermitian matrix M representing the L?(97T) scalar product, see 7 is

M = TAT* with T € C#IDHl and A e CHox#dol,
where T is the orthogonal eigenvector matrix and A is the diagonal eigenvalue matrix satisfying
AL > Ao > o > Apdor With Aj = Ay
When performing the basis reduction, the orthogonal matrix then becomes rectangular

(Tred)Lj = (T)i,j for i=1,#dof and j =1, #dof,cq, with )\#dof > Mg > )\#doferJr],

red —
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where the small threshold coefficient ¢ selects the largest eigenvalues. It leads to the following reduced iterative
UWVF Galerkin problem. This problem involves less unknowns and is therefore less costly to solve numerically.

Problem 7. Let Y’%,red be the linear subspace of Y’7’- parametrised by [Xred] € C#dofrea Any element Xpeq €
Yé‘—yred 15 given through

#dof )
x = Y [igoww®,  with [x] = Trea AL [Xea]. (44)
iglob=1

Find X,eq € Y%red, or equivalently [Xyeq] € C#fred | such that we have

a(Xer7X;ed) = l(xéed)v vX;ed € Y'];L—,red — [X;ed]*Aer [Xer} - [X{red]*Fer7 v[Xired] € C#dOfmdﬂ (45)

with
Ared = Ar_eg T;ked A Tred A:e?j and Fred = Ar_eg T;:ed F. (46)

Since Y’};—,red C Y%‘—, the convergence theory established in Proposition [2.3|remains true for the reduced system
. Therefore, Theorem leads to a convergent iterative reduced preconditioned GMRES UWVF method.

Remark 3.3. Let us notice that M becomes the identity matriz of dimension #dof eq

_1
2

Ired = Ared

1
2

red’

:edMTredA

which leads to a significant memory gain, particularly for large cases ie (DQ)3 > 1002 in wavelength cube, since
the iterative algorithm becomes

. . 1 _1 y
[xﬁf_l] = Nyed Xl + Fred,  with Nyeq := A 3T qNTeqA 2 and [xy“] = 0.

The number of basis functions after reduction, denoted by Nyeq, depends on the value of the threshold e
and on the size Dy of each element, see Table [3| When the threshold ¢ is sufficiently small, ie ¢ < 1074, the
convergence rate is the same, see Figure [0] leading to the same accuracy of the numerical solution visualised in
Figure |5l As soon as ¢ > 1073, the convergence is faster in terms of iterations. But, the obtained numerical
solution does not approximate the physical phenomenon anymore, see Figure 4| where ¢ = 1072, Consequently,
to get a numerical solution of a given accuracy, the solver can use 16.5 GB instead of 275 GB without reduction,
ie Nyea = 48 instead of N = 196 basis functions, see Table[d In any reduced configuration, the iterative or the
direct solver is also faster in terms of time since we perform less costly matrix vector products.

Remark 3.4. Figures[] [3 [0 and [I]] are given for Do = 40 and Dy = 0.25 in wavelength, and respect the
configuration mentioned in Remark [2.7

“ll10-5]10-28 |10~ | 102 | 10-7 [ 10-° | 104 | 1073 | 10-2 | 10-1 | 1 10
Dr
0.25 175 | 154 | 126 | 96 70 | 48 | 48 30 24 16 6
0.5 196 | 190 | 186 | 174 | 132 | 96 84 70 48 30 16
1 196 | 196 | 196 | 196 | 190 | 180 | 174 | 148 | 114 | 90 58 12

TABLE 3. Values of N,eq when reducing the basis of size N = 196 according to ¢ and D7 in wavelength.
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N =196 Nred 175 | 154 | 126 | 96 70 48 48 30 24 16 6
275 GB || Memory cost (GB) | 220 | 170 | 114 | 66.0 | 35.1 | 16.5 | 16.5 | 6.45 | 4.13 | 1.84 | 0.258

TABLE 4. Memory cost in GigaBytes (GB) for the storage of the non-reduced matrix A and
of the reduced matrix A,eq according to Nyeq, for D = 40 in wavelength.

Electromagnetic Field Magnitude Electromagnetic Field Magnitude
00e+002 4 6 8 1le+01 0.0e+002 4 6 8 1.1e+01
—— | — —— | —

FIGURE 4. Magnitude of the electro- FIGURE 5. Magnitude of the electro-
magnetic field in a slice view of a magnetic field in a slice view of a
three-dimensional cup for N,.q = 24. three-dimensional cup for N,.q = 48.

Prec. GMRES with ¢ = 107!

101 \ Prec. GMRES with ¢ = 107?
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FIGURE 6. Comparison of the convergence rate of the preconditioned GMRES UWVF with
basis reduction for different values of the threshold ¢.

3.3. Global algebric left-preconditioner

The non-local aspect of wave propagation encourages to set up a global preconditioner. A popular approach
has been introduced in . We propose an alternative which is based on the different subsets of faces of the
cubic elements.

Definition 3.1. Let us consider an element T € T. We denote by

(i) FI the set of the left and right faces of T,
(ii) fyT the set of the front and back faces of T,
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(iii) FI the set of the bottom and top faces of T.

The set T is divided into one-dimensional subsets, either in x, y or z direction, see Figure These one-
dimensional subdomains lead to three singular regular decompositions M — N of matrix A (see [L1]) which are
associated to the following sesquilinear forms.

Definition 3.2. For all x € Yé‘- and for all X' € Y, we define the three sesquilinear forms k*/¥/% and their
associated matrices N*/¥/z ¢ C#dofxg#dof 4

kx/y/z(X7 x') = Z Z (HuX,UTX/)LQ(F) — [X/]*NX/Y/Z[X].
TeT FEFY, , ,NFint ’

Moreover, we define the associated three reqular matrices as MX/Y/Z .= A + N*/¥/2,

Cessenat-Després decomposition Decomposition in y direction

=,
H
Hy

z y x direction
Decomposition in x direction Decomposition in z direction L £ (

M* Nz ) Vee Sfv 7 A

& B
% \\

Hy

z direction y direction

FIGURE 7. Matrices structures for the Cessenat- FIGURE 8. Global
Després decomposition and the decompositions in x,y one-dimensional sub-
or z direction, for Dg = 3 in wavelength. domains in a cube, for

Dq = 5 in wavelength.

Then we get three iterative schemes, leading to left preconditioners
M¥Y/2[x, 1] = F + N<Y/7[x,].

By applying successively each of these one-dimensional preconditioners, we get a global preconditioner involving
the three directions x,y and z. The latter associates [x,] to [X,41] thanks to intermediate solution vectors [x9_ ]
and [x}, ] through the following iterative scheme

MX[x) 4] = F + N¥[x],

MY [x;,44] = F + NY[x) 4],

M?[xp11] = F + N*[x}, 4]
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FIGURE 11. Comparison of the convergence rate of the preconditioned GMRES UWVF using
either A cq or PszAred.

Thus, we obtain an iterative method of the form [x,4+1] = P¥*F 4+ Q¥*[x,]. Taking [xq] = 0, it leads to
an approximation of the solution to the problem A[x] = F. Therefore, this iterative method defines a global
preconditioner that can be applied to the non preconditioned Problem

PY?Alx] = PYF, where P := (M?) N (M) 'NY(M") ",

where we choose to use left-preconditioning. We can resort to the same method for the preconditioned Problem ]
or the reduced preconditioned Problem[7] We do not provide any theory ensuring the convergence of the reduced
left-preconditioned GMRES solver associated to P5. However, it is well-known that few isolated eigenvalues
do not cause any problem to the GMRES solver. In the numerous numerical cases that we considered, the
spectrum of PfgéAred is concentrated around 1 (see Figure , removing the small eigenvalues of A,qq (in red
in Figure @ which are slowing down the convergence (see the blue curve in Figure . The results shown
in Figure point out the smaller amount of GMRES iterations when using the reduced left-preconditioned
matrix P:ZZAred.
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CONCLUSION

In this paper, we have introduced an heterogeneous iterative Trefftz method solving three-dimensional
Maxwell equations. As all iterative methods, the present solver does not need to store the LU factorisation
of A and can be matrix-free. This memory gain has been strengthened thanks to a basis reduction proposed in
Section [3.2] This compression method turned out to be a successful development, reducing the memory cost of
the heterogeneous preconditioned GMRES UWVF solver. It enables to consider large complex geometries, see
Figure

However, on some configurations, direct methods outperform iterative solvers since they can deal with many
right-hand sides, see . Judicious choices should then be made depending on the numerical case. But research
on GMRES solvers efficiently dealing with multiple right-hand sides remains an active topic, see . It could
then be preferable to use GMRES methods instead of direct solvers in the future.

To end this paper, let us consider an industrial application which consists of a radar echo on a boat. This
large heterogeneous configuration is a boat surrounded by an homogeneous domain of size D = 24 x 61 x 154 in
wavelength and satisfying Zsn = 1. The boat has a perfect metal surface, such that the incident electromagnetic
wave perfectly reflects when striking its top, see Figure Our ways of checking the accuracy of this result are
limited due to its dimensions, see Table |5l We ensure that the GMRES residual is 1073, The large dimensions,
and the heterogeneity of this numerical case both emphasize the robustness of the developed iterative Trefftz
method.

FI1GURE 12. Visualisation of an electromagnetic wave striking the top of a boat.

#elem Niea | N #dof eq #dof GMRES iterations | Memory cost | Total duration
>14.4x 10 | 46 |52 | > 663 x 10° | > 750 x 108 473 ~ 836 GB 37.8 hours

TABLE 5. Numerical data and results associated to the boat case, see Figure [12]
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