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Nonlinear Hamiltonian systems under sampling
Salvatore Monaco, Fellow, IEEE , Dorothée Normand-Cyrot, Fellow, IEEE , Mattia Mattioni, Member, IEEE ,

and Alessio Moreschini, Student Member, IEEE

Abstract— This paper investigates the transformation of
Hamiltonian structures under sampling. It is shown that
the exact sampled-data equivalent model associated to a
given port-Hamiltonian continuous-time dynamics exhibits
a discrete-time representation in terms of the discrete gra-
dient, with the same energy function but modified damping
and interconnection matrices. By construction, the pro-
posed sampled-data dynamics guarantees exact matching
of both the state evolutions and the energy-balance at
all sampling instants. Its generalization to port-controlled
Hamiltonian dynamics leads to characterize a new power
conjugate output which recovers the average-passivating
output. On these bases, energy-management control strate-
gies are proposed. An energetic interpretation is confirmed
by its description in the Dirac formalism. Two classical
examples are worked out to validate the proposed sampled-
data modeling in a comparative way with the literature.

Index Terms— Sampled-data control; Energy Systems;
Computational methods; Nonlinear systems.

I. INTRODUCTION

Gradient or Hamiltonian dynamics at large, endorsing
straight relations with fundamental physical properties such as
energy conservation or variation principles, have been widely
investigated in the continuous-time setting (see [1], [2] and
references therein). Among the vast dedicated literature, two
main conceptual approaches can be distinguished with their
own features depending on the goal, modeling or control:
the Dirac approach and the input-state-output approach. The
former one, employing an abstract generalization of the bond-
graph formalism, is particularly efficient to model the inter-
connections and the energy flowing between the components
of the system [3]–[5]. The latter one, based on the differential
representation of the Hamiltonian function, is well suited for
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energy-based design [6]–[12]. Nowadays, an efficient inter-
play between both approaches supports innovative research in
various physical domains where energy and energy exchanges
serve as lingua franca (e.g., [5], [8], [13]).

All of this essentially concerns the continuous-time frame-
work while a consensus on a unifying input-state-output rep-
resentation of Hamiltonian structures in discrete time is still
missing. Two approaches coexist, describing port-Hamiltonian
systems on discrete manifolds in the Dirac formalism [14]–
[16] or Hamiltonian difference equations in a state-space
oriented approach [17]–[21]. In this case, the discrete gradient
function, a geometric and numerical integration tool properly
expressing the variation of a function between two points,
is used in place of the usual gradient function. We note
that if, one one side, the discrete gradient function opens
towards discrete structures looking similar to the continuous-
time ones, on the other it generates implicit difference state-
space representations. The interest of the community recently
extends to a digital environment including dynamics issued
from sampling, with direct impact in real time applications. In
this context, several works find their roots in various sampling
and time-integration devices so providing Hamiltonian forms
through symplectic integration [22]–[24], geometric scattering
[25], spatial discretization of the continuous-time energy-
balance [26], [27], Galerkin discretization [28] up to numerical
methods like Runge-Kutta [29], Gauss-Legendre [30]. Despite
these studies provide structures satisfying the required energy-
balance properties, well identified links between all these
forms are still missing.

The attempt of this work is to fill this gap, understanding
which discrete-time Hamiltonian input-state-output represen-
tation is recovered when sampling a continuous-time Hamil-
tonian one. The study is performed for general nonlinear
forms and set in a formal way, inspired from the Lie series
framework involved in the characterization of sampled dynam-
ics associated to nonlinear differential dynamics developed
in [31]. A further motivation to this work is in recent au-
thors’ contributions [32] describing, in a differential-geometric
setting, discrete-time port-Hamiltonian structures embedding
the required properties of energy conservation or dissipation.
These discrete-time forms are adopted in the present study as
target structures to recover under exact sampling.

Along these lines, the paper addresses the preservation
of Hamiltonian structures under sampling or time-integration
at large and in a nonlinear context. In all cases (gradient,
port-Hamiltonian or port-controlled Hamiltonian), we show
that similar discrete-time structures can be recovered under
exact sampling with respect to the same Hamiltonian func-
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tion with modified structural matrices (embedding the inter-
connection and the dissipation matrices). As a consequence
of exact matching of the state behaviours with unchanged
Hamiltonian function, the energy properties of the continuous-
time structure are preserved at all sampling instants. The
approach is constructive. The solutions are described by their
series expansions in powers of the sampling period that can
be computed, iteratively, in an approximation perspective.
In addition, the continuous-time model is recovered in first
approximation so preserving a physical interpretation of the
results. To strengthen physical validity, the associated discrete
Dirac structure is described and compared with the underlying
continuous-time one.

In detail, the contributions of this work are specified below.
• Formal expressions of discrete gradient, discrete Jaco-

bian and discrete Hessian along a given sampled-data
dynamics are in Proposition 3.4. These forms provide new
computable series expansions of these objects around the
usual gradient, Jacobian and Hessian.

• Theorem 4.1 and Theorem 5.1 describe the sampled-
data equivalent forms to continuous-time gradient and
Hamiltonian structures respectively: gradient forms are
transformed into Hamiltonian-like ones with modified
dissipation matrix; conservative or dissipative Hamilto-
nian structures are transformed into equivalent structures
under exact sampling that preserve the continuous-time
energy-balance equality at the sampling instants. All these
forms are parameterized by the sampling period.

• The characterization of port-controlled Hamiltonian dy-
namics under sampling is in Theorem 6.1 opening
towards energy-based stabilizing control strategies. A
power-conjugate output is defined and its relation with the
average-passifying output introduced in [33] is clarified.
Accordingly, digital damping through negative output
feedback may be worked out for stabilization.

• The discrete Dirac structure sustaining the proposed
sampled-data form is described in Theorem 6.3 reinforc-
ing its physical interpretation.

Besides their theoretical interests, the results are constructive
opening wide perspectives to digital energy management and
structure assignment design as well as networked modeling of
interconnected structures. A preliminary work making refer-
ence to Linear Time Invariant (LTI) models is in [34].

The rest of the paper is organized as follows. Notations and
recalls are in Section II to fix port-Hamiltonian input-state-
output representations in both the continuous and discrete-time
frameworks. The notions of discrete gradient, Jacobian and
Hessian are given. The section ends formalizing the general
question addressed in the paper with the LTI case discussed
as a motivating example. In Section III, instrumental results,
developed in the formalism of the algebra of series, are proved
as fundamental tools to reshape exact sampled-data models
into discrete port-Hamiltonian structures. Section IV addresses
the question for gradient dynamics as a preliminary attempt
towards the case of port-Hamiltonian dynamics. The main re-
sults are in Sections V where sampled-data input-state-output
representations of port-Hamiltonian dynamics are described

and their structural and energetic properties highlighted. Sec-
tion VI discusses the extension to port-controlled Hamiltonian
dynamics. On these bases, energy-based stabilizing control
strategies are briefly recalled. In Section VII, simulated case
studies are worked out to illustrate computational aspects.
Concluding remarks end the paper.

II. PROLEGOMENA

A. Some notations

All functions and vector fields defining the dynamics are
assumed smooth and complete over the respective definition
spaces. R and N denote the set of real and natural numbers
including 0 respectively. Rn×m denotes the set of real valued
n×m matrices. For any vector v ∈ Rn, |v| and v> define
the norm and transpose of v respectively. Id denotes the
identity function on the definition space while I denotes the
identity operator and the identity matrix when related to a
linear operator. For a matrix A ∈ Rn×n, we denote by A−1

its inverse and, for the sake of the notations, its pseudo-
inverse when singular. The symmetric and skew-symmetric
parts of A ∈ Rn×n are denoted by sym(A) = 1

2 (A+A>) and
skew(A) = 1

2 (A−A>).
Given a differentiable real-valued function V (·) : Rn →

R, ∇V represents the gradient column-vector with ∇ =
col{ ∂

∂xi
}i=1,n and ∇2V denotes its Hessian matrix with

∇2 =
{

∂ 2

∂xi,∂x j

}
i, j=1,n

. Given a vector-valued function F(x) =

col(F1(x), . . . ,Fn(x)), J[F(x)] = { ∂

∂x j
Fi(x)}i, j=1,n denotes the

Jacobian of F .
The symbols ” > 0” and ” < 0” denote positive and negative

definite functions (or matrices), respectively. Indicating by X
a formal variable that can represent an operator (or a matrix
in the linear case), one defines the formal exponential series
eX = I+∑p≥1

X p

p! with X p the power p composition of X with
respect to a given product. Accordingly, formal manipulations
are worked out as the inverse series denoted by (I+X)−1 with
(I + X)−1 = I + ∑p≥1(−1)pX p, or formal quotient denoted
by eX−1

X , that stands for the formal cancellation of X in the
numerator series eX − 1 so getting eX−I

X = I + ∑p≥1
X p

(p+1)! ;
similar rules apply to define formal algebraic relations along
the paper.

Given a smooth vector field f over Rn, L f = ∑
n
i=1 fi(x) ∂

∂xi
denotes its associated Lie derivative operator. Setting L0

f =
I, one iteratively defines the composition at power p as

Lp
f = L f Lp−1

f ; e f := I + ∑p≥1
Lp

f
p! represents the exponential

Lie series operator recovering, for linear vector fields, the
exponential of the matrix representing the operator. For any
smooth function h(·) : Rn → R, the equality of functions
e f h(x) = h(e f (x)) = e f h|x holds true [35, Page 22], where |x
denotes the evaluation of the function at x. Given a function
of time γ(t), γk := γ(kδ ) denotes its value at time t = kδ , with
k ∈ N for a fixed δ ∈]0,T ?[, T ? > 0. The root-mean-square
error (RMSE) between a continuous-time function γ(t) and
a discrete sequence γd(kδ ) is given for T > 0 by RMSE =√

∑
T
k=1

1
T (γd(kδ )− γ(t)|t=kδ )2. A function R(x,δ ) = O(δ p) is

said in O(δ p) δ p, p ≥ 1 if whenever it is defined, it can be
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written as R(x,δ ) = δ p−1R̃(x,δ ) and there exist a function
θ ∈K∞ and δ ? > 0 such that ∀δ ≤ δ ?, |R̃(x,δ )| ≤ θ(δ ).

Given two matrices A ∈ Rn1×n2 and B ∈ Rm1×m2 , the Kro-
necker product is denoted by A⊗ B ∈ Rn1m1×n2m2 . Given
a matrix-valued function L(x) : Rn → Rn×n, the following
representations are set under differentiation

∂L(x)
∂x

=
∂

∂x
⊗L(x) =

(
∂L(x)
∂x1

. . . ∂L(x)
∂xn

)
∈ Rn×n2

and consequently, for an n-dimensional vector, N(x) :Rn→Rn

∂L(x)N(x)
∂x

=
∂L(x)

∂x
(N(x)⊗ I)+L(x)

∂N(x)
∂x

=L(x)
∂

∂x
N(x)+

n

∑
i=1

(
∂

∂xi
L(x)

)
N(x).

B. Discrete gradient function
Let us first recall from the literature (see [18], [19], [20])

the definition of discrete gradient function.
Definition 2.1 (Discrete gradient): Given a smooth real-

valued function V (·) :Rn→R, its discrete gradient is a vector-
valued function of two variables, ∇̄V

∣∣∣.
.
:Rn×Rn→Rn, defined

as ∇̄V
∣∣∣w
v
= col

{
∇̄iV

∣∣∣w
v

}
i=1,n

satisfying the variational equality

V (w)−V (v) = (w− v)>∇̄V
∣∣∣w
v

(1)

with, by continuity, ∇̄V
∣∣∣v
v
= ∇V (v).

From this definition, the extended notions of discrete Jaco-
bian and discrete Hessian are now introduced.

Definition 2.2 (Discrete Jacobian): Given a vector function
F = col{F1, . . . ,Fn} : Rn→Rn with Fi(·) : Rn→R, its discrete
Jacobian is a matrix-valued function of two variables J̄[F ]

∣∣∣.
.
:

Rn ×Rn → Rn×n defined as J̄[F ]
∣∣∣w
v
=
[
∇̄ j[Fi]

∣∣∣w
v

]
i, j=1,n

and

satisfying

F(w)−F(v)=J̄[F ]
∣∣∣w
v
(w− v) = col

{
(w− v)>∇̄Fi

∣∣∣w
v

}
i=1,n

(2)

with ∇̄Fi

∣∣∣w
v
= col

{
∇̄ jFi

∣∣∣w
v

}
j=1,n

and by continuity J̄[F ]
∣∣∣v
v
=

J[F(v)]. When F(·) = ∇V (·), one defines the discrete Hessian
matrix of V (·) as ∇̄2V

∣∣∣w
v
= J̄[∇V ]

∣∣∣w
v

with ∇̄2V
∣∣∣v
v
= ∇2V (v).

According to Definitions above, the discrete gradient and
the discrete Jacobian are not uniquely defined depending on
choice of the the path from v to w. For instance, for v =
col{v1, . . . ,vn} and w = col{w1, . . . ,wn}, the discrete gradient
can be computed component-wise through the integral form

∇̄iV
∣∣∣w
v
=

1
wi− vi

∫ wi

vi

∂V (w1, ...,wi−1,ξ ,vi+1, ...,vn)

∂ξ
dξ . (3)

In the following, the general constructive forms of the dis-
crete gradient function and discrete Jacobian matrix proposed
below are used.

Proposition 2.1: For a given smooth function V (·) : Rn→
R, by the mean value theorem, one gets

V (w)−V (v) = (w− v)>
∫ 1

0
∇V
∣∣∣
v+s(w−v)

ds

so providing the constructive form of the discrete gradient

∇̄V
∣∣∣w
v
=
∫ 1

0
∇V
∣∣∣
v+s(w−v)

ds (4)

with v+ s(w− v) = col{v1 + s(w1− v1), · · · ,vn + s(wn− vn)}.
Analogously, for a given smooth vector function F(·) : Rn→
Rn, one gets

F(w)−F(v) =
∫ 1

0
J[F ]

∣∣∣
v+s(w−v)

ds(w− v)

so providing the constructive forms of the discrete Jacobian

J̄[F ]
∣∣∣w
v
=
∫ 1

0
J[F ]

∣∣∣
v+s(w−v)

ds (5)

and of the discrete Hessian when F(·) = ∇V (·)

∇̄
2V
∣∣∣w
v
= J̄[∇V ]

∣∣∣w
v
=
∫ 1

0
∇

2V
∣∣∣
v+s(w−v)

ds.

Remark 2.1: With reference to a quadratic function V (v) =
1
2 v>Pv with P = P>, the discrete gradient takes the form

∇̄V
∣∣∣w
v
=

1
2

P(v+w) =
1
2

∇V (v+w). (6)

Remark 2.2: With reference to a separable function V (v) =
∑

n
i=1 Vi(vi), the integral form (3) simplifies for i = 1, · · · ,n as

∇̄iV
∣∣∣w
v
=

1
wi− vi

∫ wi

vi

dVi(ξ )

dξ
dξ =

∫ 1

0
∇Vi

∣∣∣
vi+s(wi−vi)

ds.

C. Port-Hamiltonian dynamics
Hamiltonian dynamics were historically introduced over

R2n, as expressed in the canonical generalized position and
momenta coordinates (q, p), through a smooth real-valued
function H(·) : R2n → R. In the recent literature, port-
Hamiltonian structures are in general defined over Rn, with
energy as the state variable and the function H(·) : Rn → R,
catching the energy-like properties (e.g. [2], [5]). Such forms
are briefly recalled in the continuous and discrete-time settings.

Definition 2.3: Given a smooth real-valued function H(·) :
Rn → R, a continuous-time port-Hamiltonian dynamics is
given by

ẋ = f (x) = (J(x)−R(x))∇H(x) (7)

where J(x) =−J>(x) ∈ Rn×n and R(x) = R>(x) ∈ Rn×n with
R(x)≥ 0 are the interconnection and damping matrices.
The following comments are in order:
• any equilibrium xe of (7) coincides with a local extremum

of H(x) (∇H(xe) = 0);
• provided H(x) is bounded from below the stability of xe

follows from the variational inequality

Ḣ(x) = L f H(x) =−∇
>H(x)R(x)∇H(x)≤ 0;

• when R(x) = 0, conservation of H(x) follows;
• when J(x) and R(x) are constant matrices and H(x) is

a quadratic function, (7) specifies a linear Hamiltonian
dynamics;

• canonical Hamiltonian dynamics are referred to

R(x) = 0 and J(x) =
(

0 I
−I 0

)
;
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• when J(x)−R(x) =−I, (7) is called gradient dynamics.

Models employing the discrete gradient of H(·) have been
proposed to represent port-Hamiltonian dynamics in discrete
time as recalled here below (see e.g. [19], [21], [32], [36]–
[39]).

Definition 2.4: Given a smooth real-valued function H(·) :
Rn → R, a discrete-time port-Hamiltonian dynamics is de-
scribed as

x+ = x+(Jd(x)−Rd(x))∇̄H
∣∣∣x+
x

(8)

where Jd(x) =−J>d (x)∈Rn×n and Rd(x) =R>d (x)∈Rn×n with
R(x) ≥ 0. Jd(x),Rd(x) are the interconnection and damping
matrices; x ∈Rn is the state at the discrete-time instant k≥ 0,
while x+ indicates its value one step ahead, that is at k+1.

Exploiting the structure (8), one verifies the expected energetic
properties:

• any local extremum xe ∈ Rn of H(·) (i.e., ∇̄H
∣∣∣xe

xe
=

∇H(xe) = 0) is an equilibrium of (8);
• from (8) and Definition 2.1, one gets

H(x+)−H(x) =−∇̄
>H
∣∣∣x+
x

Rd(x)∇̄H
∣∣∣x+
x
≤ 0 (9)

so that xe is stable for (8) if H(x) is bounded from below;
• when Rd(x) = 0, the dynamics (8) is energy-conservative

H(x+)−H(x) = ∇̄
>H
∣∣∣x+
x

Jd(x)∇̄H
∣∣∣x+
x

= 0.

The representation (8) specifies the state evolution through a
set of implicit first order difference equations. This represents
the main source of difficulties: recovering an explicit state
space representation in the form of a map (say x+ = x+F(x))
from (8) is not an easy task, except for the case of a quadratic
Hamiltonian function.

Remark 2.3: Assuming H(x) = 1
2 x>Px, with P = P> ≥ 0

and invoking Remark 2.1, the discrete dynamics (8) rewrites
in explicit form as

x+ =
(

I− 1
2
(Jd(x)−Rd(x))P

)−1(
I +

1
2
(Jd(x)−Rd(x))P

)
x.

D. Problem statement

Consider a generic nonlinear dynamics

ẋ = f (x) (10)

with f (·) : Rn→ Rn. Denoting by δ > 0 the sampling period,
its equivalent sampled-data dynamics [31], specifying the one
step-ahead evolution at time t = (k+1)δ starting from t = kδ ,
gets the form of a map

x+ = x+Fδ (x) (11)

with x = x(kδ ), x+ = x((k+1)δ ). Whenever f (x) is smooth,
Fδ (x) admits the asymptotic expansion in powers of δ

Fδ (x) = eδ f x− x = δ f (x)+∑
i≥2

δ i

i!
Li−1

f f (x). (12)

for all δ ∈]0,T ?[ with eδ f x the Lie exponential applied to x
and T ? > 0, the upper bound of the convergence interval of
the exponential expansion.

Assuming now a port-Hamiltonian continuous-time dynam-
ics (7) with f (x) = (J(x)− R(x))∇H(x), a natural question
arises: is the port-Hamiltonian structure preserved under sam-
pling? More precisely, the problem we address is formalized
as follows.

Problem 2.1: Consider a continuous-time port-Hamiltonian
dynamics (7) in the sense of Definition 2.3 and let (11) be
the sampled-data equivalent model. Compute, if any, matrices
Jδ ( f ,x) =−Jδ>( f ,x) and Rδ ( f ,x) = Rδ>( f ,x)≥ 0 verifying

Fδ (x) = δ
(
Jδ ( f ,x)−Rδ ( f ,x)

)
∇̄H|x+Fδ (x)

x ;

i.e., the corresponding equivalent sampled-data model (12)
admits a discrete-time port-Hamiltonian structure in the sense
of Definition 2.4

x+ = x+δ
(
Jδ ( f ,x)−Rδ ( f ,x)

)
∇̄H|x+x

verifying, at all sampling instants, x= x(kδ ) for all k≥ 0 when
x0 = x(0). /

The solution of the problem above has two immediate
outcomes: (i) it provides a sampled-data Dirac structure;
(ii) it proves the preservation of port-controlled Hamiltonian
structure under sampling [32].

We underline that, for guaranteeing both exact sampling and
preservation of the Hamiltonian (energetic) structure, the in-
terconnection and damping matrices Jδ ( f ,x) and Rδ ( f ,x) are
not the same as in continuous time and result to be explicitly
parameterized by δ , the sampling period. This requirement is
motivated by the LTI case detailed below.

E. The case of LTI dynamics

For Linear-Time Invariant (LTI) dynamics

ẋ = (J−R)∇H(x) (13)

with quadratic Hamiltonian H(x) = 1
2 xT Px, a solution to

Problem 2.1 is in [34]. More in detail, recalling that ∇̄H|x+x =
1
2 P(x+x+), a discrete-time port-Hamiltonian representation of
the sampled dynamics associated to (13) can be computed by
comparing the implicit form (8) with the explicit sampled-
data dynamics computed according to (12). Comparing the
two equivalent representations

x+ = eδ (J−R)Px ≡ x+ = x+
δ

2
(Jδ −Rδ )(x+ x+) (14)

one deduces the following matrix equalities

eδ (J−R)P = (I− δ

2
(Jδ −Rδ ))−1(I +

δ

2
(Jδ −Rδ )) (15a)

δ (Jδ −Rδ ) = 2(eδ (J−R)P− I)(eδ (J−R)P + I)−1P−1 (15b)

with Jδ → J and Rδ → 0 as δ → 0.
The modified structural matrices Jδ and Rδ are uniquely
defined by (15b) and naturally depend on δ , the sampling
period. As an example, for the simplest case of a canonical
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Hamiltonian dynamics over R2 with R = 0 and P = I, one
computes

eδJ =

(
cosδ sinδ

−sinδ cosδ

)
, δJδ =

(
0 2sinδ

1+cosδ

− 2sinδ

1+cosδ
0

)
(16)

so characterizing the discrete-time Hamiltonian form as

x+ = x+δJδ
∇̄H
∣∣∣x+
x

= x+

(
0 sinδ

1+cosδ

− sinδ

1+cosδ
0

)
(x+ x+)

(17)

that matches the sampled evolutions of the continuous-time
canonical port-Hamiltonian dynamics over R2. The implicit
representation (17) motivates the need of mapping J→ Jδ to
recover an equivalent sampled-data representation. Note that
Jδ is not an arbitrary skew-symmetric matrix, but a proper
δ -dependent matrix that infinitesimally recasts J.

III. FORMAL INSTRUMENTAL RESULTS

The results proposed in this section exploit the exponential
form representation (12) of sampled-data dynamics to describe
the discrete gradient function computed over a fixed sampled-
data dynamics. They are at instrumental for the results and to
further computational aspects.

Given a continuous-time dynamics (10), let (11) be its
associated sampled-data model described in the form of a map
as in (12). At first, the formal differential operator defined as

Dδ
f =

eδ f − I
δ f

= I +∑
i≥1

δ i

(i+1)!
Li

f (18)

is introduced. The first proposition provides a matrix form
with respect to the vector field f (x) for the variation of the
sampled-data map Fδ (x).

Proposition 3.1: Given a continuous-time dynamics (10)
on Rn, then for all δ ∈]0,T ?[, its associated sampled-data
equivalent dynamics satisfies the equality below

x+− x = Fδ (x) = δMδ ( f ,x) f (x) (19)

with square matrix Mδ ( f ,x), locally non singular, given by

Mδ ( f ,x) =
1
δ

∫
δ

0
J[x(s)]ds = J[Dδ

f (x)] (20)

and x(s) = es f x.
Proof: The proof follows from the definition of x+= eδ f x

and computing

eδ f x− x = δ f (x)+
δ 2

2!
L f f (x)+

δ 3

3!
L2

f f (x)+ . . .

= (δJ[x]+
δ 2

2!
J[ f ]+

δ 3

3!
J[L f f ]+ . . .) f (x)

= J[δx+
δ 2

2!
f (x)+

δ 3

3!
L f f (x)+ . . . ] f (x) = J[δDδ

f (x)] f (x)

= J[
∫

δ

0
es f xds] f (x) =

∫
δ

0
J[es f x]ds f (x) = δMδ ( f ,x) f (x)

with Mδ ( f ,x) as in (20). The non singularity of Mδ ( f ,x)
follows by construction for δ small enough. �

It is worth to note that Mδ ( f ,x) coincides with the Jacobian,
evaluated at x, of the result of the differential operator Dδ

f
applied to the identity function; it admits an asymptotic
expansion in powers of δ of the form

Mδ ( f ,x) = J[Dδ
f (x)] = J[

eδ f − I
δ f

(x)] (21)

= I +
δ

2
J[ f (x)]+

δ 2

3!
J[J[ f (x)] f (x)]+∑

i≥3

δ i

(i+1)!
J[Li−1

f f (x)].

Remark 3.1: According to (19), truncating the polynomial
expansion Mδ ( f ,x) in (21) at any finite order in δ provides ap-
proximate sampled-data dynamics of increasing order. Setting
Mδ ( f ,x) = I, the Euler approximation is recovered.

Remark 3.2: With reference to a LTI dynamics, f (x) = Ax,
one gets Dδ

Ax(x) = (eδA− I)(δA)−1x and thus, for all δ > 0,
a constant matrix Mδ = (eδA− I)(δA)−1 parameterized by δ

and satisfying (19); i.e.

x+− x = δMδ Ax = δ (I +
δ

2!
A+

δ 2

3!
A2 + · · ·)Ax = eδAx− x.

The next proposition specifies the variation of a real valued
function V (·) along the sampled-data dynamics (11).

Proposition 3.2: Given a smooth vector field f (·) on Rn

and a smooth real valued function V (·) : Rn → R, then for
all δ ∈]0,T ?[, the variation of the function V (·) along the
associated sampled-data dynamics (11) satisfies the equality

V (x+)−V (x)
δ

= ∇
>V δ

av( f ,x) f (x) = L fV δ
av( f ,x) (22)

with, for x(s) = es f x,

V δ
av( f ,x) =

1
δ

∫
δ

0
V (x(s))ds = Dδ

f (V )(x). (23)

Proof: The proof follows from the definition of V (x+) =
eδ fV (x) when x+ = eδ f x, so getting

eδ fV (x)−V (x) = δL fV (x)+
δ 2

2!
L2

fV (x)+
δ 3

3!
L3

fV (x)+ . . .

= δL f

(
V (x)+

δ

2!
L fV (x)+

δ 3

3!
L fV (x)+ . . .

)
= ∇

>
(

δV (x)+
δ 2

2!
L fV (x)+

δ 3

3!
L fV (x)+ . . .

)
f (x)

= ∇
>
(∫ δ

0
es fV (x)ds

)
f (x) = ∇

>
(∫ δ

0
V (x(s))ds

)
f (x).

�
V δ

av(·) in (23) can be computed through the application
of Dδ

f to V (·) and evaluating the result at x so getting the
asymptotic expansion

V δ
av( f ,x) = Dδ

f (V )(x) =V (x)+∑
i≥1

δ i

(i+1)!
Li

fV (x). (24)

Remark 3.3: With reference to the LTI case, f (x) = Ax and
V (x) = 1

2 x>Px, one obtains from (24) V δ
av( f ,x) = 1

2 x>Pδ x and

Pδ =
1
δ

∫
δ

0
esA>PeAsds

= (eδA> + I)P(eδA− I)(δA)−1 = P+∑
i≥1

δ i

(i+1)!
Pi
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and Pi =Pi−1A+A>Pi−1. From (22), the variation of V (·) along
the linear sampled-data dynamics gives

V (x+)−V (x) = δx>Pδ Ax = x>(eδA> + I)P(eδA− I)x.
From the previous Propositions, it is possible to give a

constructive characterization of the discrete gradient of any
function V (·) along the sampled dynamics (11) associated to
any f (·). Such a form is clearly not uniquely defined.

Proposition 3.3: Given a smooth vector field f (·) on Rn,
then for all δ ∈]0,T ?[, the discrete gradient of V (·) along the
sampled dynamics (11) can be computed as

∇̄
>V
∣∣∣x+
x

= ∇
>V δ

av( f ,x)(Mδ ( f ,x))−1

=
(
Dδ

f (∇V )(x)
)>(

J[Dδ
f (x)]

)−1
. (25)

Proof: From Definition 2.1, Propositions 3.1 and 3.2,
one gets the equality

∇̄
>V
∣∣∣x+
x

Mδ ( f ,x) f (x)=∇
>V δ

av( f ,x) f (x)=
[
Dδ

f (∇V )(x)
]>

f (x)

which proves that (25) is an admissible solution because of
invertibility of the matrix Mδ ( f ,x) for δ small enough. When
δ → 0 and x+ = x, one recovers ∇̄>V

∣∣∣x
x
= ∇V (x). �

For the first terms, one computes in O(δ 3)

(Mδ ( f ,x))−1= I− δ

2
J[ f (x)]

−δ 2

3!
J[J[ f (x)] f (x)]+

δ 2

4
J[ f (x)]J[ f (x)]+O(δ 3).

Remark 3.4: With reference to f (x) = Ax and V (x) =
1
2 x>Px, one obtains from (25)

∇̄V
∣∣∣x+
x

= δA(eδA− I)−1Pδ x. (26)

Finally, the following relation can be set between the usual
gradient of a given function V (·) and its discrete gradient along
the sampled dynamics associated to a vector field f (x).

Proposition 3.4: Given a smooth vector field f (·) on Rn,
then for all δ ∈]0,T ?[, the discrete gradient of V (·) along the
sampled-data dynamics eδ f x−x = Fδ (x) satisfies the equality

∇̄V
∣∣∣x+
x

= ∇V (x)+δQδ (V, f ,x) f (x) (27)

with square matrix Qδ (V, f ,x) given by

Qδ (V, f ,x)=
(∫ 1

0

∫ 1

0
s1∇

2V
∣∣∣
x+s2s1Fδ (x)

ds2ds1

)
Mδ ( f ,x). (28)

Proof: The proof follows from Proposition 2.1 as

∇̄V
∣∣∣x+
x

= ∇̄V
∣∣∣x+Fδ (x)

x
=
∫ 1

0
∇V (x+ s1Fδ (x))ds1 =

= ∇V (x)+
∫ 1

0
s1J̄[∇V ]

∣∣∣x+s1Fδ (x)

x
Fδ (x)ds1

= ∇V (x)+
∫ 1

0
s1∇̄2V

∣∣∣x+s1Fδ (x)

x
Fδ (x)ds1

so recovering (27) as ∇̄2V
∣∣∣x+s1Fδ (x)

x
=
∫ 1

0 ∇2V
∣∣∣
x+s2s1Fδ (x)

ds2

and Fδ (x) = δMδ ( f ,x) f (x) from Proposition 3.1. �

For the first terms one gets

δQδ (V, f ,x) =
δ

2
∇

2V (x)+
δ 2

4
∇

2V (x)J[ f (x)]

+
δ 2

3!
∂∇2V (x)

∂x
( f (x)⊗ I)+O(δ 3).

Remark 3.5: The discrete gradient (27) admits a power
expansion in powers of δ of the form

∇̄H|x+x = ∇H(x)+∑
i>0

δ i

(i+1)!
∇̄iH(x) (29)

with, for the first terms

∇̄1H(x) =∇
2H(x) f (x)

∇̄2H(x) =
∂∇2H(x)

∂x
( f (x)⊗ I) f (x)+

3
2

∇
2H(x)J[ f (x)] f (x).

Remark 3.6: When considering a quadratic function V =
x>Px and a linear vector field f (x) = Ax, one gets
Qδ ( 1

2 x>Px,Ax,x) = 1
2 P(eδA− I)(δA)−1.

IV. GRADIENT DYNAMICS UNDER SAMPLING

Consider the continuous-time gradient dynamics

ẋ = f (x) =−∇H(x) (30)

that satisfies the inequality

H(x+)−H(x) =−
∫

δ

0
∇
>H(x(s))∇H(x(s))ds≤ 0. (31)

We now address the following question: does the equivalent
sampled-data dynamics admit a discrete gradient form? To this
end, we first specify Proposition 3.3 when f =−∇H.

Proposition 4.1: Given a smooth gradient vector field
f (·) =−∇H(·) on Rn, the discrete gradient of H(·), along the
sampled equivalent dynamics (11) is given for all δ ∈]0,T ?[
by

∇̄
>H
∣∣∣x+
x
= (32)

∇
>H(x)

∫
δ

0
(I− sJ[∇s

avH(x)])>(I− sJ[∇s
avH(x)])ds(δMδ ( f ,x))−1.

with, from definition (23) when x(`) = e` f x

s∇
s
avH(x) =

∫ s

0
∇H(x(`))d`= s∇H(x)+∑

i>1

si

i!
Li−1

f ∇H(x).

(33)
Proof: According to Proposition 3.3, when f = −∇H,

the discrete gradient of the function H(·), along the sampled
dynamics, must satisfy the equality below

−δ ∇̄
>H
∣∣∣x+
x

Mδ ( f ,x)∇H(x)=−
∫

δ

0
∇
>H(x(s))∇H(x(s))ds

with x(s) = es f x. Rewriting now H(x+)− H(x) along the
continuous-time dynamics according to

∇H(x(s)) =
(

I− sJ[∇s
avH(x)]

)
∇H(x)
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one gets the equality

δ ∇̄
>H
∣∣∣x+
x

Mδ ( f ,x)∇H(x) =

∇
>H(x)

∫
δ

0
(I− sJ[∇s

avH(x)])>(I− sJ[∇s
avH(x)])ds∇H(x)

which is solved by the choice (32), so concluding the proof.
�

For the first terms, (32) gets the form

∇̄H
∣∣∣x+
x

=
(

I− δ

2
∇

2H(x)+
δ 2

4
∇

2H(x)∇2H(x)

+
δ 2

3!
∂∇2H(x)

∂x
(∇H(x)⊗ I)

)
∇H(x)+O(δ 3).

On these bases, the following result can be proved.

Theorem 4.1: Given the continuous-time gradient dynam-
ics (30), then for all δ ∈]0,T ?[, its sampled-data equivalent
dynamics (11) admits the discrete-time form below

x+− x =−δ Iδ (H,−∇H,x)∇̄H
∣∣∣x+
x

(34)

with non-singular symmetric positive-definite matrix

Iδ (H,−∇H,x) = Mδ (−∇H,x)(I−δQδ (H,−∇H,x))−1

=
(

Iδ (H,−∇H,x)
)>

> 0 (35)

and the function H(·) satisfies the variational inequality

H(x+)−H(x) =−δ ∇̄
>H
∣∣∣x+
x

Iδ (H,−∇H,x)∇̄H
∣∣∣x+
x

< 0. (36)

Proof: According to Proposition 3.4 as (I− δQδ ( f ,x))
is non singular by construction, one rewrites Fδ (x) as

Fδ (x) =−δMδ (−∇H,x)(I−δQδ (H,−∇H,x))−1

(I−δQδ (H,−∇H,x))∇H(x)

so getting the result when setting Iδ (H,−∇H,x) as in (35).
The non singularity of Iδ (H,−∇(x),x) follows from the non
singularity of Mδ ( f ,x) and (I − δQδ (H, f ,x)). Moreover,
exploiting Proposition 4.1 and the discrete-gradient (32), one
rewrites (35) as

Iδ (H,−∇H,x) =δMδ ( f ,x)
(∫ δ

0
(I− sJ[∇s

avH(x)])>×

(I− sJ[∇s
avH(x)])ds

)−1
(Mδ ( f ,x))>

which is symmetric and positive definite by construction. The
equality (36) is obtained by expressing H(x+)−H(x) either

as H(x+)−H(x) = ∇̄>H
∣∣∣x+
x
(x+ − x), or equivalently as the

integration of the Hamiltonian function along the continuous-
time dynamics H(x+)−H(x) =

∫
δ

0 Ḣ(x(s))ds. Both are equal
since the sampled-data dynamics matches at the sampling
times the continuous-time one by definition. �

For the first terms, (35) is given by

Iδ (H,−∇H,x) =
(

I− δ

2
∇

2H(x)+
δ 2

3!
J[∇2H(x)∇H(x)]

)
(

I− δ

2
∇

2H(x)+
δ 2

4
∇

2H(x)∇2H(x)

− δ 2

3!
∂∇2H(x)

∂x
(∇H(x)⊗ I)

)
∇H(x)

)−1

= I− δ 2

12
∇

2H(x)∇2H(x)+O(δ 3).

It is important to stress that the sampled-data equivalent
dynamics (34) to the given continuous-time gradient dynamics
does not exhibit a discrete gradient form in general.

When considering quadratic Hamiltonians, Theorem 4.1
recovers the results in [34]. In detail, when H(x)= 1

2 x>Px with
positive semi-definite square matrix P, the gradient dynamics
ẋ = −∇H(x) = −Px admits the sampled-data representation
(34) specified as

x+− x =−Iδ P
2
(x+ x+)

with x+ = e−δPx and

Iδ = 2δ (I− e−δP)P−1(I + e−δP)−1. (37)

In addition, the following result can be given.

Theorem 4.2: Given a LTI gradient-dynamics (30) (i.e.,
f (x) = −Px and H(x) = 1

2 x>Px, there exists a new Hamil-
tonian function Hδ = 1

2 x>Pδ x parameterized by δ > 0 with

Pδ = Iδ P = (Pδ )> > 0

such that the sampled-data equivalent dynamics preserves a
discrete gradient form; namely, one gets

x+− x =−∇̄Hδ

∣∣∣x+
x

=−Pδ

2
(x+ x+). (38)

Proof: From Theorem 4.1 Iδ = (Iδ )> > 0 so getting that
the so-defined Pδ , coinciding with the one in Remark 3.3, is
positive definite and symmetric. Also as x+ = x and δ → 0
one gets ∇̄Hδ |xx = Px so concluding the result. �

V. PORT-HAMILTONIAN DYNAMICS UNDER SAMPLING

The results of the previous section are now generalized to
port-Hamiltonian dynamics of the form (7). To this end, let
us extend to this context Proposition 4.1, when setting for
compactness S(x) = J(x)−R(x).

Proposition 5.1: Given a smooth vector field f (x)= (J(x)−
R(x))∇H(x) on Rn, then for all δ ∈]0,T ?[, the discrete gradient
of H(·) along its sampled equivalent can be rewritten as

∇̄
>H
∣∣∣x+
x

= ∇
>H(x)×∫

δ

0

(
I + sJ[∇s

avH(x)]S(x)
)>

S>(x(s))
(

I + sJ[∇s
avH(x)]S(x)

)
ds

× (δMδ ( f ,x)S(x))−1 (39)

for x(s) = es f x and s∇s
avH(x) as in (33).
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Proof: According to Proposition 3.3, when f =
−S(x)∇H, the discrete gradient of the function H(·) along
the sampled dynamics must satisfy the equality below

δ ∇̄
>H
∣∣∣x+
x

Mδ ( f ,x)S(x)∇H(x)=
∫

δ

0
∇
>H(x(s))S(x(s))∇H(x(s))ds.

Rewriting ∇H(x(s)) =
(

I+sJ[∇s
avH(x)]S(x)

)
∇H(x), one gets

δ ∇̄
>H
∣∣∣x+
x

Mδ ( f ,x)S(x)∇H(x) = ∇
>H(x)×∫

δ

0

(
I+sJ[∇s

avH(x)]S(x)
)>

S(x(s))
(

I+sJ[∇s
avH(x)]S(x)

)
ds∇H(x)

which is solved by the choice (39). �

Remark 5.1: On the bases of Propositions 5.1 and 3.4, it is
a matter of computation to verify that

I +δQδ (H, f ,x)S(x) = (δMδ ( f ,x)S(x))−>× (40)∫
δ

0

(
I + sJ[∇s

avH(x)]S(x)
)>

S>(x(s))
(

I + sJ[∇s
avH(x)]S(x)

)
ds

with x(s) = es f x and s∇s
avH(x) as in (33).

The main result below generalizes Theorem 4.1 to port-
Hamiltonian dynamics.

Theorem 5.1: Given a continuous-time port-Hamiltonian
dynamics as in (7), then for any δ ∈]0,T ?[, its sampled equiv-
alent model (11) admits the discrete-time port-Hamiltonian
structure

x+− x = δSδ
J−R( f ,x)∇̄H

∣∣∣x+
x

(41)

with f (x) = S(x)∇H(x) and

Sδ
J−R( f ,x) = Mδ ( f ,x)S(x)

(
I +δQδ (H, f ,x)S(x)

)−1
(42)

that satisfies the energy-balance equality

H(x+)−H(x) =−δ ∇̄
>H
∣∣∣x+
x

Sδ
J−R( f ,x)∇̄H

∣∣∣x+
x

=−
∫

δ

0
∇
>H(x(s))R(x(s))∇H(x(s))ds≤ 0. (43)

Proof: According to Proposition 3.1, one rewrites

x+− x = Fδ (x) = δMδ ( f ,x)S(x)∇H(x)

and the discrete gradient function satisfies

∇̄H
∣∣∣x+
x

=
(

I +δ

∫ 1

0
s∇̄2H

∣∣∣x+sFδ (x)

x
dsMδ ( f ,x)S(x)

)
∇H(x)

so getting (41). Moreover, by definition of the discrete gradi-
ent, the energy-balance equality rewrites as

H(x+)−H(x) = δ ∇̄
>H
∣∣∣x+
x

Sδ
J−R( f ,x)∇̄H

∣∣∣x+
x

=−
∫

δ

0
∇
>H(x(s))R(x(s))∇H(x(s))ds≤ 0.

so verifying energy dissipation (43). �

Based on Remark 5.1, an alternate rewriting of Sδ
J−R( f ,x)

in Theorem 5.1 is deduced by substituting (40) to (42).

Corollary 5.1: Given a continuous-time port-Hamiltonian
dynamics as in (7), then for any δ ∈]0,T ?[, Sδ

J−R( f ,x) in (42)
equivalently rewrites as

Sδ
J−R( f ,x) = δMδ ( f ,x)S(x)×(∫ δ

0

(
I+sJ[∇s

avH(x)]S(x)
)>

S>(x(s))
(

I+sJ[∇s
avH(x)]S(x)

)
ds
)−1
×

S>(x)(Mδ ( f ,x))>. (44)

with x(s) = es f x, S(x) = J(x)−R(x) and s∇s
avH(x) as in (33).

Remark 5.2: The sampled-data structural matrix (42) can
be described by its power expansion in δ according to

Sδ
J−R( f ,x) = S0(x)+∑

i≥1

δ i

(i+1)!
Si(x) (45)

with, for the first terms

S0(x) = J(x)−R(x)

S1(x) =
(

∂S0(x)
∂x

(∇H(x)⊗ I)
)

S0(x) (46)

S2(x) =−
1
2

S0(x)∇2H(x)S0(x)∇2H(x)S0(x)

− 1
2

S0(x)∇2H(x)S1(x)−
1
2

S1(x)∇2H(x)S0(x)

+
∂S0(x)

∂x
(∇H(x)⊗ I)S1(x)−∇

2H(x)
∂S0(x)

∂x
( f (x)⊗ I)S0(x)

+
(

∂

∂x

(
∂S0(x)

∂x
(∇H(x)⊗ I)

))
( f (x)⊗ I)S0(x).

Remark 5.3: From (46), when R and J are constant one has

S1 =0, S2 =−
1
2

S0∇
2H(x)S0∇

2H(x)S0.

In the LTI case, the results in [34] are recovered as specified
in the theorem below which generalizes Theorem 4.2 and can
be readingly proved with the arguments in Section II-D.

Theorem 5.2: When f (x) = (J−R)Px and H(x) = 1
2 x>Px,

the sampled-data port-Hamiltonian model (41) admits the
structure

x+− x = δSδ
J−RP(x++ x)

with x+ = eδ (J−R)Px and

Sδ
J−R = 2(eδ (J−R)P− I)(I + eδ (J−R)P)−1(δP)−1. (47)

The corollaries below further characterize the structure
matrix Sδ

J−R in (42) when the port-Hamiltonian system (7)
is purely conservative or, in the degenerate case, dissipative
(i.e., R = 0 or J = 0 respectively).

Corollary 5.2: If J(x) = 0 (i.e., f (x) = −R(x)∇H(x)), the
sampled-data representation of the dynamics (7) takes the form

x+− x = δSδ
−R( f ,x)∇̄H

∣∣∣x+
x

with x+ = eδ f x and symmetric and negative semi-definite
Sδ
−R( f ,x) given by

Sδ
−R( f ,x) =−Mδ ( f ,x)R(x)×(∫ δ

0
(I− sJ[∇s

avH(x)]R(x))>R(x(s))(I− sJ[∇s
avH(x)]R(x))ds

)−1

R(x)(δMδ ( f ,x))> = (Sδ
−R( f ,x))> ≤ 0.
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Accordingly, one gets dissipation

H(x+)−H(x) = δ ∇̄
>H
∣∣∣x+
x

Sδ
−R( f ,x)∇̄H

∣∣∣x+
x

=−
∫

δ

0
∇
>H(x(s))R(x(s))∇H(x(s))ds≤ 0.

In conclusion, the purely dissipative structure of a port-
Hamiltonian dynamics is preserved by its sampled-data model
with symmetric and positive semi-definite dissipation matrix
−Sδ
−R( f ,x).

Remark 5.4: In the LTI case (i.e., f (x) = −RPx), one
recovers [34]

Sδ
−R(−RPx,x) = 2(e−δRP− I)(I + e−δRP)−1(δP)−1

with symmetric and positive definite −Sδ
−R(−RPx,x) as proved

in Corollary 5.2 and as one might further verify here via easy
but nasty computations.

Corollary 5.3: If R(x) = 0 (i.e., f (x) = J(x)∇H(x)), the
sampled-data equivalent representation takes the form

x+− x = δSδ
J ( f ,x)∇̄H

∣∣∣x+
x

with x+ = eδJ∇Hx and skew symmetric matrix Sδ
J ( f ,x)

Sδ
J ( f ,x) =−Mδ ( f ,x)J(x)×(∫ δ

0
(I + sJ[∇s

avH(x)]J(x))>J(x(s))(I + sJ[∇s
avH(x)]J(x))ds

)−1

× J(x)(δMδ ( f ,x))> =−(Sδ
J ( f ,x))>.

Accordingly, the sampled equivalent dynamics is conservative

H(x+)−H(x) = δ ∇̄
>H
∣∣∣x+
x

Sδ
J ( f ,x)∇̄H

∣∣∣x+
x

= 0. (48)

One concludes that the purely conservative structure of a
port-Hamiltonian dynamics is preserved by its sampled-data
model with skew-symmetric interconnection matrix.

Remark 5.5: In the LTI case f (x) = JPx, one recovers [34]

Sδ
J (JPx,x) = 2(eδJP− I)(I + eδJP)−1(δP)−1

where, from Corollary 5.3 and based on easy but nasty
computations, Sδ

J (JPx,x) =−(Sδ
J (JPx,x))>.

A. The sampled-data structure matrix
Given the port-Hamiltonian representation (41), a unique

way of highlighting the dissipating and conservative com-
ponent into the structure matrix is not an easy task in gen-
eral. There are several options for decomposing Sδ

J−R( f ,x) =
Jδ ( f ,x)−Rδ ( f ,x) with suitably defined interconnection and
damping matrices Jδ ( f ,x) and Rδ ( f ,x), according to Def-
inition 2.4. Such a choice is unique only in the LTI case,
discussed in Theorem 5.2, so defining

Rδ =−sym(Sδ
J−R), Jδ = skew(Sδ

J−R).

Along these lines, the easiest choice stands in separating
Sδ

J−R( f ,x) into its symmetric and skew-symmetric components

Jδ ( f ,x) =skew(Sδ
J−R( f ,x))

Rδ ( f ,x) =−sym(Sδ
J−R( f ,x))� 0.

(49)

However, the result is rather conservative implying that
Jδ ( f ,x) 6= 0 when J(x) = 0 or analogously, Rδ ( f ,x) 6= 0 when
R(x) = 0, in general.

A different and more accurate choice is based on the
computation of Rδ ( f ,x) as the solution to the dissipation-
matching equality

δ ∇̄
>H
∣∣∣x+
x

Rδ ( f ,x)∇̄H
∣∣∣x+
x

=
∫

δ

0
∇
>H(x(s))R(x(s))∇H(x(s))ds

with x(s) = es f x, given by

δRδ ( f ,x)=
(

I +δQδ (H, f ,x)S(x)
)>∫ δ

0

(
I + sJ[∇s

avH(x)]S(x)
)>

×R(x(s))
(

I + sJ[∇s
avH(x)]S(x)

)
ds
(

I +δQδ (H, f ,x)S(x)
)
.

(50)

The so-defined dissipation matrix is by construction positive
definite and symmetric. Moreover, the energy-balance equality
gets the form

H(x+)−H(x) = δ ∇̄
>H
∣∣∣x+
x

Sδ
J−R( f ,x)∇̄H

∣∣∣x+
x

=−
∫

δ

0
∇
>H(x(s))R(x(s))∇H(x(s))ds≤ 0

with

H(x+)−H(x) =−δ ∇̄
>H
∣∣∣x+
x

Rδ ( f ,x)∇̄H
∣∣∣x+
x

so verifying the energy dissipation (43) by skew-symmetry
of the matrix J(x). The advantage of such a choice is to
exactly match the continuous-time dissipation through the
so defined dissipation matrix Rδ ( f ,x). Accordingly, one de-
duces Jδ ( f ,x) = Rδ ( f ,x)+ Sδ

J−R( f ,x) preserving exact state
sampling but not skew symmetry in general. Moreover, it is
guaranteed that Rδ ( f ,x) = 0 when R(x) = 0 and, analogously,
Jδ ( f ,x) = 0 when J(x) = 0.

B. Approximate sampled-data port-Hamiltonian models

Computing closed-forms of the sampled-data port-
Hamiltonian dynamics (41) is a difficult task in general and,
in most cases, not likely possible. The main issues basically
rely upon two aspects: (i) the computation of the structural
matrix Sδ ( f ,x) in (42); (ii) the difficulty in computing the
discrete gradient (1) itself. Also, the exact inversion of the
implicit model (41) for computing the explicit expression
for x+, which is the one used in practice, might not be
possible, even for simple classes of Hamiltonian functions
(e.g., separable).

Still, exploiting the smooth δ -dependence of all mappings
and matrices it is possible to naturally define approximations
as truncation of the series expansions in powers of δ defining
Sδ ( f ,x) and ∇̄H|x+x provided, respectively, by (29) and (45).

In detail, the pth-order approximation of the structural
matrix (42) is defined as

Sδ ,[p]
J−R ( f ,x) := S(x)+

p

∑
i=1

δ i

(i+1)!
Si(x) (51)
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with p ≥ 0. Based on this, one can define the pth-order
approximation of the implicit Hamiltonian model (41) as

x+− x = δSδ ,[p]
J−R ( f ,x)∇̄H

∣∣∣x+
x
. (52)

When p = 0, one recovers the usual Euler-like approximate
Hamiltonian model of the literature (e.g. [38]–[41]).

The approximation of the implicit port-Hamiltonian model
is deduced from (41) by considering the truncation of the
series expansion (45) at the order p ≥ 0 in powers of δ .
Such a form might be of interest from different perspectives
when (42) cannot be exactly computed as, for instance: when
performing control design and one is interested into assigning
a given structure up to a desired order of approximation;
in implementation and simulation when, still, one is able to
perfectly invert (52) to deduce an approximate explicit model.

Remark 5.6: When the Hamiltonian function is quadratic,
the explicit form associated to (52) is given by

x+ =
(

I− δ

2
Sδ ,[p]

J−R ( f ,x)P
)−1(

I +
δ

2
Sδ ,[p]

J−R ( f ,x)P
)

x.

which does not correspond to the truncation of the map Fδ (x)
in (12) at the order p≥ 0.

If the discrete-gradient cannot be exactly computed and the
corresponding model (52) cannot be inverted exactly, one can
define approximate explicit models starting from the qth-order
approximation of the discrete-gradient (1) evaluated along the
trajectories of (10) as

∇̄
[q]H

∣∣∣x+
x

:= ∇H(x)+
q

∑
i=1

δ i

(i+1)!
∇̄iH(x) (53)

with q ≥ 0. Accordingly, we define the approximate (p,q)-
order explicit form associated to (41) as

x+− x = δSδ ,[p]
J−R ( f ,x)∇̄[q]H

∣∣∣x+
x

(54)

for p,q > 0. In general, such an approximation does not
coincide with the the truncation of the map Fδ (x) in (12)
at the order q+ p. However, when p = q = 0, (54) recovers
the usual Euler model associated to (7).

VI. PORT-CONTROLLED HAMILTONIAN DYNAMICS

We discuss now port-controlled Hamiltonian dynamics by
showing the preservation under sampling of the energy-
balance equalities and the corresponding use in damping-
feedback design.

Along with the literature (see [2] and the reference therein),
let a continuous-time port-Hamiltonian system composed by
the dynamics (7) with input-affine controlled port and a
conjugate output map; i.e. for f (x) = (J(x)−R(x))∇H(x)

ẋ = (J(x)−R(x))∇H(x)+ug(x) (55a)

y = h(x) = g>(x)∇H(x) (55b)

where g(·) is a smooth vector field over Rn and u ∈ R. The
following well know facts are recalled:

(i) the dynamics (55a) satisfies the energy-balance
equality (EBE)

H(x(t))−H(x(0)) =−
∫ t

0
∇
>H(x(s)R(x(s))∇H(x(s))ds

+
∫ t

0
u(s)g>(x(s))∇H(x(s))ds; (56)

(ii) the system (55) is passive with storage function H(x)
and dissipation rate d(x) := ∇H>(x)R(x)∇H(x);
lossless when R(x)≡ 0.

On these bases, stabilizing strategies under output feedback
can be developed in terms of PBCs via damping [8].

A discrete-time port-controlled Hamiltonian structure has
been recently introduced by the authors in [32]. Denoting by
for x+ and x+(u) the one step ahead unforced and forced
evolutions respectively, the following definition can be given.

Definition 6.1: A discrete-time port-controlled Hamiltonian
system is given by

x+(u) = x+(Jd(x)−Rd(x))∇̄H
∣∣∣x+
x

+ugd(x,u) (57a)

y = hd(x,u) = g>d (x,u)∇̄H
∣∣∣x+(u)
x+

(57b)

where gd(·,u) : Rn → Rn and hd(·,u) : Rn → R are smooth
functions of the state and the control u ∈ R.

By construction, the following holds true

(i) the dynamics (57a) satisfies the energy-balance equa-
tion (EBE), i.e. for any integer k ≥ 1

H(xk)−H(x0) =−
k−1

∑
i=0

∇̄
>H
∣∣∣x+i
xi

Rd(xi)∇̄H
∣∣∣x+i
xi

+
k−1

∑
i=0

uig>d (xi,ui)∇̄H
∣∣∣x+i (ui)

x+i
; (58)

(ii) the system (57) is passive with storage function H(x)

and dissipation rate d(x) := ∇̄H>
∣∣∣x+
x

Rd(x)∇̄H
∣∣∣x+
x

; it
is lossless when Rd(x)≡ 0.

Remark 6.1: When compared to the literature (e.g., [36],
[41]), two main differences hold. The dynamics (57) is defined
in terms of the discrete gradient of the Hamiltonian along the
free evolution only, the conjugate output is described in terms
of the discrete gradient of the Hamiltonian along the controlled
part of the evolution only. Accordingly, one gets passivity with
respect to the so defined conjugate output that recovers the
average passivating output map introduced in [33].

A. Sampled-data pcH dynamics

An extension of Theorem 5.1 to controlled dynamics is now
possible.

Theorem 6.1: Consider a continuous-time port-controlled
Hamiltonian system (55) and assume the control variable
constant over time intervals of amplitude δ , u(t) = uk,∀t ∈
[kδ ,(k+ 1)δ [, then for all δ ∈]0,T ?[, its sampled equivalent
model admits the discrete-time port-controlled Hamiltonian
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structure below

x+(u)− x = δSδ
J−R( f ,x)∇̄H

∣∣∣x+
x

+δgδ (x,u)u (59a)

yδ = hδ (x,u) = (gδ (x,u))>∇̄H
∣∣∣x+(u)
x+

(59b)

with δugδ (x,u) = eδ ( f+ug)x− eδ f x and Sδ
J−R( f ,x) given in

(42). Moreover, the following properties hold:
(i) the dynamics (59a) satisfies the EBE

H(xk)−H(x0) =−δ

k−1

∑
i=0

∇̄
>H
∣∣∣x+i
xi

Sδ
J−R( f ,xi)∇̄H

∣∣∣x+i
xi

+δ

k−1

∑
i=0

ui(gδ (xi,ui))
>

∇̄H
∣∣∣x+i (ui)

x+i
; (60)

(ii) the system (59) is passive with storage function H(x)

and dissipation rate dδ (x) := ∇̄H>
∣∣∣x+
x

Rδ ( f ,x)∇̄H
∣∣∣x+
x

;
it is lossless when R(x)≡ 0;

(iii) whenever the system is zero-state-detectable, any
feedback ū = γδ (x) solving the algebraic equality

ū=−κ

(
gδ (x, ū)

)>
∇̄H
∣∣∣x+(ū)
x+

, κ > 0 (61)

is a sampled-data PBC making x? asymptotically
stable with increasing damping; i.e. one gets in
closed loop the modified EBE, with ūi = γδ (xi)

H(xk)−H(x0) =−δ

k−1

∑
i=0

∇̄
>H
∣∣∣x+i
xi

Sδ
J−R( f ,xi)∇̄H

∣∣∣x+i
xi

−δκ

k−1

∑
i=0

∇̄H
∣∣∣x+i (ūi)

x+i
[gδ (xi, ūi)][gδ (xi, ūi)]

>
∇̄H
∣∣∣x+i (ūi)

x+i
.

Proof: (i) and (ii) are an immediate consequence of the
fact that the sampled-data form (59) exhibits the same structure
as (57). (iii) specifies to the sampled-data form (59), passivity
based control strategies developed in [33, Theorem 4.1] for
nonlinear discrete-time dynamics that can be understood as
negative output feedback with respect to the suitably defined
passivating output map. �

Remark 6.2: Under ū = γδ (x) solution to (61), one gets

x+(ū)− x = δSδ
J−R( f ,x)∇̄H

∣∣∣x+
x
−κδgδ (x, ū)(gδ (x, ū))>∇̄H

∣∣∣x+(ū)
x+

that does not properly exhibit a port-Hamiltonian structure of
the form (57). Nevertheless, it properly adds damping to the
natural one in free evolution through a well structured term so
getting in closed loop the energy-balance below

H(x+(ū))−H(x) =−δ ∇̄
>H
∣∣∣x+
x

Sδ
J−R( f ,x))∇̄H

∣∣∣x+
x

−δκ∇̄
>H
∣∣∣x+(ū)
x+

gδ (x, ū)(gδ (x, ū))>∇̄H
∣∣∣x+(ū)
x+

.

Remark 6.3: The PBC ū = γδ (x) is defined as the solution
to the nonlinear equality (61). Even though such an equality
is solvable in virtue of the Implicit Function Theorem [33],
exact solutions are tough to compute in practice. However,
as the solution can be expressed through its series expansion
in powers of δ , computational approximations can be easily
implemented (see [33] for details).

Let us specify Theorem 6.1 to the LTI case.
Theorem 6.2: Consider the LTI port-Hamiltonian system

ẋ(t) = (J−R)Px+Bu

y =Cx = B>Px

with Hamiltonian H(x) = 1
2 xT Px. Then, the equivalent

sampled-data port-controlled Hamiltonian model is given by

x+(u)− x = δSδ
J−R∇̄H

∣∣∣x+
x

+δBδ u (62a)

yδ = [Bδ ]>Px++
1
2
[Bδ ]>PBδ u (62b)

with x+ = eδ (J−R)Px, δBδ =
∫

δ

0 eτ(J−R)PBdτ and Sδ
J−R as in

(47). In addition, the sampled-data PBC

ū =−κ

(
1+

1
2

κ(Bδ )>PBδ

)−1
(Bδ )>Px+, κ > 0

solution to the damping equality (61) makes the closed-loop
dynamics asymptotically stable.

B. The sampled-data Dirac Structure

The energy-balance equation (58) satisfied by the sampled
equivalent model to (59) can be recast through a discrete Dirac
structure formulation [15]. Let us first recall the definition of
Dirac structure in the space of flows and efforts variables.

Definition 6.2 ( [2]): Given a finite-dimensional linear
space of flows F and efforts E (with f ∈ F and e ∈ E), the
space E being the dual of F, then a subspace D⊂ F×E is a
Dirac structure if it satisfies

1) e> f = 0, ∀( f ,e) ∈ D,
2) dimD= dimF.

Accordingly, the Dirac structure associated with the
continuous-time port-controlled Hamiltonian dynamics (55) is
described [2] through three pairs of port variables representing
the energy storage ( fS,eS), dissipation ( fR,eR) and intercon-
nection with the environment ( fI ,eI) and satisfying fS

fR
fI

=

−J(x) −gR(x) −g(x)
g>R (x) 0 0
g>(x) 0 0

eS
eR
eI


with skew symmetric graph over dimD= 2n+1−ẋ

fR
y

 ,

 ∇H(x)
−r(x) fR

u

 ∈ D, (63)

for r(x) = r>(x) � 0, gR(·) : Rn → Rn×p and R(x) =
gR(x)r(x)g>R (x). Discrete-time Dirac structures can be associ-
ated to port-controlled Hamiltonian systems of the form (59)
as described in [42, Theorem 2.1]. Let us now show how the
continuous-time Dirac structure is transformed under sampling
with suitably defined storing, dissipating, and control ports
associated with the sampled-data structure (59).

Theorem 6.3: Given a continuous-time dynamics (7) with
Dirac structure D of dimension 2n+1 as in (63), then for all
δ ∈]0,T ?[, its sampled equivalent model (59) admits a discrete



12 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2017

Dirac structure Dδ of dimension 3n+1 described in terms of
efforts and flow variables defined below


−(x+− x)

f δ
R

−(x+(u)− x+)
yδ

 ,


∇̄H|x+x
−rδ (x) f δ

R

∇̄H|x
+(u)

x+
u


 ∈ Dδ

where Jδ ( f ,x) = skew(Sδ
J−R( f ,x)), Rδ ( f ,x) =

−sym(Sδ
J−R( f ,x)) = gδ

R(x)r
δ (x)gδ>

R (x), for rδ (x) = rδ>(x) �
0, gδ

R(·) : Rn→ Rn×p, with skew-symmetric graph
f δ
S f

f δ
R

f δ
Su

f δ
I

=

−Jδ ( f ,x) −gδ

R(x) 0 0
gδ>

R (x) 0 0 0
0 0 0 −gδ (x,eδ

I )

0 0 gδ>(x,eδ
I ) 0




eδ
S f

eδ
R

eδ
Su

eδ
I

 .

Proof: The proof exploits the splitting of the Hamil-
tonian variation between two successive states into free and
controlled parts as

H(x+(u))−H(x) = (H(x+(u))−H(x+))+(H(x+)−H(x)).

Accordingly, one splits in the total energy storage the free
elements ( f δ

S f
,eδ

S f
) ∈ Fδ

S f
× Eδ

S f
, from the controlled ones

( f δ
Su
,eδ

Su
) ∈ Fδ

Su
× Eδ

Su
by respectively setting −eδ>

S f
f δ
S f

=

∇̄>H|x+x (x+ − x) and −eδ>
Su

f δ
Su

= ∇̄>H|x
+(u)

x+ (x+(u) − x+)
so verifying eδ> f δ = eδ>

S f
f δ
S f

+ eδ>
Su

f δ
Su

with −eδ> f δ =

∇̄>H|x
+(u)

x (x+(u) − x). Regarding interconnection with the
environment through ( f δ

I ,e
δ
I )∈Fδ

I ×Eδ
I , one sets by definition

of the conjugate output yδ , eδ>
I f δ

I = ∇̄>H|x
+(u)

x+ (x+(u)−x+) =
uyδ so setting f δ

I = gδ>(x,eδ
I )e

δ and eI = u that gives eδ>
Su

f δ
Su
+

eδ>
I f δ

I = 0. Regarding the dissipative elements, ( f δ
R ,e

δ
R)∈Fδ

R×
Eδ

R, setting the dissipating constraints eδ
R =−rδ (x) f δ

R and fR =
gδ>

R (x)eδ
S f

for some rδ (x) = rδ>(x)� 0 and gδ
R(·) : Rn→Rn×p

such that Rδ ( f ,x) = −sym(Sδ
J−R( f ,x)) = gδ

R(x)r
δ (x)gδ>

R (x),
one recovers the power balance equality

eδ>
S f

f δ
S f
+ eδ>

R f δ
R + eδ>

Su
f δ
Su
+ eδ>

I f δ
I = 0.

Finally, since x ∈ Rn and u ∈ R,

dimDδ = dimFδ
S f
+dimFδ

R +dimFδ
Su
+dimFδ

I = 3n+1.

�

VII. ILLUSTRATIVE EXAMPLES

In this section, two physical examples are worked out: the
gravity pendulum system with a constant structure matrix
and nonlinear Hamiltonian and the controlled rigid body
with non constant structure matrix and quadratic Hamiltonian.
Simulations are carried out to highlight advantages of the
proposed model compared with the one of the literature
(e.g., [29], [36], [38], [40], [41]). In the lines of Section
VI, digital stabilizing controllers are designed to highlight
the advantages of the proposed structures in feedback design.
The Matlab code generating the simulations can be found at
shorturl.at/bAIR8.
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Fig. 1. Pendulum: RMSE in the state x and Hamiltonian H at the
sampling instants δ ∈ [0, π

2 ] with x0 = col( 3
2 π,0).

A. The Gravity Pendulum
The gravity pendulum described by a separable Hamiltonian

is an interesting case study to characterize the series expansion
of Sδ

J−R( f ,x) in (42). Setting x = col{x1,x2}= col{ϑ ,ml2ϑ̇},
where θ is the angle between the vertical axis and the rod of
the pendulum, the continuous-time Hamiltonian dynamics is
given by

ẋ =
(

0 1
−1 −r

)
∇H(x) (64)

with Hamiltonian and gradient functions

H(x) =
1

2ml2 x2
2 +mgl(1− cos(x1)), ∇H(x) =

(
mgl sin(x1)

1
ml2 x2

)
with damping coefficient r ≥ 0. For notational simplicity we
assume ml2 = 1 and mgl = 1.

According to Proposition 2.1, both the discrete gradient
∇̄H|x+x and the discrete Jacobian J̄[∇H]|x+x in (4) and (5)
respectively can be exactly computed so getting

∇̄H|x+x =

− cos(x+1 )−cos(x1)

x+1 −x1
x+2 +x2

2

 , J̄[∇H]|x+x =

(
sin(x+1 )−sin(x1)

x+1 −x1
0

0 1

)
.

(65)

From Theorem 5.1 and (52), one computes for p = 2 the
approximate system in O(δ 4) with matrix

Sδ ,[2]
J−R( f ,x)=

(
0 1
−1 −r

)
+

δ 2

12

(
−r (cos(x1)− r2)

r2− cos(x1) r3− r cos(x1)

)
,

(66)

shorturl.at/bAIR8


AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2017) 13

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

10

20

30

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

1

2

3

Fig. 2. Pendulum: RMSE in the state x and Hamiltonian H at the
sampling instants δ ∈ [0, π

3 ] with x0 = col( 3
2 π,0) and r = 0.

for which the sampled-data model yields the dissipation rate

H(x+)−H(x) =− δ

4
r
(

1+
δ 2

6
(cos(x1)−

1
2

r2)
)
(x+2 + x2)

2

− r
δ 3

12
(cos(x+1 )− cos(x1))

2

(x+1 + x1)2 +O(δ 4)≤ 0.

From the expressions above, whenever the pendulum is un-
damped (r = 0), the sampled equivalent dynamics clearly
preserves conservation; namely, H(x+)−H(x) = 0.

The Euler-like model proposed in [36], [39] is recovered by
setting p = 0 in (52), so yielding dissipation H(x+)−H(x)=
− δ

4 r(x+2 + x2)
2 +O(δ 2).

Simulations: Figure 1 shows the root-mean-square errors
(RMSE) in the state and Hamiltonian evolutions of the ap-
proximate sampled-data model (52) with p = 2 and p = 0
with respect to the continuous-time one (64) at the sampling
instants. More in detail, the continuous-time (CT) dynamics
(64) is compared with the approximate model (DT O(δ 4))
given in Theorem 5.1 with Sδ ,[2]

J−R( f ,x) and with the Euler-
Like (DT EL) of the literature Sδ ,[0]

J−R( f ,x), in the dissipa-
tive and conservative cases respectively. From Figure 1, the
performances improvement is clear. In the conservative case
(r = 0), both (DT O(δ 4)) and (DT EL) preserve the energy
conservation property over the function H(x) = 0 although
the advantage of the (DT O(δ 4)) model is notable for state
matching achievement as depicted in Figure 1(b).

Gradient approximation: In what follows we illustrate the
relevancy of approximations of Sδ

J ( f ,x) and ∇̄H|x+x when
computation of exact solutions is not possible. From the
approximate discrete gradient in (53) up to q = 2 one gets

∇̄
[1]H|x+x =

(
sin(x1)

x2

)
+

δ

2

(
cos(x1)x2

−(sin(x1)+ rx2)

)
∇̄
[2]H|x+x = ∇̄

[1]H|x+x −
δ 2

4

( 2
3 sin(x1)x2

2 + cos(x1)(sin(x1)+ rx2)
cos(x1)x2− r sin(x1)− r2x2

)
.

In Figure 2, the improvement is clear when considering
increasing approximation orders as, in that case, p = 2 and
q = 2 versus p = 0 and q = 1.

Digital feedback design: To highlight the improvement un-
der digital damping (performed over the proposed conjugate
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(a) State trajectories
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(b) Hamiltonian and control effort

Fig. 3. Pendulum: Stabilization with sampled period δ = π

2 , initial
condition x(0) = col( 3

2 π,0), and κ = 1.

output) we consider the controlled gravity pendulum dynamics

ẋ =
(

0 1
−1 0

)
∇H(x)+

(
0
1

)
u, y = x2 (67)

with g(x) = B = (0 1)> deduced from (64) with r = 0.
According to Theorem 6.1, the sampled-data equivalent model
is of the form (59) with Sδ ,[2]

J−R( f ,x) from (66),

gδ (x,u) =
(

gδ
1 (x,u)

gδ
2 (x,u)

)
= δ

(
0
1

)
+

δ 2

2

(
1
0

)
− δ 3

6

(
0

cosx1

)
and discrete gradient evaluated from x+ to x+(u) as

∇̄H|x
+(u)

x+ =

(
sinx1

x2

)
+δ

(
x2 cosx1

1
2 u− sinx1

)
+

δ 2

2

(
−sinx1x2

2− cosx1(sinx1 +
1
2 u)

−x2 cosx1

)
+O(δ 3).

The digital PBC feedback solution to (61), given by

ū =−κx2 +
δ

2
κ(κx2 + sinx1)

+
δ 2

6
κ

(
x2 cosx1−

3
2

κ(κx2 + sinx1)
)
+O(δ 3) (68)

makes the origin asymptotically stable in closed loop. The
improvement achieved under digital damping performed over
the proposed sampled-data port-Hamiltonian representation are
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(a) Phase portrait
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(b) Hamiltonian evolution

Fig. 4. Rigid Body with δ = 10−2, r1 = r2 = 0, and r3 = 0.2.

reported in Figure 3 with respect to the feedback [36], [41],
[43] provided by

ul =−κB>∇̄H|x
+(ul)

x =−κx2 +
δ

2
κ(κx2 + sinx1)

+
δ 2

4
κ

(
x2 cosx1−κ(κx2 + sin(x1))

)
+O(δ 3). (69)

B. Controlled rigid body
Consider the dynamics of the angular velocities of a rigid

body in absence of gravity [2] given by

ẋ =

−r1 −x3 x2
x3 −r2 −x1
−x2 x1 −r3

∇H(x) (70)

where x = (x1,x2,x3) are the components of the angular
momentum along the three principal axes, r1,r2,r3 ≥ 0 denote
the decay of the angular momentum, and H(x) describes the
kinetic energy with inertia Ix1 , Ix2 , Ix3 > 0, i.e.

H(x) =
x2

1
2Ix1

+
x2

2
2Ix2

+
x2

3
2Ix3

. (71)

Note that the unforced dynamics (70) with (71) is dissipative
for some ri > 0 and, conversely, conservative for all ri = 0.

In the uncontrolled case, invoking Theorem 5.1 and Remark
5.3, one computes Sδ ,[1]

J−R( f ,x) = S(x)+ δ

2 S1(x) in (52) with

S1(x) =


Ix3 x2

2+Ix2 x2
3

Ix2 Ix3
− Ix2 r2x3+Ix3 x1x2

Ix2 Ix3

Ix3 r3x2−Ix2 x1x3
Ix2 Ix3

Ix1 r1x3−Ix3 x1x2
Ix1 Ix3

Ix3 x2
1+Ix1 x2

3
Ix1 Ix3

− Ix3 r3x1+Ix1 x2x3
Ix1 Ix3

− Ix1 r1x2+Ix2 x1x3
Ix1 Ix2

Ix2 r2x1−Ix1 x2x3
Ix1 Ix2

Ix2 x2
1+Ix1 x2

2
Ix1 Ix2

 .
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(b) Control effort and Hamiltonian evolution

Fig. 5. Rigid Body under digital control for δ = 0.0675.

The Euler-like model proposed in [36], [39] is recovered again
by setting p = 0 in (52), that is Sδ ,[0]

J−R( f ,x) = S(x).

Simulations: Simulations have been performed assuming the
parameters of the rigid body fixed as in [36] (i.e., Ix1 = 1

3 ,
Ix2 =

1
2 , Ix3 = 1) and initial conditions x0 = (25,25,25). The

improvement of computing a sampled dynamics in O(δ 3)
rather than in O(δ 2) is given in Figure 4 which depicts the
phase portrait and the Hamiltonian evolution. The benefit of
our model, with respect to the one with p = 0, stands in
a better preservation of the state trajectory and the decay
of the dissipation rate as clearly shown by simulations. The
improvement is achieved via a better approximation of the
structural matrix in (52).

Digital feedback design: To perform the damping obtained
under digital feedback with δ = 0.0675, consider the con-
trolled dynamics of the angular velocities of a fully actu-
ated rigid body, spinning around its center of mass in port-
Hamiltonian form [13]

ẋ =

 0 −x3 x2
x3 0 −x1
−x2 x1 0

∇H(x)+

g1
g2
g3

u (72a)

y =
g1

Ix1

x1 +
g2

Ix2

x2 +
g3

Ix3

x3 (72b)
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where y is the passive output. According to Theorem 6.1, the
digital passivity-based feedback is of the form (61) with

gδ (x,u) =

g1
g2
g3

+
δ

2


g2Ix2 x3+g3Ix2 x2−g2Ix3 x3−g3Ix3 x2

Ix2 Ix3
g1Ix3 x3−g3Ix1 x3−g3Ix1 x1+g3Ix3 x1

Ix1 Ix3
g1Ix1 x2+g2Ix1 x1−g1Ix2 x2−g2Ix2 x1

Ix1 Ix2

+O(δ 2)

which reduces to the solution to the following equation

ū=−κ

( 3

∑
i=1

gi(x+i (ū)+x+i )
2Ixi

−
δ (g2x3+g3x2)(Ix2−Ix3)(x

+
1 (ū)+x+1 )

4Ix2 Ix3

−
δ
(
(g1Ix3−g3Ix1)x3+g3(Ix3−Ix1)x1

)
(x+2 (ū)+x+2 )

4Ix1 Ix3

(73)

−
δ (g1x2 +g2x1)(Ix1 − Ix2)(x

+
3 (ū)+ x+3 )

4Ix1 Ix2

)
+O(δ 2).

Simulations: The solution to (73) truncated in O(δ 3) is
injected into the continuous-time dynamics (72) to digitally
asymptotically stabilize the equilibria. As in [36], we assume
g1 = Ix1 = 1

3 , g2 = Ix2 = 1
2 , g3 = Ix3 = 1, κ = 1, and initial

conditions x0 = (25,25,25), so that (73) becomes

ū =−ρx+
δ

2

(
sIρx+

x1

Ix1

(x2−x3)+
x2

Ix2

(x3−x1)+
x3

Ix3

(x1−x2)

)
− δ 2

6

(
sI

2
+

(
Ix1ρx+

x2x3

Ix2

− x2x3

Ix3

)(
sI+

x2−x3

Ix1

− x2

Ix2

+
x3

Ix3

)
+

(
Ix2ρx−

x1x3

Ix1

+
x1x3

Ix3

)(
sI+

x1

Ix1

+
x3−x1

Ix2

− x3

Ix3

)
+

(
Ix3ρx+

x1x2

Ix1

− x1x2

Ix2

)(
sI−

x1

Ix1

+
x2

Ix2

+
x1−x2

Ix3

))
(74)

with ρx = x1 + x2 + x3 and sI = Ix1 + Ix2 + Ix3 . We have
considered the same simulation in [36] with an increased step-
size up to δ = 0.675. In Figure 5 the comparison has been
made with respect to the digital control respectively in [36]
and in [37]. Differently from the control considered in the
literature, the proposed control (74) shows the preservation of
the phase portrait under digital feedback and a decay of the
Hamiltonian function at the instant t = kδ .

VIII. CONCLUSIONS

New results for describing sampled-data equivalent models
of continuous-time gradient and port-Hamiltonian dynamics
have been provided. More in particular, it has been shown
that it is always possible to recover a suitably defined
discrete-time equivalent model exhibiting a discrete-time port-
Hamiltonian structure with respect to the same Hamiltonian
function as in continuous time. The deduced model preserves,
beyond the structure, the same energetic properties as the
continuous-time one at all sampling instants. In addition,
the approach is constructive and allows the computation of
approximate models. The case of port-controlled Hamiltonian
systems has been discussed too to show the benefits of the
proposed approach in stabilization through digital damping.
As an interesting outcome, we stress that the sampled-data
equivalent model we propose evolves over a Dirac structure

when properly defining effort and flow variables into the
storing and dissipating ports and the environmental interaction
through the input. Perspectives concern the use of these models
to investigate IDA-PBCs for set point stabilization of port-
Hamiltonian systems along the lines of preliminary results
set for purely discrete time systems [44]. Further perspectives
concern the time discretization of distributed port-Hamiltonian
systems described by PDEs (see [45], [46]).
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La Sapienza). His research includes sampled-

data, hybrid, multi-agent and time-delay nonlinear systems .

Alessio Moreschini Alessio Moreschini was
born in Fermo, Italy. He holds a B.Sc. De-
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