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Abstract 

Transportation-oriented proton exchange membrane fuel cells (PEMFC) are attracting much attention, but 

the strong dynamic operating conditions in transportation applications limit the durability improvement and 

wide commercialization of fuel cells (FC). Prognostics dedicated to predicting the FC remaining useful life 

(RUL) can facilitate the early provision of control/maintenance programs to improve durability and reduce 

costs. However, credible degradation indexes for prognostics are difficult to access or observe directly from 

the FC operating under dynamic conditions. Moreover, the long-term prediction performance of the state-of-

the-art prognostics models is often not satisfactory. This paper proposes a fusion prognostics strategy to 

address these challenges. Specifically, the system dynamics is identified by using an electrochemical 

mechanism model and the degradation indexes are extracted based on the identified model parameters. 

Subsequently, a reduced-dimensional symbolic representation based long short-term memory network is 

developed for predicting the evolution of degradation. The proposed approach is validated using the long-

term accelerated stress test data of a vehicle-oriented PEMFC. The results show that the degradation 

mechanism model can be used to identify degradation indexes in dynamic operating conditions. Based on the 

prognostics model, accurate RUL prediction can further be achieved over the extracted degradation indexes.  
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Electrochemical degradation model;  
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Failure range;  
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1 Introduction 

Recently, there is an exponential growth in the focus on all clean energy sources. This comes partly from 

the distress caused by the fossil fuel shortage and, more seriously, from the exhaust emissions of combustion. 

Further, reducing carbon emissions in industrial processes and transportation is urgent but challenging [1]. 

Fuel cells (FC) are expected to alleviate this challenge, thanks to their operation without onboard CO2 

emissions and air pollution [2]. In particular, proton exchange membrane fuel cells (PEMFC) exhibit 
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advantages such as high power density, low starting/running temperature, and high energy conversion 

efficiency. This allows PEMFC to be suitable for diverse transportation applications, e.g., hybrid/plug-in 

hybrid vehicles [3,4], heavy-duty trucks [1], buses [5], trains [6], ships [7]. However, the large-scale 

commercialization of PEMFC still has to face the challenges of durability improvement and cost reduction 

[8]. For instance, the durability of fuel cells used for low-duty automotive is currently less than 5,000 hours, 

while the ultimate goal is targeted at 8,000 hours by 2025 [1].  

Prognostics and health management (PHM) has the ability to improve FC durability and is considered as 

one of the superior solutions [9]. In PHM, the accuracy of prognostics plays a deterministic role in the timing 

of maintenance/control deployment and affects the effectiveness of health management. Prognostics provides 

the basis for the “Predict”–“Maintain” strategy considered as an alternative of the “Failure”-“Replace” 

strategy [10]. The former is considered to be better not only to improve the durability but also to reduce the 

maintenance cost [11]. The International Organization for Standardization (ISO) defines prognostics as 

“analysis of the symptoms of faults to predict future condition and residual life within design parameters” 

[12]. Accordingly, for FC ageing prognostics, the core task involves refining the degradation index (DI), 

predicting the state of health (SoH) and/or the remaining useful life (RUL) [13]. For FC operating in constant 

conditions, some measurements (such as stack voltage [14,15,16]) can be directly assigned as DI. On the 

other hand, dynamic operating conditions not only affect the transient response of PEMFC performance [33], 

but also make it difficult to evaluate directly the degradation from measurements. As a result, a suitable DI 

needs to be extracted for long-term ageing prognostics under dynamic conditions and different DI extraction 

methods have been studied in the literature [17,18,19,20,21,38,39]. Specifically, Bressel et al. in [17] and Ma 

et al. in [38], estimate the actual SoH and degenerate dynamics using the extended Kalman filter and select 

the degeneration model parameters as DI. Mezzi et al. assume constant effects of FC system operating 

conditions and select periodic dynamic voltages as DI [18]. Li et al. use a linear parameter-varying model to 

extract the virtual steady-state voltage as DI [19,20]. Yue et al. employ a multiplicative feature 

decomposition method in [21], and a nonlinear regression method combined with a polarization model in 

[39], to extract the DI. In general, facing the complex operating conditions in transportation applications, it is 

still challenging to effectively decouple the system dynamics from the ageing effects and obtain physically 

interpretable DI.  

In the phase of SoH/RUL prediction, the performance of model-free or data-driven based methods is 

encouraging. This is due to the fact that such methods adeptly learn and predict the trend characteristics of DI 

[10,13]. In particular, methods in long short-term memory networks (LSTM) framework have demonstrated 

their strong performance in short-term SoH prediction [14,15,16,22,37]. However, LSTM performance 

becomes unsatisfactory with increased prediction horizon length which is observed and indicated in our 

previous work [15,23,36]. Interestingly, the cause of this issue may stem from the powerful “memory” ability 

of the LSTM, which incorrectly records irrelevant features in the training set. To cope with this issue, Ma et 

al. in [14] propose to use a fusion model combining the auto-regressive integrated moving average (ARIMA) 

method with the LSTM. In general, the LSTM based prognostics model still need to be improved in DI long-

term prediction while the related studies are extremely limited.  

Another key challenge for developing credible FC prognostics tools, especially for PEMFC applied in 

transportation, is the scarcity of long-term ageing data. A recent review [24] comprehensively reports state-

of-the-art durability experimental methods for vehicle-oriented PEMFC. The use of the accelerated stress test 

(AST) not only enables the assessment of FC lifetime, but also effectively reduces the experimental cost and 
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time.  

To tackle the above issues, this paper proposes a fusion prognostic strategy for PEMFC in transportation 

applications, consisting of model-based DI extraction and model-free RUL prediction. Specifically, a time-

varying degradation model based on the FC electrochemical mechanism is developed to track the load 

dynamics. The model parameters are identified in variable width intervals, specifying the equivalent 

resistance and the reconstructed virtual-constant power as DIs, respectively. In the phase of RUL prediction, 

a reduced-dimensional symbolic representation based LSTM model is used to predict the possible trends of 

DI. Subsequently, a series of predicted trends form a probability density distribution and RUL is calculated. 

Finally, the proposed method is validated using a vehicle application-oriented long-term AST dataset.  

Sections 2-6 of the article are structured as follows: Section 2 presents the proposed degradation 

mechanism model. In Section 3, the RUL prediction model and the fusion prognostics strategy are talked 

about. The experiments used to validate the method are described in Section 4. Section 5 summarizes the 

prognostic results. The paper is finally concluded in Section 6.  

2 Model-based dynamics degradation index extraction 

2.1 Degradation mechanism model 

Utilizing electrochemical mechanisms such as the models based on polarization curves has been 

recognized as effective to explain FC voltage losses [25]. The polarization curve model contains the voltage 

losses due to activation (    ), ohmic (  ), and concentration (     ), and is generally expressed as  

𝐸 𝑒𝑙𝑙 = 𝐸 𝑒𝑣 − 𝑣 = 𝐸 𝑒𝑣 −     −   −       (1) 

where 𝐸 𝑒𝑙𝑙 is the cell voltage, 𝐸 𝑒𝑣 is the reversible open-circuit voltage, 𝑣 is the global overpotential. A 

typical polarization curve model is for single cell modelling and generalizes to an n-cell stack level 

(𝐸     =   𝐸 𝑒𝑙𝑙) ignoring inter-cell differences. However, this model is generally suitable for portraying a 

PEMFC voltage response to static operating conditions and is unable to track transient voltage evolutions in 

dynamic conditions.  
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Figure 1. PEMFC electrochemical mechanism schematic:  

(a) equivalent circuit model;  

(b) physical representation of an electrochemical reaction interface.  
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A typical electrochemical reaction interface is depicted in Figure 1. The electrochemical characteristics of 

the reaction interface are represented by using a resistor (    ) and a capacitor (  𝑙) in parallel, as in Figure 

1 (a) [26]. Here,      is called the dynamic resistor to quantify the electrochemical reaction dynamic 

characteristics. Generally, these dynamics include not only the charge transport caused by electrochemical 

reaction kinetics, but also the mass transport due to reactant/product concentration differences. Further      

can be decomposed into two resistors      and      . In this case,      (a. k. a., Faradaic resistor) models 

the charge transport, which corresponds to the linear part of the activation overpotential. Similarly,       is 

used to simplify the Warburg element to simulate the mass transport, which corresponds to the linear part of 

the concentration overpotential [27].    is the resistor corresponding to ohmic losses. Based on this, the 

three voltage losses can be refined by using the following equations,  

{
 
 
 

 
 
 
      = 𝑗    ⏞  

linear

 +  
R𝑇

𝛼 + F
ln (

𝑗 + 𝑗𝑙   
𝑗𝑒𝑥 ℎ

)
⏞            

non−linear

 𝑅      =  𝑗  

     = 𝑗     ⏟  
linear

−
R𝑇

𝛽 + F
ln (

𝑗𝑚 𝑥 − 𝑗

𝑗𝑚 𝑥
)

⏟            
non−linear

 (2) 

where, 𝑗 is the stack current density, 𝑗𝑙    is the crossover current density, 𝑗𝑒𝑥 ℎ is the exchange current 

density; 𝑗𝑚 𝑥 is limiting current density. R is Molar gas constant (8.3145 J/mol/K), F is Faraday constant 

(96485 C/mol). 𝛼 +  is the transfer coefficient, 𝛽 +  is a parameter related to the number of electrons 

transferred in the overall reaction. Both 𝛼 +  and 𝛽 +  combine the effects of the anode and the cathode. 

𝑇  is the operating temperature (thermodynamic temperature) of the cell. Further,    and      are 

combined as the equivalent resistance ( 𝑒  ), which represents the overall resistance of the cell, as  

  +     +      =   +     =  𝑒   (3) 

In addition,   𝑙 is called the double-layer capacitor, which corresponds to the capacitance characteristics 

of the reaction interface. As in Figure 1(b), in the electrochemical reaction, significant charge separation 

occurs at the reaction interface, with electrons and ions accumulating respectively on the electrode and 

electrolyte sides. The reaction interface behaves like a capacitor due to the charge separation phenomenon. 

As shown in the figure, the electrode/electrolyte interface is not smooth, which makes   𝑙 evident and not 

ignorable [27].  

In general, the output voltage/power shows decreases along with the PEMFC degradation. In the case of 

the equivalent circuit modelling, as in Figure 1(a), the decrease in 𝐸 𝑒𝑙𝑙 can be attributed to the effect of 

time-varying parameters such as   ,     ,   𝑙  and 𝐸 𝑒𝑣 . These parameters can be candidates for 

degradation indexes in Section 2.2. There are diverse methods to achieve degradation model parameter 

identification, such as polarization curve-fitting. The direct use of classical polarization curve-fitting is 

reliable at constant load conditions. This work aims to identify the dynamic behaviour of the fuel cell, 

especially at load switching moments. Thus, to identify the time-varying dynamics of the equivalent circuit in 

Figure 1(a), the following equation is utilized.  
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𝑣(𝑡) +       𝑙
𝑑𝑣(𝑡)

𝑑𝑡
= (  +     )𝑗(𝑡) +         𝑙

𝑑𝑗(𝑡)

𝑑𝑡
 (4) 

Further, the one-sided Laplace transform of the left and right sides of equation (4) can be done to obtain the 

system transfer function, as  

𝐻(𝑠) =
 (𝑠)

𝐽(𝑠)
=
  𝑠 + (  +     ) (      𝑙)⁄

𝑠 + 1 (      𝑙)⁄
=
𝑏1𝑠 + 𝑏2
𝑠 + 𝑎1

 (5) 

where 𝐻(𝑠) is considered as a single-input, single-output system. 𝑎1 represents the Laplace variable of the 

denominator polynomial, and 𝑏1 and 𝑏2 represent the Laplace variables of the numerator polynomial. By 

feeding the data of both temporal input 𝑗(𝑡) and output 𝑣(𝑡), the model parameters 𝑎1 𝑏1 and 𝑏2 can be 

identified. The model parameters   ,     ,   𝑙  and 𝐸 𝑒𝑣  can further be deduced. The parameter 

identification process is summarized in Appendix A.  

2.2 Degradation index extraction based on variable width division 

The electrochemical mechanism-based degradation model described above has the ability to characterize 

the short-term dynamics. Concerning the long-term ageing, the electrochemical characteristics of FC change 

over time and some ageing-related parameters can be used to reflect the FC long-term evolution. A DI 

extraction method based on variable width division is therefore proposed in this paper, as in Figure 2. 

Specifically, the samples of current density, cell temperature and cell voltage within a time slot are set as 

inputs, while the degradation model parameters are set as model identification outputs among which 

degradation indexes are further selected. It is worth mentioning that cell temperature has a relationship with 

the thermal characteristics, and affects the power output performance/degradation behaviour of the 

stack/system [34]. Considering the generalization of the method, several of the measurements are difficult to 

obtain in some cases (e.g., dead-ended mode). Moreover, at this moment, air pressure and stoichiometry are 

highly coupled to temperature [35]. Therefore, the use of cell temperature as an input variable is beneficial to 

profile the factors affecting durability that are not covered by the electrochemical mechanistic model.  

In general, all parameters in Equations (1) to (3) are time-varying except for the Molar gas constant (R) 

and Faraday constant (F). Identifying all time-varying parameters is beneficial to model fuel cells 

comprehensively, but leads to higher computational costs and difficulty in practical deployment. One 

potential solution is to simplify appropriately the model by making some of the variable parameters constant 

and considering the ageing effects using the remaining variable parameters.  
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Figure 2. Schematic of variable width division-based degradation index extraction. 
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As the FC ageing is relatively slow, the ageing-related parameters can be considered constant in short-term 

time slots (hourly level). The time slot width should be set in the way that the data within the time slot 

contain sufficient system dynamics for model identification. As shown on the right side of Figure 2, the 

variable parameters, i.e., 𝐸 𝑒𝑣 ,   𝑙 ,   , and  𝑒   are identified in each time slot via the model 

identification procedure presented in Appendix A. It is worth mentioning that in some studies (e.g., [9]), the 

constant parameters considered in this paper are also used to indicate degradation. Nevertheless, most of 

them are difficult to model precisely or can be considered combined in variable parameters to simplify the 

model properly. For instance, the impact of degradation on 𝑗𝑙    can be reflected and quantified using 𝐸 𝑒𝑣. 

Thus, 𝑗𝑙    is considered as a constant while 𝐸 𝑒𝑣 is set as a variable parameter.  

Once identified, the parameters that demonstrate evident time-varying characteristics can be considered as 

the candidates for DI. By further analyzing the trendiness/smoothness of the candidates, the DI suitable for 

prognostics is selected. In addition, it is possible to consider bringing all the identified parameters into 

equations (1)-(3) and replacing the original dynamic operating current density with a virtual constant current. 

Accordingly, the virtual steady-state voltage and power can be calculated. It is thus possible to analyze the 

output power drop as DI at different loads, especially at nominal power/full load. 

3 Model-free remaining useful life prediction 

3.1 ABBA-LSTM 

The Raw-LSTM (a. k. a., Vanilla-LSTM) encounters performance decreasing in long-term prediction, 

especially when there is a lack of training data concerning the prediction horizon [28]. In the stage of SoH 

prediction, we use an LSTM model with adaptive Brownian bridge-based aggregation (ABBA-LSTM) to 

tackle this issue. The core idea is to express the original data with reduced dimensional symbols/letters to 

improve the sensitivity of Raw-LSTM to trend features. Specifically, ABBA-LSTM can be divided into three 

parts: representation, prediction, and reconstruction, as in Figure 3.  

 Representation:  

There are two steps to go through in this part, (1) Compression: which converts an n-dimensional 

historical DI (time series X) into an m-dimensional set of segments (   𝑚). Next, a time increment 

(len) and a numerical increment (inc) of each segment are used to form a tuples-set (D). (2) 

Digitization: after standardization and scaling, an alphabet set (L) corresponding to k clustering 

categories is constructed. The tuples in D are expressed using the letters in L to obtain the character 

series A of length m.  

 Prediction:  

In the prediction part, a 5-layer LSTM model is utilized, where the input is the character series A. 

After two LSTM layers, a fully connected layer and a Softmax layer, the output character series B 

contains the predictions for p time steps.  

 Reconstruction: 

The predicted character series needs to be recovered as a time series before it is used for FC 

prognostics, and this part is regarded as the inverse process of representation. Converting character 

series B to predicted time series Y is realized by Inverse-digitization and Inverse-compression.  
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To describe this process more clearly, a series of notation marks involved in the ABBA-LSTM prognostics 

model are shown in Table 1. The detailed operations in each step listed in Figure 3 could be found in our 

previous work [23].  

 

3.2 Fusion prognostics strategy 

The central goal of fusion prognostics is to predict RUL. According to the ISO definition, RUL is the 

“remaining time before system health falls below a defined failure threshold” [12]. The failure threshold (TF) 

directly determines the end-of-life (EoL) of fuel cells. In 2011, the U.S. Department of Energy (DoE) defined 

EoL as a 10% loss of initial performance, which is suitable for constant current operating conditions. 

However, when a PEMFC operates in dynamic load conditions, there is still no agreement on the definition 

of the FT [29]. In some cases, different FTs lead to significantly different RULs [24]. Furthermore, desirable 

FTs should be closely related to the application. It is not optimal to have a single/uniform FT for fuel cells 

from different applications.  
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Figure 3. Flowchart of the proposed ABBA-LSTM prognostics model. 

Table 1 Notation marks during degradation index series conversion 

Type Notation of sets Remark 

Time series 𝑋 = (𝑥1, 𝑥2,⋯ , 𝑥 )   
  Historical degradation index 

Compression 𝐷 = [
(𝑙𝑒 1, 𝑖 𝑐1), (𝑙𝑒 2, 𝑖 𝑐2)

,⋯ , (𝑙𝑒 𝑚, 𝑖 𝑐𝑚)
]   2×𝑚 Time and numerical increment tuples-set 

Digitization 𝐿 = (𝑎, 𝑏, 𝑐,⋯ , 𝑘) Alphabet set representing clusters' categories 

Digitization 
𝐴 = (𝑠𝑦1, 𝑠𝑦2,⋯ , 𝑠𝑦𝑚)  𝐿

𝑚,  

where 𝑠𝑦𝑖  𝐿 (𝑖 = 1,… ,𝑚)  
m-dimensional character series 

Prediction 𝐵  𝐿𝑝 p-dimensional predicted set of characters 

Inverse-digitization �̂�   2×𝑝 Predicted increments tuples-set 

Inverse-compression 𝑌     Predicted degradation index (q time steps) 
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A probable failure range (PFR) and a calculable failure range (CFR) are proposed in this paper. 

Specifically, as shown in Figure 4 (a), the prediction starting point (𝑡 ) and the extreme point of recoverable 

fault (𝑡𝑙𝑖𝑚𝑖 ) divide the ageing data into three parts: training, prognostics, and invalid data. Before 𝑡  is 

considered as the observed historical data (a. k. a., training set), which is used to train the prognostics model. 

Then between 𝑡  and 𝑡𝑙𝑖𝑚𝑖  is the prognostics zone (a. k. a., test set). It is worth noting that the operation 

time corresponding to 𝑡𝑙𝑖𝑚𝑖  is usually less than or equal to the one corresponding to 𝑡𝑒  . In the case where 

𝑡𝑙𝑖𝑚𝑖  is not equal to 𝑡𝑒  , the part between the two points is defined as invalid data. This is because the 

performance recovery that occurs after 𝑡𝑙𝑖𝑚𝑖  is not sufficiently reliable and may cause serious errors in the 

prognostics. The range between the expected earliest failure point (𝑡  ) and the complete failure point (or 

data ending point, 𝑡𝑒  ) is considered as PFR, and the range between the 𝑡   and the 𝑡𝑙𝑖𝑚𝑖  is considered 

as CFR.  

As a fuel cell runs, fresh observations are constantly acquired. The 𝑡 , which divides the “history” from 

the “future”, will also be updated to deploy the next-round of prognostics. For a particular prediction starting 

time point, the zoom-in illustration of the prognostic part is shown in Figure 4 (b). By setting l random initial 

weight parameters, the ABBA-LSTM model can output a series of predicted degradation index �̂� =

(𝑌1, 𝑌2, … , 𝑌𝑙), where  𝑌1, 𝑌2…𝑌𝑙   
 . The CFR contains h failure thresholds  𝑇 = ( 𝑇1,  𝑇2, … ,  𝑇ℎ).  

 For the i-th (𝑖 = 1,  ,    ,  ) failure threshold  𝑇𝑖:  

Based on the degradation index series �̂� and  𝑇𝑖, a series of RUL (  𝐿𝑖) can be calculated as 

{

  𝐿𝑖 = (  𝐿𝑖 ,   𝐿𝑖2 , … ,   𝐿𝑖𝑗 , … ,   𝐿𝑖𝑙)   
𝑙

  𝐿𝑖𝑗 = 𝑡𝑖𝑗 − 𝑡 

  𝐿 𝑖 = 𝑡 𝑖 − 𝑡 

 (6) 

where   𝐿𝑖𝑗 is the j-th (𝑗 = 1, , … , 𝑙) element in   𝐿𝑖. 𝑡𝑖𝑗 is the operation time at the crossing 

point of the j-th degradation index 𝑌  and  𝑇𝑖. 𝑡 𝑖 is the operation time at the crossing point of 

actual DI and  𝑇𝑖.   𝐿 𝑖 is the actual RUL value. Estimate the probability density distribution ( 𝑖) 

based on the RUL series   𝐿𝑖, as  

𝑓(  𝐿𝑃𝑖) =  𝑖 (7) 

where   𝐿𝑃𝑖 corresponds to the RUL values of the horizontal coordinate of  𝑖. The final predicted 

RUL value (  ̃𝐿𝑖) at  𝑇𝑖 can be obtained as  

  ̃𝐿𝑖 = argmax
𝑅𝑈𝐿𝑃𝑖 𝑅𝑈𝐿𝑖

𝑓(  𝐿𝑃𝑖) (8) 

where the argmax𝑥  𝑓(𝑥) represent arguments 𝑥 for which 𝑓(𝑥) attains its largest value.  

 For the failure threshold series  𝑇:  

Each failure threshold contained in  𝑇 corresponds to a predicted RUL value as described above, 

and h predicted RUL values constitute a predicted RUL series   ̂𝐿 = (  ̃𝐿1,   ̃𝐿2, … ,   ̃𝐿ℎ)   
ℎ.  
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For the sake of clarity, the main notation involved in Figure 4 and/or this subsection is summarized as 

follows.  

𝑡 :  Specified prediction starting point;  

𝑡  :  Expected earliest failure point, which is the cross point of  𝑇1 and DI;  

𝑡𝑙𝑖𝑚𝑖 :  Extreme point of recoverable fault;  

𝑡𝑒  :  Data ending point;  

CI:  Confidence interval of predictions;  

PFR:  Probable failure range, which is between 𝑡   and 𝑡𝑒  ;  

CFR:  Calculable failure range, which is between 𝑡   and 𝑡𝑙𝑖𝑚𝑖 ;  

Training:  Historical data, i.e., the training set, which is before point 𝑡 ;  

Prognostic: Future (unknown) data, i.e., test set, which is between 𝑡  and 𝑡𝑙𝑖𝑚𝑖 ;  

Invalid data: Data not available for prognostics, which is between 𝑡𝑙𝑖𝑚𝑖  and 𝑡𝑒  ;  

 𝑇:  The   failure thresholds contained in the CFR;  

 𝑇𝑖:  An element from  𝑇, which is the 𝑖-th failure threshold (𝑖 = 1, , … ,  ).  

𝑡 𝑖:  Actual end-of-life at  𝑇𝑖, i.e., the cross point of  𝑇𝑖 and DI;  

𝑌 :  The 𝑗-th (𝑗 = 1, , … , 𝑙) predicted degradation trend; 

�̂�:   A series of predicted degradation trends at  𝑇𝑖, i.e., �̂� = (𝑌1, … , 𝑌 , … , 𝑌𝑙); 

𝑡𝑖𝑗:  The 𝑗-th predicted end-of-life at  𝑇𝑖, i.e., the cross point of  𝑇𝑖 and 𝑌 ; 

  𝐿𝑖𝑗:  Predicted RUL corresponding to 𝑌 , i.e., 𝑡𝑖𝑗 − 𝑡 . 

  𝐿𝑖:  A series of predicted RUL at  𝑇𝑖, i.e.,   𝐿𝑖 = (  𝐿𝑖 , … ,   𝐿𝑖𝑗 , … ,   𝐿𝑖𝑙). 

 𝑖:  The probability density distribution based on   𝐿𝑖;  

  ̃𝐿𝑖:  Final predicted RUL at  𝑇𝑖, corresponds to the maximum of  𝑖;  

  𝐿 𝑖:  Actual RUL at  𝑇𝑖, i.e., 𝑡 𝑖 − 𝑡 .  
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(a) (b) 

Figure 4. Schematic of fusion prognostics:  

(a) segmentation of degradation index (data set), and failure ranges;  

(b) when prediction starting point is 𝑡 , zoom-in prognostic part and predict remaining useful life.  
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4 Vehicle-oriented long-term accelerated stress test experiments 

To validate properly the proposed fusion prognostics method, long-term dynamic ageing experimental data 

from a vehicle-oriented commercial PEMFC single cell is used [30]. Specifically, a test station with 

integrated control and observation is used to deploy the ageing experiment, and to activate the PEMFC 

before performing the test. The relative humidity of the cathode and anode is regulated by the built-in 

humidifier of the test station. A peripheral water-cooling system is used to handle the operating temperature 

of PEMFC. The main technical parameters of the PEMFC are listed in Table 2, where the cathode/anode inlet 

pressures and relative humidity, as well as the operating temperature, are set to the desired optimal values.  

 

 

This ageing experiment can be considered as an In-situ accelerated stress test (AST) [24], which is 

designed with reference to the New European Driving Cycle (NEDC) [30]. As shown in Figure 5, each cycle 

lasts for 1,181 s, including the urban condition (performed 4 times) and the suburban condition (performed 

one time). Nine different load currents (0-100%) are involved as shown in Table 2. The entire ageing 

experiment consists of 3,076 cycles, accounting for approximately 1,008 hours. A polarization curve test is 

performed before the start of the overall ageing experiment. Subsequently, the AST is suspended every 50 

hours and resumed until the end of the polarization curve test (non-shutdown). In addition, every 100 hours, a 

Table 2 Dynamic ageing test conditions 

Items Values 

Active surface (cm
2
) 25 

Hydrogen inlet-pressure (KPa) 110 

Air inlet-pressure (KPa) 110 

Operating temperature (°C) 85 

Hydrogen relative humidity (%) 50 

Air relative humidity (%) 80 

Full load current (A) 35.6 

Load currents involved in 

dynamic load cycles (A) 

0; 1.78; 4.45; 9.51; 

10.4; 14.85; 20.75; 29.65 

 

  
(a) (b) 

Figure 5. Cyclic dynamic loading for accelerated stress testing:  

(a) overall dynamic voltage;  

(b) around 500 hours, current density, voltage and operating temperature in one cycle, and zoom-in details.  
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planned shutdown of 12 hours is executed to simulate the shutdown-condition of the actual vehicle. It is 

worth mentioning that typically the shutdown comes with a performance recovery of the PEMFC. This is 

realistic, but it inevitably causes fluctuations in DI, making the prognostics challenging.  

 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 6. Anode gas pressure conditions and total stack flow,  

(a) the relationship between anode gas pressure and abnormal operation;  

(b) the relationship between total stack flow and abnormal operation;  

Current density-voltage scatterplot in,  

(c) overall (0-1008 hours); (d) 0-1 hours; (e) 500-501 hours; (f) 1007-1008 hours.  
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During the ageing experiments, the test station and peripheral equipment encounter some anomalies, which 

are referred to as abnormal operations in this paper. As in Figure 6(a), the inlet/outlet pressure of hydrogen is 

set at the optimal value of 110 KPa. However, significant fluctuations arise in practice. Coincidentally, as in 

Figure 6(b), the total stack flow of H2/Air also exhibit the related abnormal operations. Among them,  

 Point A is a sharp oscillation of the inlet pressure that occurred at around 150 hours, corresponding to 

the shutdown-like voltage dip in Figure 5(a). 

 Point B is the frequent and more violent hydrogen supply anomalies starting at around 660 hours, as in 

the blue dashed box in Figure 6(a).  

 Point C, some gas pressure/flow anomalies lasting more than 10 hours are observed during 750-800 

hours.  

More details of the experimental data can be found in [22,30].  

Figure 6 (c) is the overall (0-1008 hours) current density-voltage scatterplot, which contains the long-term 

degradation and anomalous operations. The following phenomena are contained in Figure 6 (d)-(f), (1) 

ageing experiments with 9 different loads including full load, which covers most of the operating conditions. 

(2) the decrease in voltage with time, which reflects the degradation in performance; (3) unlike the typical 

polarization curve, the data points are more dispersive due to the inclusion of short-term (transient) dynamics. 

(4) The cell dynamic load operates mainly in the ohmic losses region. In these cases, the degradation model 

proposed in this paper can be used to handle the dynamics.  

Remark: For most fuel cells, whether in the form of a single cell or a stack and regardless of the output 

power levels, it is recommended typically to operate in the ohmic losses region, which represents high 

efficiency. Recall that this work is based on single-cell modelling that can be extended to a stack. Therefore, 

the use of the above experimental data to verify the prognostic strategy does not limit its generality.  

5 Prognostics results evaluation and discussion 

5.1 Evaluation criteria 

In this paper, two metrics are used to evaluate the hybrid prognostics method, relative error (RE) and 

prognostic horizon (PH). Among them, RE is given by  

 𝐸 =
|𝑥 − �̂�|

𝑥
 100% (9) 

where 𝑥 can be the actual single-cell voltage (𝐸 𝑒𝑙𝑙 ) or the actual remaining useful life (  𝐿 𝑖 ); �̂� 

corresponds to the identified/reconstructed single-cell voltage (�̂� 𝑒𝑙𝑙) or the predicted remaining useful life 

(  ̃𝐿𝑖).  

Subsequently, the predicted RUL is further evaluated using PH, the definition of which differs from those 

proposed in [29,31]. In this paper, PH is defined using a Trust Area (TA), which is the area between the 

upper/lower trustworthiness boundaries parallel to the actual RUL. In the CFR, the i-th (𝑖 = 1, ,    ,  ) 

failure threshold  𝑇𝑖 corresponds to the 𝑇𝐴𝑖 and the  𝐻𝑖 as follows  

{
  𝐿 𝑖 − 𝑡 𝑖  𝛼𝑙 𝑤 ≤ 𝑇𝐴𝑖 ≤   𝐿 𝑖 + 𝑡 𝑖  𝛼 𝑝
 𝐻𝑖 = 𝑡 𝑖 − 𝑡1  𝑖

 (10) 
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where 𝛼𝑙 𝑤 and 𝛼 𝑝 are used to adjust the tolerance of 𝑇𝐴𝑖, the smaller they are the tighter the Trust Area 

(and the smaller the range of 𝑇𝐴𝑖). In this paper, 𝛼𝑙 𝑤 and 𝛼 𝑝 are set to 15% and 5%, respectively. 𝑡1  𝑖 

denotes the earliest time point after which the predicted RULs are all within the 𝑇𝐴𝑖. The larger PH is, the 

more sufficient time is guaranteed for control/maintenance and the more effective the prognostics.  

5.2 Evaluation of extracted degradation index 

Based on the analysis for the current density-voltage scatterplot in Section 4, in this paper, equal interval 

division is chosen for the DI extraction. The width of each time slot is set to the duration of three dynamic 

cycles (about one hour). In Table 3, the identified parameters are listed, along with the type of voltage losses 

to which they belong.  

 

 

Table 3 Parameter identification results 

Parameter Value/Range Overpotential losses 

αa+c 0.74 Activation 

jloss (mA/cm
2
) 10 Activation 

jexch (mA/cm
2
) 9 Activation 

βa+c 0.13 Concentration 

jmax (A/cm
2
) 3.539 Concentration 

Cdl (mF/cm
2
) 64 to 464 Activation & Concentration 

Rdyn (Ωcm
2
) -0.007 to 0.053 Activation & Concentration 

Rr (Ωcm
2
) 0.03 to 0.08 Ohmic 

Requ (Ωcm
2
) 0.0344 to 0.1002 Ohmic (nominal) 

Erev (V) 0.923 to 0.967 - 

 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 7. Parameters identification:  

(a) reversible open-circuit voltage (Erev); (b) Ohmic resistor (Rr); (c) dynamic resistor (Rdyn);  

(d) double-layer capacitor (Cdl). (e) equivalent resistance (Requ); (f) equivalent full-load power (Pequ).  
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In Figure 7, the identified variable parameters are shown. By introducing all identified parameters into 

equations (1)-(3) and setting the operating current at 35.6 A, the equivalent full-load power ( 𝑒  ) is 

calculated and illustrated in Figure 7(f). In overall, almost all the variable parameters show a significant jump 

at point A, this is caused by a severe fault in the hydrogen supply. Meanwhile, there is a clear change of the 

trend after point B, which can be considered as an effect of the abnormal gas pressure/flow operation 

mentioned in Section 4 (Figure 6(a) and (b)). There are some obvious outlier points in   𝑙 and the trend 

characteristics are not obvious. In addition, all other variable parameters show different levels of trend 

characteristics until point B. To be specific, 𝐸 𝑒𝑣and  𝑒   appear to possess generally decreasing trends, but 

 𝑒   looks smoother.   ,      and  𝑒   imply generally increasing trends, with  𝑒   showing a more 

clearly monotonous trend. Moreover, considering that both  𝑒   and  𝑒   are the parameters that 

characterize the overall situation with physical interpretation, they are designated as 𝐷 1  and 𝐷 2 , 

respectively. It is worth mentioning that the trend features inherent in the identified parameters are consistent 

with the experimental data or have physical interpretability. Moreover, some parameters are not selected as 

DIs, but they can still be potential candidates. For instance, the trend feature of   𝑙 is not obvious, but its 

outliers indicate some abnormal operation of the fuel cell.  

 

The final output of the degradation mechanism model is the single cell voltage. Thus, the cell voltage 

values calculated by the identified model are compared with the actual measurements to evaluate the model 

identification performance. As an example, Figure 8 (a) and (b) show the comparison corresponding to a 

dynamic cycle around 500 hours. Figure 8 (a) shows that the operating voltages and the reconstructed 

voltages which can match well to each other. Figure 8 (b) shows the current density-voltage plot in which the 

overall match is satisfactory. It is worth noting that, after load switching, as in Figure 5(b), the voltage 

exhibits an overshoot-like dynamic. Especially at the instants of switching, such dynamics correspond to the 

points in Figure 8(b) where the experimental data are out of the identification curve. At these points, the 

reconstructed voltage fitting performance is slightly worse. That is because, as mentioned in Section 2, 

simplifications are considered when modelling the degradation mechanism. Furthermore, to quantitatively 

evaluate the model performance, the relative error ( 𝐸 ) in terms of single-cell voltage is calculated using 

equation (9) and illustrated in Figure 8(c). Observations for the ageing test are sampled at 1 Hz, so the  𝐸  

 

 

(a) 

 
(b) (c) 

Figure 8. Evaluation of dynamic load identification performance:  

(a) identification of the cell voltage;  

(b) current density-voltage plot of identification results;  

(c) relative error of identification results. 



15 

is calculated over more than 3.6 million data points. The average  𝐸  is less than 1%, which demonstrates 

the effectiveness of the proposed model and model identification method.  

5.3 Evaluation of predicted remaining useful life 

In evaluating the performance of the proposed RUL prediction method, the prediction starting points and 

failure range are set based on the analysis of 𝐷 1 and 𝐷 2, as in Figure 9. In particular, a change in 

operational behaviour after point B is considered. As a consequent change in the degradation trend is 

observed after B, the DI after the maximum/minimum point near B (approximately hour 640) is set as invalid. 

For the useful DI, RUL predictions are deployed at 50-hour intervals from about 50 hours to about 500 hours. 

Meanwhile, a CFR consisting of a series of failure thresholds is set in place of a single failure threshold. For 

𝐷 1, the CFR is 0.0961-0.1001 Ωcm
2
 ; while the CFR for 𝐷 2 is set to 32.74-32.82 W.  

 

 

For 𝐷 1, the performance of the proposed method in terms of RUL prediction is evaluated as shown in 

Figure 10. In the first two test points, the predicted RUL does not enter the TA. This is mainly because the 

training data in the early stage are not sufficient to capture the global evolution trend. With increased training 

tlimit

ta1

tend

 

tlimit

ta1

tend

 
(a) (b) 

Figure 9. Degradation index and failure range for prognostics:  

(a) equivalent resistance (DI1);  

(b) equivalent full-load power (DI2). 

  
(a) (b) 

Figure 10. For DI1, RUL prediction performance and evaluation at different failure thresholds (FTs):  

(a) comparison experiments and prognostic horizon evaluation;  

(b) relative error of the CFR (0.0961-0.1001 Ωcm
2
). 
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data, the prediction error gradually decreases and predicted RUL enters the TA. The calculated PH exceeds 

350 hours on different FTs. If the full useful lifetime is set to 640 hours, this means that the PH exceeds 50% 

of it. In addition, to evaluate more appropriately the prognostic performance, comparison experiments are 

deployed using the Autoregressive Integrated Moving Average (ARIMA) model. As in Figure 10(a), some 

prediction results of the ARIMA model exhibit greater errors compared to the ABBA-LSTM. In terms of 

consistency, the two models perform similarly. On the other hand, in Figure 10 (b), the prediction 

performance is quantitatively evaluated using equation (9). Overall, the prediction errors maintain high 

stability when FT varies. Moreover, the average relative error in the CFR is 15.5%.  

 

The same performance evaluation is deployed on 𝐷 2, as in Figure 11. Thanks to 𝐷 2 being smoother, 

the prediction performance is better than 𝐷 1 overall. For different FTs, PHs are greater than 400 hours 

which accounts for more than 60% of the full useful lifetime. In the best case, PH exceeds 450 hours, which 

means that satisfactory prognostic results can be given with only 50 hours of ageing data. Additionally, in the 

comparison experiments, as in Figure 11(a), almost all the predictions of the ARIMA model are lower than 

the actual RUL, and most of them perform worse than the ABBA-LSTM. On the other hand, the performance 

of the relative error is stable within the CFR. Then the average relative error in the CFR is 11.4%.  

5.4 Discussion 

The RUL predictions based on 𝐷 1 and 𝐷 2 are not entirely consistent, especially at the earliest two 

“prediction start points”. This result can be attributed to the following factors.  

(1) Generally, RUL prediction precision is related to the size of the historical dataset. The prediction 

results based on 𝐷 1 and 𝐷 2 are limited by the training set size at the initial “prediction start points”, thus 

the performances are not satisfactory.  

(2) Overall, the fluctuation of 𝐷 1 is larger than that of 𝐷 2. After superimposing the limitation of the 

training data size, the prediction performance based on 𝐷 1 is worse in the earliest two prediction points. 

(3) As more data are available for training the model, the predictions gradually converge to the actual RUL. 

For both DIs, since the third “prediction start point”, the predictions almost all fall in the trust area.  

  
(a) (b) 

Figure 11. For DI2, RUL prediction performance and evaluation at different failure thresholds (FTs):  

(a) comparison experiments and prognostic horizon evaluation;  

(b) relative error of the CFR (32.74-32.82 W). 
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(4) The ARIMA model used for performance comparison also exhibits the above characteristics, although 

its performance is inferior to that of the ABBA-LSTM in general.  

6 Conclusion 

In this work, a fusion prognostics strategy is proposed for predicting the remaining useful life of fuel cells. 

A degradation mechanism model is used to handle the dynamic operating conditions of FC and extract the 

degradation indexes that can be used for prognostics. In addition, the proposed method is validated using the 

accelerated stress test/dynamic load cycle ageing test data of a vehicle-oriented PEMFC. The results show 

that the proposed degradation mechanism model can effectively track both the dynamics caused by load 

transitions and the ageing-related parameter variation. The average relative error of the model output is less 

than 1%. Furthermore, two different degradation indexes, i.e., equivalent resistance and full power, are 

extracted and the ABBA-LSTM RUL prediction model is evaluated in the set failure region of the two 

degradation indexes respectively. The results show that the prognostic horizon that exceeds 60% of the useful 

full lifetime can be achieved, and the relative error of RUL prediction can reach 11.4%. The proposed fusion 

strategy has the ability to handle long-term prognostics that are full of dynamics in automobile applications. 

In the future work, we aim to identify and remove the unnatural ageing component of the degradation index, 

as well as combine multiple degradation indexes appropriately to improve the ageing prognostic performance.  
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Appendix A 

In general, the refined choice of filter 𝐿(𝑠) is used to cope with the disturbances embedded in the system 

when estimating the system variables [32].  

𝐿(𝑠) =
1

𝐴(𝑠)
 (A.1) 

In fact, 𝐴(𝑠) is the denominator of 𝐻(𝑠), for which the unknown part is replaced by the estimated value. 

Based on this, the following equation is obtained after filtering equation (4).  

𝐿(𝑠)𝑣′(𝑡) = −𝑎1𝐿(𝑠)𝑣(𝑡) + 𝑏1𝐿(𝑠)𝑗
′(𝑡) + 𝑏2𝐿(𝑠)𝑗(𝑡) + 𝐿(𝑠)𝑒(𝑡) 

= 𝜑𝑇(𝑡)𝜃 + 𝐿(𝑠)𝑒(𝑡) 
(A.2) 

where 𝑣′(𝑡) and 𝑗′(𝑡) correspond to the first order derivatives of the variables, 𝑒(𝑡) is the disturbance of 

the system, and 𝜑(𝑡) and 𝜃 are as follows,  

{
𝜑(𝑡) = [−𝐿(𝑠)𝑣(𝑡)  ,   𝐿(𝑠)𝑗′(𝑡)  ,    𝐿(𝑠)𝑗(𝑡)]𝑇

𝜃 = [𝑎1  ,   𝑏1  ,    𝑏2]
𝑇  (A.3) 

Considering that typically 𝑒(𝑡) is not necessarily white noise, the Instrumental Variable (IV) method is 

chosen in order to reduce the estimation bias. The predicted output 𝑣(𝑡) will constitute the instrument 

vector  (𝑡),  
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 𝑇(𝑡) = [−𝐿(𝑠)�̂�(𝑡)  ,   𝐿(𝑠)𝑗′(𝑡)  ,    𝐿(𝑠)𝑗(𝑡)] (A.4) 

The parameters are subsequently estimated using the following equation,  

𝜃 = [∑  𝑇(𝑡𝑖)𝜑(𝑡𝑖)
𝑁

𝑖=1
]
−1

∑  𝑇(𝑡𝑖)[𝐿(𝑠)𝑣
′(𝑡𝑖)]

𝑁

𝑖=1
 (A.5) 

where 𝜃 represents the estimated parameters [32].  
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