

Extending Smith's Rule with Task Mandatory Parts and Release Dates

Bonnin Camille *, Nattaf Margaux* Malapert Arnaud^o Espinouse Marie-Laure*

*Univ. Grenoble Alpes, CNRS, Grenoble INP, G-SCOP, 38000 Grenoble, France {camille.bonnin, margaux.nattaf, marie-laure.espinouse}@grenoble-inp.fr

^oUniversité Côte d'Azur, CNRS, I3S, France

arnaud.malapert@univ-cotedazur.fr

PMS 2022, April 6-7, Ghent

Laboratoire des Sciences pour la Conception. l'Optimisation et la production

Introduction

0000

G. SCOP

1. Introduction

Introduction Modified Smith Rule with MPs Experimentations Conclu

Note: here and in the following, we will use d_j instead of \tilde{d}_j for deadlines

Long term objective: improve CP integration of $\sum C_i$ objective.

- General problem (even without prec): $1|r_j; d_j| \sum C_j$
- Polynomial relaxation with a list algorithm: $1|r_j$; *pmtn* $|\sum C_j|$
- We want a Lower Bound (LB) of good quality and computable quickly

 $\sum C_j = 138$ (4 + 18 + 24 + 27 + 30 + 35)

GiSCOP

Note: here and in the following, we will use d_j instead of \widetilde{d}_j for deadlines

Long term objective: improve CP integration of $\sum C_i$ objective

- General problem (even without prec): $1|r_j; d_j| \sum C_j$
- Polynomial relaxation with a list algorithm: $1|r_j$; pmtn $|\sum C_j|$
- We want a Lower Bound (LB) of good quality and computable quickly

 $\sum_{j=1}^{1} C_{j} = 138$ (4 + 18 + 24 + 27 + 30 + 35)

Note: here and in the following, we will use d_j instead of \tilde{d}_j for deadlines

Long term objective: improve CP integration of $\sum C_i$ objective

- General problem (even without prec): $1|r_j; d_j| \sum C_j$
- Polynomial relaxation with a list algorithm: $1|r_i$; *pmtn*| $\sum C_i$
- We want a Lower Bound (LB) of good quality and computable quickly

$$\sum C_j = 138$$
(4 + 18 + 24 + 27 + 30 + 35)

Note: here and in the following, we will use d_j instead of \tilde{d}_j for deadlines

Long term objective: improve CP integration of $\sum C_j$ objective

- General problem (even without prec): $1|r_j; d_j| \sum C_j$
- Polynomial relaxation with a list algorithm: $1|r_j$; *pmtn* $|\sum C_j|$
- We want a Lower Bound (LB) of good quality and computable quickly

2/21

 $\sum C_j = 138$ (4 + 18 + 24 + 27 + 30 + 35)

Note: here and in the following, we will use d_j instead of \tilde{d}_j for deadlines

Long term objective: improve CP integration of $\sum C_i$ objective

- General problem (even without prec): $1|r_j; d_j| \sum C_j$
- Polynomial relaxation with a list algorithm: $1|r_j$; *pmtn* $|\sum C_j|$
- We want a Lower Bound (LB) of good quality and computable quickly

 $\sum C_j = 138$ (4 + 18 + 24 + 27 + 30 + 35)

Note: here and in the following, we will use d_j instead of \tilde{d}_j for deadlines

Long term objective: improve CP integration of $\sum C_i$ objective

- General problem (even without prec): $1|r_j; d_j| \sum C_j$
- Polynomial relaxation with a list algorithm: $1|r_j$; *pmtn* $|\sum C_j|$
- We want a Lower Bound (LB) of good quality and computable quickly

idj	1	2	3	4	5	6
p j	14	5	2	3	6	3
rj	0	0	2	12	16	18
dj	24	∞	4	∞	26	∞

 $\sum C_j = 138$ (4 + 18 + 24 + 27 + 30 + 35)

Modified Smith Rule with MPs Experior

Problem

Note: here and in the following, we will use d_j instead of $ilde{d}_j$ for deadlines

Long term objective: improve CP integration of $\sum C_j$ objective

• General problem (even without prec): $1|r_j; d_j| \sum C_j$

Introduction

- Polynomial relaxation with a list algorithm: $1|r_j$; *pmtn* $|\sum C_j$
- We want a Lower Bound (LB) of good quality and computable quickly

Introduction

Note: here and in the following, we will use d_i instead of \tilde{d}_i for deadlines

<u>Long term objective</u>: improve CP integration of $\sum C_i$ objective

• General problem (even without prec): $1|r_i; d_i| \sum C_i$

0000

- Polynomial relaxation with a list algorithm: $1|r_i$; pmtn $\sum C_i$
- We want a Lower Bound (LB) of good quality and computable quickly

Introduction

Problem

Note: here and in the following, we will use d_i instead of \tilde{d}_i for deadlines

<u>Long term objective</u>: improve CP integration of $\sum C_i$ objective

• General problem (even without prec): $1|r_i; d_i| \sum C_i$

0000

- Polynomial relaxation with a list algorithm: $1|r_i$; pmtn $\sum C_i$
- We want a Lower Bound (LB) of good quality and computable quickly

Introduction

Literature

G-SCOP

• $1||\sum C_i$: Smith Rule (or SPT rule) [Smith, 1956]

0000

• $1|r_i; pmtn| \sum C_i$: Modified Smith Rule (MSR) [Baker, 1974]

- Extend MSR to enforce the tasks Mandatory Parts (MP)
- Compute a LB of $1|r_i; d_i| \sum C_i$ respecting MPs
- Long term objective: improve CP solving of $1|r_i; d_i| \sum C_i$

Introduction Modified Smith Rule with MPs Experimentations Conclusi

Literature

G-SCOP

- $1||\sum C_j$: Smith Rule (or SPT rule) [Smith, 1956]
- $1|r_j; pmtn| \sum C_j$: Modified Smith Rule (MSR) [Baker, 1974 and Brucker, 2006] $\Rightarrow 1^{st}$ Lower Bound (LB)

- Extend MSR to enforce the tasks Mandatory Parts (MP)
- Compute a LB of $1|r_j; d_j| \sum C_j$ respecting MPs
- Long term objective: improve CP solving of $1|r_j; d_j| \sum C_j$

Literature

- $1||\sum C_j$: Smith Rule (or SPT rule) [Smith, 1956]
- $1|r_j; pmtn| \sum C_j$: Modified Smith Rule (MSR) [Baker, 1974 and Brucker, 2006] $\Rightarrow 1^{st}$ Lower Bound (LB)

- Extend MSR to enforce the tasks Mandatory Parts (MP)
- Compute a LB of $1|r_j; d_j| \sum C_j$ respecting MPs
- Long term objective: improve CP solving of $1|r_j; d_j| \sum C_j$

GISCOP

Literature

- $1||\sum C_j$: Smith Rule (or SPT rule) [Smith, 1956]
- $1|r_j; pmtn| \sum C_j$: Modified Smith Rule (MSR) [Baker, 1974 and Brucker, 2006] $\Rightarrow 1^{st}$ Lower Bound (LB)

- Extend MSR to enforce the tasks Mandatory Parts (MP)
- Compute a LB of $1|r_j; d_j| \sum C_j$ respecting MPs
- Long term objective: improve CP solving of $1|r_j; d_j| \sum C_j$

Literature

- $1||\sum C_j$: Smith Rule (or SPT rule) [Smith, 1956]
- $1|r_j; pmtn| \sum C_j$: Modified Smith Rule (MSR) [Baker, 1974 and Brucker, 2006] $\Rightarrow 1^{st}$ Lower Bound (LB)

Objectives

Extend MSR to enforce the tasks Mandatory Parts (MP)

• Compute a LB of $1|r_j; d_j| \sum C_j$ respecting MPs

• Long term objective: improve CP solving of $1|r_j; d_j| \sum C_j$

Literature

- $1||\sum C_j$: Smith Rule (or SPT rule) [Smith, 1956]
- $1|r_j; pmtn| \sum C_j$: Modified Smith Rule (MSR) [Baker, 1974 and Brucker, 2006] $\Rightarrow 1^{st}$ Lower Bound (LB)

Objectives

- Extend MSR to enforce the tasks Mandatory Parts (MP)
- Compute a LB of $1|r_j; d_j| \sum C_j$ respecting MPs

ullet Long term objective: improve CP solving of $1|r_j;d_j|\sum C_j$

Literature

- $1||\sum C_j$: Smith Rule (or SPT rule) [Smith, 1956]
- $1|r_j; pmtn| \sum C_j$: Modified Smith Rule (MSR) [Baker, 1974 and Brucker, 2006] $\Rightarrow 1^{st}$ Lower Bound (LB)

- Extend MSR to enforce the tasks Mandatory Parts (MP)
- Compute a LB of $1|r_j; d_j| \sum C_j$ respecting MPs
- Long term objective: improve CP solving of $1|r_j; d_j| \sum C_j$

Introduction

Modified Smith Rule with

Experimentatio

Mandatory Part (MP)

Definition: Mandatory Part of a task (MP)

Time interval in which a task **must be executed** under the hypothesis that it is **not late**, **not preempted** and without taking into account the other tasks.

 $eft_j = earliest finishing time of task j$ $<math>lst_j = latest starting time of task j$

G-SCOP

Introduction

Modified Smith Rule with

Experimentatio

Mandatory Part (MP)

Definition: Mandatory Part of a task (MP)

Time interval in which a task **must be executed** under the hypothesis that it is **not late**, **not preempted** and without taking into account the other tasks.

 $eft_j = earliest$ finishing time of task j $lst_j = latest$ starting time of task j

G-SCOP

Definition: Mandatory Part of a task (MP)

Introduction

Time interval in which a task **must be executed** under the hypothesis that it is **not late**, **not preempted** and without taking into account the other tasks.

Definition: Mandatory Part of a task (MP)

Introduction

Time interval in which a task **must be executed** under the hypothesis that it is **not late**, **not preempted** and without taking into account the other tasks.

Definition: Mandatory Part of a task (MP)

Introduction

Time interval in which a task **must be executed** under the hypothesis that it is **not late**, **not preempted** and without taking into account the other tasks.

 eft_j = earliest finishing time of task j lst_j = latest starting time of task j

Definition: Mandatory Part of a task (MP)

Introduction

Time interval in which a task **must be executed** under the hypothesis that it is **not late**, **not preempted** and without taking into account the other tasks.

 eft_j = earliest finishing time of task j lst_j = latest starting time of task j

Definition: Mandatory Part of a task (MP)

Introduction

Time interval in which a task **must be executed** under the hypothesis that it is **not late**, **not preempted** and without taking into account the other tasks.

 eft_j = earliest finishing time of task j Ist_j = latest starting time of task j

Definition: Mandatory Part of a task (MP)

Introduction

Time interval in which a task **must be executed** under the hypothesis that it is **not late**, **not preempted** and without taking into account the other tasks.

 eft_j = earliest finishing time of task j lst_j = latest starting time of task j

Definition: Mandatory Part of a task (MP)

Introduction

Time interval in which a task **must be executed** under the hypothesis that it is **not late**, **not preempted** and without taking into account the other tasks.

 eft_j = earliest finishing time of task j Ist_j = latest starting time of task j

ntroduction 0000 Modified Smith Rule with MPs

Conclusion

2. Modified Smith Rule with MPs

Modified Smith Rule with MPs

Modified Smith Rule (MSR)

Theorem: Modified Smith Rule (MSR) [Brucker, 2006]

At each **release time** or **finishing time** of a task, schedule an unfinished task which is available and has the **smallest remaining processing time** (\hat{p}_j) .

$\sum_{i} C_{j} = 105$ 4 + 7 + 15 + 21 + 25 + 33

Complexity: $O(n \log n)$ with a list algorithm

At each release time or finishing time of a task, schedule an unfinished task which is available and has the smallest remaining processing time (\hat{p}_j) .

$$\sum C_j = 105$$
4 + 7 + 15 + 21 + 25 + 33)

Complexity: $O(n \log n)$ with a list algorithm

6/21

At each **release time** or **finishing time** of a task, schedule an unfinished task which is available and has the **smallest remaining processing time** (\hat{p}_j) .

Complexity: $O(n \log n)$ with a list algorithm

At each **release time** or **finishing time** of a task, schedule an unfinished task which is available and has the **smallest remaining processing time** (\hat{p}_j) .

Complexity: O(n log n) with a list algorithm

At each **release time** or **finishing time** of a task, schedule an unfinished task which is available and has the **smallest remaining processing time** (\hat{p}_j) .

Complexity: *O*(*n* log *n*) with a list algorithm

At each **release time** or **finishing time** of a task, schedule an unfinished task which is available and has the **smallest remaining processing time** (\hat{p}_j) .

Complexity: $O(n \log n)$ with a list algorithm

At each **release time** or **finishing time** of a task, schedule an unfinished task which is available and has the **smallest remaining processing time** (\hat{p}_j) .

Complexity: O(n log n) with a list algorithm

At each **release time** or **finishing time** of a task, schedule an unfinished task which is available and has the **smallest remaining processing time** (\hat{p}_j) .

Complexity: *O*(*n* log *n*) with a list algorithm

At each **release time** or **finishing time** of a task, schedule an unfinished task which is available and has the **smallest remaining processing time** (\hat{p}_i) .

Complexity: O(n log n) with a list algorithm

At each **release time** or **finishing time** of a task, schedule an unfinished task which is available and has the **smallest remaining processing time** (\hat{p}_j) .

Complexity: O(n log n) with a list algorithm

At each **release time** or **finishing time** of a task, schedule an unfinished task which is available and has the **smallest remaining processing time** (\hat{p}_j) .

Complexity: $O(n \log n)$ with a list algorithm

At each **release time** or **finishing time** of a task, schedule an unfinished task which is available and has the **smallest remaining processing time** (\hat{p}_j) .

Complexity: O(n log n) with a list algorithm

At each release time or finishing time of a task, schedule an unfinished task which is available and has the smallest remaining processing time (\hat{p}_j) .

Complexity: $O(n \log n)$ with a list algorithm

At each **release time** or **finishing time** of a task, schedule an unfinished task which is available and has the **smallest remaining processing time** (\hat{p}_j) .

Complexity: $O(n \log n)$ with a list algorithm

At each **release time** or **finishing time** of a task, schedule an unfinished task which is available and has the **smallest remaining processing time** (\hat{p}_j) .

Complexity: $O(n \log n)$ with a list algorithm

At each **release time** or **finishing time** of a task, schedule an unfinished task which is available and has the **smallest remaining processing time** (\hat{p}_j) .

Complexity: $O(n \log n)$ with a list algorithm

At each **release time** or **finishing time** of a task, schedule an unfinished task which is available and has the **smallest remaining processing time** (\hat{p}_j) .

Complexity: O(n log n) with a list algorithm

At each **release time** or **finishing time** of a task, schedule an unfinished task which is available and has the **smallest remaining processing time** (\hat{p}_j) .

Complexity: $O(n \log n)$ with a list algorithm

At each **release time** or **finishing time** of a task, schedule an unfinished task which is available and has the **smallest remaining processing time** (\hat{p}_j) .

Complexity: $O(n \log n)$ with a list algorithm

At each **release time** or **finishing time** of a task, schedule an unfinished task which is available and has the **smallest remaining processing time** (\hat{p}_j) .

Complexity: O(n log n) with a list algorithm

At each release time or finishing time of a task, schedule an unfinished task which is available and has the smallest remaining processing time (\hat{p}_j) .

Complexity: $O(n \log n)$ with a list algorithm

At each **release time** or **finishing time** of a task, schedule an unfinished task which is available and has the **smallest remaining processing time** (\hat{p}_j) .

Complexity: $O(n \log n)$ with a list algorithm

At each **release time** or **finishing time** of a task, schedule an unfinished task which is available and has the **smallest remaining processing time** (\hat{p}_j) .

Complexity: $O(n \log n)$ with a list algorithm

At each **release time** or **finishing time** of a task, schedule an unfinished task which is available and has the **smallest remaining processing time** (\hat{p}_i) .

Complexity: $O(n \log n)$ with a list algorithm

At each **release time** or **finishing time** of a task, schedule an unfinished task which is available and has the **smallest remaining processing time** (\hat{p}_i) .

Complexity: $O(n \log n)$ with a list algorithm

At each **release time** or **finishing time** of a task, schedule an unfinished task which is available and has the **smallest remaining processing time** (\hat{p}_i) .

Complexity: $O(n \log n)$ with a list algorithm

At each **release time** or **finishing time** of a task, schedule an unfinished task which is available and has the **smallest remaining processing time** (\hat{p}_i) .

Complexity: $O(n \log n)$ with a list algorithm

At each **release time** or **finishing time** of a task, schedule an unfinished task which is available and has the **smallest remaining processing time** (\hat{p}_j) .

Complexity: $O(n \log n)$ with a list algorithm

At each **release time** or **finishing time** of a task, schedule an unfinished task which is available and has the **smallest remaining processing time** (\hat{p}_j) .

Complexity: $O(n \log n)$ with a list algorithm

At each **release time** or **finishing time** of a task, schedule an unfinished task which is available and has the **smallest remaining processing time** (\hat{p}_j) .

Complexity: $O(n \log n)$ with a list algorithm

At each **release time** or **finishing time** of a task, schedule an unfinished task which is available and has the **smallest remaining processing time** (\hat{p}_j) .

Complexity: $O(n \log n)$ with a list algorithm

At each **release time** or **finishing time** of a task, schedule an unfinished task which is available and has the **smallest remaining processing time** (\hat{p}_j) .

Complexity: $O(n \log n)$ with a list algorithm

6/21

7/21

Modified Smith Rule with MPs

Modified Smith Rule with MPs

800000000

Theorem: Modified Smith Rule with MPs

- Schedule MPs on their intervals
- Ose MSR on the tasks without their MP
 - In case of equality, schedule the unfinished task without MP or with the earliest MP

 $\sum C_j = 110$ (4 + 7 + 17 + 23 + 26 + 33)Complexity: $O(n \log n)$ with a sweep line algorithm

 In case of equality, schedule the unfinished task without MP or with the earliest MP

Complexity: $O(n \log n)$ with a sweep line algorithm

or with the earliest MI

Complexity: $O(n \log n)$ with a sweep line algorithm

or with the earliest MP

Complexity: $O(n \log n)$ with a sweep line algorithm

 In case of equality, schedule the unfinished task without MP or with the earliest MP

Complexity: $O(n \log n)$ with a sweep line algorithm

 In case of equality, schedule the unfinished task without MP or with the earliest MP

Complexity: $O(n \log n)$ with a sweep line algorithm

Complexity: $O(n \log n)$ with a sweep line algorithm

or with the earliest MI

Complexity: $O(n \log n)$ with a sweep line algorithm

Complexity: $O(n \log n)$ with a sweep line algorithm

Complexity: $O(n \log n)$ with a sweep line algorithm

or with the earliest MF

Complexity: $O(n \log n)$ with a sweep line algorithm

Complexity: $O(n \log n)$ with a sweep line algorithm

Complexity: $O(n \log n)$ with a sweep line algorithm

Complexity: $O(n \log n)$ with a sweep line algorithm

Complexity: $O(n \log n)$ with a sweep line algorithm

Complexity: $O(n \log n)$ with a sweep line algorithm

Complexity: $O(n \log n)$ with a sweep line algorithm

Complexity: $O(n \log n)$ with a sweep line algorithm

7/21

Modified Smith Rule with MPs

Theorem: Modified Smith Rule with MPs

- O Schedule MPs on their intervals
- **2** Use **MSR** on the tasks without their MP
 - In case of equality, schedule the unfinished task without MP or with the earliest MP

Modified Smith Rule with MPs

800000000

Complexity: *O*(*n* log *n*) with a sweep line algorithm

7/21

Modified Smith Rule with MPs

Theorem: Modified Smith Rule with MPs

- O Schedule MPs on their intervals
- **2** Use **MSR** on the tasks without their MP
 - In case of **equality**, schedule the unfinished task **without MP** or with the **earliest MP**

Modified Smith Rule with MPs

800000000

Complexity: $O(n \log n)$ with a sweep line algorithm

Modified Smith Rule with MPs

Theorem: Modified Smith Rule with MPs

- O Schedule MPs on their intervals
- **2** Use **MSR** on the tasks without their MP
 - In case of **equality**, schedule the unfinished task **without MP** or with the **earliest MP**

Modified Smith Rule with MPs

800000000

Complexity: $O(n \log n)$ with a sweep line algorithm

7/21

Modified Smith Rule with MPs

Theorem: Modified Smith Rule with MPs

- O Schedule MPs on their intervals
- **2** Use **MSR** on the tasks without their MP
 - In case of **equality**, schedule the unfinished task **without MP** or with the **earliest MP**

Modified Smith Rule with MPs

800000000

Complexity: $O(n \log n)$ with a sweep line algorithm

Modified Smith Rule with MPs

Theorem: Modified Smith Rule with MPs

- O Schedule MPs on their intervals
- **2** Use **MSR** on the tasks without their MP
 - In case of equality, schedule the unfinished task without MP or with the earliest MP

Modified Smith Rule with MPs

800000000

Complexity: $O(n \log n)$ with a sweep line algorithm

Modified Smith Rule with MPs

800000000

Theorem: Optimality of MSR with MPs

MSR with MPs is optimal for $1|r_i$; *pmtn*; $MP|\sum C_i$.

- S = solution of MSR with MPs;
- *i* has a higher priority than *j*
- Starting at t, in S*, take out the (non MP) parts of i and j
- Lemma: the objective value of S'* is no greater than those of S*
- Repeat until S = S

Modified Smith Rule with MPs

000000000

Theorem: Optimality of MSR with MPs

MSR with MPs is optimal for $1|r_j$; *pmtn*; $MP| \sum C_j$.

- S = solution of MSR with MPs ;
- *i* has a higher priority than *j*
- Starting at t, in S*, take out the (non MP) parts of i and j
- Lemma: the objective value of S'* is no greater than those of S*
- Repeat until S = S^{*}

Modified Smith Rule with MPs

800000000

Theorem: Optimality of MSR with MPs

MSR with MPs is optimal for $1|r_j$; *pmtn*; $MP| \sum C_j$.

- S = solution of MSR with MPs ; S* = optimal solution
- *i* has a higher priority than J
- Starting at t, in S*, take out the (non MP) parts of i and j and re-schedule i before j => S^{*}
- Lemma: the objective value of S'* is no greater than those of S*
- Repeat until S = S

Modified Smith Rule with MPs

800000000

Theorem: Optimality of MSR with MPs

MSR with MPs is optimal for $1|r_j$; *pmtn*; $MP| \sum C_j$.

- S = solution of MSR with MPs ; S* = optimal solution
- *i* has a higher priority than J
- Starting at t, in S*, take out the (non MP) parts of i and j and re-schedule i before j => S^{*}
- Lemma: the objective value of S'* is no greater than those of S*
- Repeat until S = S

Modified Smith Rule with MPs

800000000

Theorem: Optimality of MSR with MPs

MSR with MPs is optimal for $1|r_j$; *pmtn*; $MP| \sum C_j$.

- S = solution of MSR with MPs ; S* = optimal solution
- *i* has a higher priority than J
- Starting at t, in S*, take out the (non MP) parts of i and j and re-schedule i before j => S'*
- Lemma: the objective value of S'* is no greater than those of S*
- Repeat until S = S

Modified Smith Rule with MPs

800000000

Theorem: Optimality of MSR with MPs

MSR with MPs is optimal for $1|r_j$; *pmtn*; $MP| \sum C_j$.

- S = solution of MSR with MPs ; S* = optimal solution
- *i* has a higher priority than *j*
- Starting at t, in S*, take out the (non MP) parts of i and j and re-schedule i before j ⇒ S*
- Lemma: the objective value of S'* is no greater than those of S*
- Repeat until S = S

Modified Smith Rule with MPs

800000000

Theorem: Optimality of MSR with MPs

MSR with MPs is optimal for $1|r_j$; *pmtn*; $MP| \sum C_j$.

- S = solution of MSR with MPs ; S* = optimal solution
- *i* has a higher priority than *j*
- Starting at t, in S*, take out the (non MP) parts of i and j and re-schedule i before j ⇒ S'*
- Lemma: the objective value of S'* is no greater than those of S*
- Repeat until S = S

Modified Smith Rule with MPs

800000000

Theorem: Optimality of MSR with MPs

MSR with MPs is optimal for $1|r_j$; *pmtn*; $MP| \sum C_j$.

- S = solution of MSR with MPs ; S* = optimal solution
- *i* has a higher priority than *j*
- Starting at t, in S*, take out the (non MP) parts of i and j and re-schedule i before j => S'*
- Lemma: the objective value of S'* is no greater than those of S*
- Repeat until S = S

Modified Smith Rule with MPs

800000000

Theorem: Optimality of MSR with MPs

MSR with MPs is optimal for $1|r_j$; *pmtn*; $MP| \sum C_j$.

- S = solution of MSR with MPs ; S* = optimal solution
- *i* has a higher priority than *j*
- Starting at t, in S*, take out the (non MP) parts of i and j and re-schedule i before j ⇒ S'*
- Lemma: the objective value of S'* is no greater than those of S*
- Repeat until S = S

Modified Smith Rule with MPs

800000000

Theorem: Optimality of MSR with MPs

MSR with MPs is optimal for $1|r_j$; *pmtn*; $MP| \sum C_j$.

- S = solution of MSR with MPs ; S* = optimal solution
- *i* has a higher priority than *j*
- Starting at t, in S*, take out the (non MP) parts of i and j and re-schedule i before j ⇒ S'*
- Lemma: the objective value of S'* is no greater than those of S*
- Repeat until S = S

Modified Smith Rule with MPs

800000000

Theorem: Optimality of MSR with MPs

MSR with MPs is optimal for $1|r_j$; *pmtn*; $MP| \sum C_j$.

- S = solution of MSR with MPs ; S* = optimal solution
- *i* has a higher priority than *j*
- Starting at t, in S*, take out the (non MP) parts of i and j and re-schedule i before j ⇒ S'*
- Lemma: the objective value of S'* is no greater than those of S*
- Repeat until $S = S^*$

GiSCOP

Lemma: Optimality of MSR with MP

The objective value of S'^* is no greater than those of S^* .

Notations

- \widehat{p}_k = remaining time of k
- C_k (resp. C'_k) = completion time of k in S^* (resp. in S'^*)
- $eft_k = earliest finishing time of k (start of the MP)$
- $lst_k = latest starting time of k (end of the MP)$
GiSCOP

Lemma: Optimality of MSR with MP

The objective value of S'^* is no greater than those of S^* .

Notations

- \widehat{p}_k = remaining time of k
- C_k (resp. C'_k) = completion time of k in S^* (resp. in S'^*)
- $eft_k = earliest finishing time of k (start of the MP)$
- $lst_k = latest starting time of k (end of the MP)$

Lemma: Optimality of MSR with MP

The objective value of S'^* is no greater than those of S^* .

Notations

- \widehat{p}_k = remaining time of k
- C_k (resp. C'_k) = completion time of k in S^* (resp. in S'^*)
- eft_k = earliest finishing time of k (start of the MP)
- $lst_k = latest starting time of k (end of the MP)$

- Case 1: No MP after $t \Rightarrow$ MSR
- Case 2: MP of i or j in the middle of its execution in S'^*
- Case 3: *i* or *j* ends by its MP in S'^*

Goal

- Show that the objective value of S'* is no greater than those of S*
- ie. show that $C_i + C_j \leq C_i + C_j$

• Case 1: No MP after $t \Rightarrow MSR$

• Case 2: MP of *i* or *j* in the middle of its execution in S'^*

• Case 5. For J ends by its within a

Goal • Show that the objective value of S[™] is no greater than those of S[™] • is, show that C[+ C] ≤ C_i + C_j

• Case 1: No MP after $t \Rightarrow MSR$

• Case 2: MP of i or j in the middle of its execution in S'^*

Case 3: i or j ends by its MP in S^{*}

Goal

- Show that the objective value of S^{*} is no greater than those of S^{*}
- ie. show that $C_i + C_i \leq C_i + C_j$

- Case 1: No MP after $t \Rightarrow MSR$
- Case 2: MP of i or j in the middle of its execution in S'^*
- Case 3: i or j ends by its MP in S'*

Goal

- Show that the objective value of S'* is no greater than those of S*
- ie. show that $C_i' + C_j \le C_i + C_j$

- Case 1: No MP after $t \Rightarrow MSR$
- Case 2: MP of i or j in the middle of its execution in S'^*
- Case 3: *i* or *j* ends by its MP in S'*

- Case 1: No MP after $t \Rightarrow MSR$
- Case 2: MP of i or j in the middle of its execution in S'^*
- Case 3: *i* or *j* ends by its MP in *S*^{*}

Goal

- Show that the objective value of S'* is no greater than those of S*
- ie. show that $C'_i + C'_i \leq C_i + C_j$

- Case 1: No MP after $t \Rightarrow MSR$
- Case 2: MP of i or j in the middle of its execution in S'^*
- Case 3: *i* or *j* ends by its MP in S'*

Goal

• Show that the objective value of S'* is no greater than those of S*

• ie. show that $C'_i + C'_i \leq C_i + C_j$

- Case 1: No MP after $t \Rightarrow MSR$
- Case 2: MP of i or j in the middle of its execution in S'^*
- Case 3: *i* or *j* ends by its MP in S'*

Goal

- Show that the objective value of S'* is no greater than those of S*
- ie. show that $C'_i + C'_i \leq C_i + C_j$

Lemma: proof of case 2

Case 2: MP of i or j in the middle of its execution in S'^*

- Definition: MPs are at the same place in S^* and S'^*
- ullet MPs in the middle \Rightarrow tasks scheduled around the MPs
- These MPs have no influence on C'_i and C'_i
- ullet We can ignore these MPs \Rightarrow go to case 1 or 3

Lemma: proof of case 2

Case 2: MP of *i* or *j* in the middle of its execution in S'^*

Modified Smith Rule with MPs

- Definition: MPs are at the same place in S* and S'*
- ullet MPs in the middle \Rightarrow tasks scheduled around the MPs
- These MPs have no influence on C'_i and C'_i
- We can ignore these MPs \Rightarrow go to case 1 or 3

Lemma: proof of case 2

Case 2: MP of *i* or *j* in the middle of its execution in S'^*

0000000000

Modified Smith Rule with MPs

- Definition: MPs are at the same place in S^* and S'^*
- MPs in the middle \Rightarrow tasks scheduled around the MPs
- These MPs have no influence on C_i and C_i
- ullet We can ignore these MPs \Rightarrow go to case 1 or 3

- Definition: MPs are at the same place in S^* and S'^*
- MPs in the middle \Rightarrow tasks scheduled around the MPs
- These MPs have no influence on C'_i and C'_i

ullet We can ignore these MPs \Rightarrow go to case 1 or 3

Lemma: proof of case 2

Case 2: MP of *i* or *j* in the middle of its execution in S'^*

0000000000

Modified Smith Rule with MPs

- Definition: MPs are at the same place in S^* and S'^*
- ullet MPs in the middle \Rightarrow tasks scheduled around the MPs
- These MPs have no influence on C'_i and C'_i
- We can ignore these MPs \Rightarrow go to case 1 or 3

Modified Smith Rule with MPs

Case 3: *i* or *j* ends by its MP in S'^*

3 sub-cases:

- Sub-case a): *j* ends with its MP
- Sub-case b): *i* ends with its MP
- Sub-case c): *j* and *i* end with their MP

Modified Smith Rule with MPs

Case 3: *i* or *j* ends by its MP in S'^*

3 sub-cases:

- Sub-case a): *j* ends with its MP
- Sub-case b): *i* ends with its MP
- Sub-case c): *j* and *i* end with their MP

Modified Smith Rule with MPs

Case 3: *i* or *j* ends by its MP in S'^*

3 sub-cases:

- Sub-case a): *j* ends with its MP
- Sub-case b): i ends with its MP
- Sub-case c): j and i end with their MP

Modified Smith Rule with MPs

Case 3: *i* or *j* ends by its MP in S'^*

3 sub-cases:

- Sub-case a): *j* ends with its MP
- Sub-case b): *i* ends with its MP
- Sub-case c): j and i end with their MP

Modified Smith Rule with MPs

Case 3: *i* or *j* ends by its MP in S'^*

3 sub-cases:

- Sub-case a): *j* ends with its MP
- Sub-case b): *i* ends with its MP
- Sub-case c): *j* and *i* end with their MP

G-SCOP

Modified Smith Rule with MPs

Experimentatio

Conclusion 0000

Lemma: proof of case 3 a)

Sub-case a): *j* ends with its MP

- $C_j = C'_i = eft_j$
- Construction: i processed at t in S'^* (1)
- Construction: j processed in $[t, eft_j]$ in S'^* (2)
- $(1) + (2) \Rightarrow \text{CONTRADICTION} !$

Sub-case a): *j* ends with its MP

- $C_j = C'_j = eft_j$
- Construction: i processed at t in S'^* (1)
- Construction: j processed in $[t, eft_j]$ in S'^* (2)
- $(1) + (2) \Rightarrow \text{CONTRADICTION}$!

Sub-case a): *j* ends with its MP

- $C_j = C'_j = eft_j$
- Construction: i processed at t in S'^* (1)
- Construction: j processed in $[t, eft_j]$ in S'^* (2)
- $(1) + (2) \Rightarrow \text{CONTRADICTION} !$

Modified Smith Rule with MPs

Experimentation

Conclusion

Lemma: proof of case 3 a)

Sub-case a): j ends with its MP

- $C_j = C'_j = eft_j$
- Construction: i processed at t in S'^* (1)
- Construction: j processed in $[t, eft_j[$ in $S'^*(2)$

• $(1) + (2) \Rightarrow \text{CONTRADICTION} !$

Modified Smith Rule with MPs

Experimentation

Conclusion 0000

Lemma: proof of case 3 a)

Sub-case a): *j* ends with its MP

- $C_j = C'_j = eft_j$
- Construction: i processed at t in S'^* (1)
- Construction: j processed in $[t, eft_j]$ in S'^* (2)
- $(1) + (2) \Rightarrow \text{CONTRADICTION} !$

Sub-case c): *i* and *j* ends with their MP

- Sub-case a): j ends with its MP IMPOSSIBLE !
- Sub-case c): *i* and *j* ends with their MP \Rightarrow IMPOSSIBLE

Sub-case c): *i* and *j* ends with their MP

- Sub-case a): *j* ends with its MP IMPOSSIBLE !
- Sub-case c): *i* and *j* ends with their MP \Rightarrow IMPOSSIBLE

000000000

Modified Smith Rule with MPs

Sub-case c): *i* and *j* ends with their MP

- Sub-case a): *j* ends with its MP IMPOSSIBLE !
- Sub-case c): *i* and *j* ends with their MP \Rightarrow IMPOSSIBLE !

0000000000

Modified Smith Rule with MPs

G-SCOP

Introduction

Modified Smith Rule with MPs

Experimentatio

Conclusion 0000

Lemma: proof of case 3 b)

Sub-case b): *i* ends with its MP

- Construction: *i* processed in $[t, eft_i]$ in S'^*
- $S^* \neq S'^*$ at time t : $C_i > C'_i = eft_i$ (1)
- $C'_j = \max(C_j, C_i)$
 - G = G

Modified Smith Rule with MPs 00000000 Lemma: proof of case 3 b) Sub-case b): *i* ends with its MP

- Construction: *i* processed in $[t, eft_i]$ in S'^*

Modified Smith Rule with MPs

00000000

Sub-case b): *i* ends with its MP

- Construction: *i* processed in $[t, eft_i]$ in S'^*
- $S^* \neq S'^*$ at time t : $C_i > C'_i = eft_i$ (1)
- $C'_j = \max(C_j, C_i)$

Modified Smith Rule with MPs

00000000

Sub-case b): *i* ends with its MP

- Construction: *i* processed in $[t, eft_i]$ in S'^*
- $S^* \neq S'^*$ at time $t : C_i > C'_i = eft_i$ (1)
- $C'_j = \max(C_j, C_i)$

• $\vec{C}'_i = C$

Modified Smith Rule with MPs

00000000

Sub-case b): *i* ends with its MP

- Construction: *i* processed in $[t, eft_i]$ in S'^*
- $S^* \neq S'^*$ at time t : $C_i > C'_i = eft_i$ (1)
- $C'_j = \max(C_j, C_i)$
 - $C'_j = C_j$ and $(1) \Rightarrow C'_i + C'_j < C_i + C_j$

Modified Smith Rule with MPs

00000000

Sub-case b): *i* ends with its MP

- Construction: *i* processed in $[t, eft_i]$ in S'^*
- $S^* \neq S'^*$ at time $t : C_i > C'_i = eft_i$ (1)
- $C'_j = \max(C_j, C_i)$
 - $C'_j = C_j$ and (1) $\Rightarrow C'_i + C'_j < C_i + C_j$

Modified Smith Rule with MPs

00000000

Sub-case b): *i* ends with its MP

- Construction: *i* processed in $[t, eft_i]$ in S'^*
- $S^* \neq S'^*$ at time $t : C_i > C'_i = eft_i$ (1)
- $C'_j = \max(C_j, C_i)$
 - $C'_j = C_j$ and $(1) \Rightarrow C'_i + C'_j < C_i + C_j$

Sub-case b): *i* ends with its MP

- Construction: *i* processed in $[t, eft_i]$ in S'^*
- $S^* \neq S'^*$ at time t : $C_i > C'_i = eft_i$ (1)
- $C'_j = \max(C_j, C_i)$
 - $C'_i = C_j$ and $(1) \Rightarrow C'_i + C'_i < C_i + C_j$
 - $\widetilde{C'_j} = C_i$: $\widehat{p}_i < \widehat{p}_j$ (rule) \Rightarrow $eft_i < C_j \Rightarrow C'_i + C'_j < C_i + C_j$

Modified Smith Rule with MPs

Sub-case b): *i* ends with its MP

- Construction: *i* processed in $[t, eft_i]$ in S'^*
- $S^* \neq S'^*$ at time t : $C_i > C'_i = eft_i$ (1)
- $C'_j = \max(C_j, C_i)$
 - $C'_j = C_j$ and $(1) \Rightarrow C'_i + C'_j < C_i + C_j$
 - $\widetilde{C}'_j = C_i : \widehat{p}_i < \widehat{p}_j \text{ (rule)} \Rightarrow eft_i < C_j \Rightarrow C'_i + C'_j < C_i + C_j$

Modified Smith Rule with MPs

00000000

Sub-case b): *i* ends with its MP

- Construction: *i* processed in $[t, eft_i]$ in S'^*
- $S^* \neq S'^*$ at time t : $C_i > C'_i = eft_i$ (1)
- $C'_j = \max(C_j, C_i)$
 - $C'_j = C_j$ and $(1) \Rightarrow C'_i + C'_j < C_i + C_j$
 - $\check{C}'_j = C_i : \widehat{p}_i < \widehat{p}_j \text{ (rule)} \Rightarrow eft_i < C_j \Rightarrow C'_i + C'_j < C_i + C_j$

Modified Smith Rule with MPs

00000000

Sub-case b): *i* ends with its MP

- Construction: *i* processed in $[t, eft_i]$ in S'^*
- $S^* \neq S'^*$ at time t : $C_i > C'_i = eft_i$ (1)
- $C'_j = \max(C_j, C_i)$
 - $C'_j = C_j$ and $(1) \Rightarrow C'_i + C'_j < C_i + C_j$
 - $\widetilde{C'_j} = \widetilde{C_i}$: $\widehat{p_i} < \widehat{p_j}$ (rule) \Rightarrow $eft_i < C_j \Rightarrow C'_i + C'_j < C_i + C_j$

Modified Smith Rule with MPs

00000000

roduction Modified Smith Rule with MPs Experimentations Conc OO Occorrection

3. Experimentations

ntroduction Mod

Modified Smith Rule with M

Experimental protocol

570 instances generated ...

- with 20, 40, 60, 80 or 100 tasks
- \bullet with durations in [1, 10] or [1, 100]
- with time windows [r_j, d_j] more or less close of those of a **possible schedule**

troduction Modified Sn

Experimental protocol

570 instances generated ...

- with 20, 40, 60, 80 or 100 tasks
- \bullet with durations in [1,10] or [1,100]
- with time windows [r_j, d_j] more or less close of those of a **possible schedule**

roduction Modified Smi

dified Smith Rule with MP 0000000

Experimental protocol

570 instances generated ...

- with 20, 40, 60, 80 or 100 tasks
- \bullet with durations in [1,10] or [1,100]
- with time windows [r_j, d_j] more or less close of those of a **possible schedule**

Problems studied

tion Modified Smith Rule with

Experimental protocol

570 instances generated ...

- with 20, 40, 60, 80 or 100 tasks
- \bullet with durations in [1,10] or [1,100]
- with time windows [r_j, d_j] more or less close of those of a **possible schedule**

Problems studiedRD-CP $|i_1; d_j| \sum G$ OPTRDP-MP-IP $|i_1; d_j; pmtn; MP| \sum G$ LBRDP-IP $|i_1; d_j; pmtn; MP| \sum G$ LBRP-MP-S $|i_1; pmtn; MP| \sum G$ LBRP-S $|i_1; pmtn| \sum G$ LB

tion Modified Smith Rule wit

Experimental protocol

570 instances generated . . .

- with 20, 40, 60, 80 or 100 tasks
- \bullet with durations in [1,10] or [1,100]
- with time windows [r_j, d_j] more or less close of those of a **possible schedule**

Problems studied

RP-MP-S	

17/21

n Modified Smith Rule with MPs

Experimental protocol

570 instances generated . . .

- with 20, 40, 60, 80 or 100 tasks
- \bullet with durations in [1,10] or [1,100]
- with time windows [r_j, d_j] more or less close of those of a **possible schedule**

Problem	is studied			
RD-CP RDP-MP-IP RDP-IP	$\begin{array}{l} 1 r_j; d_j \sum C_j \\ 1 r_j; d_j; pmtn; MP \sum C_j \\ 1 r_j; d_j; pmtn \sum C_j \end{array}$	OPT LB LB		
	RP-MP-S RP-S	$1 r_j; pmtn; MP \sum C_j$ $1 r_j; pmtn \sum C_j$	LB LB	

Modified Smith Rule with

Experimentations

Conclusion 0000

Experimentations

Gaps to the optimum analysis: $LB \div OPT$ (RD-CP)

Remarks

- RP-S \leq RP-MP-S \leq RDP-IP \leq RDP-MP-IP
- Less results (nb gaps) for IP-solved problems (NP-hard)
- For all problems : the smaller the nb of tasks, the tinier the gap to OPT is
- For all problems : the closer the instance is to a solution, the tinier the gap to OPT is

Modified Smith Rule witl 0000000000 Experimentations

Conclusion 0000

Experimentations

Gaps to the optimum analysis: $LB \div OPT (RD-CP)$

Problem	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.	Gaps
RDP-MP-IP	0.9830	0.9994	0.9999	0.9993	1.0000	1.0000	258
RDP-IP	0.9830	0.9991	0.9998	0.9990	1.0000	1.0000	239
RP-MP-S	0.9575	0.9978	0.9995	0.9980	1.0000	1.0000	403
RP-S	0.9566	0.9967	0.9990	0.9973	0.9998	1.0000	403

Remarks

- RP-S \leq RP-MP-S \leq RDP-IP \leq RDP-MP-IP
- Less results (nb gaps) for IP-solved problems (\mathcal{NP} -hard)
- For all problems : the smaller the nb of tasks, the tinier the gap to OPT is
- For all problems : the closer the instance is to a solution, the tinier the gap to OPT is

Modified Smith Rule with

Experimentations

Conclusion 0000

Experimentations

Gaps to the optimum analysis: $LB \div OPT (RD-CP)$

Problem	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.	Gaps
RDP-MP-IP	0.9830	0.9994	0.9999	0.9993	1.0000	1.0000	258
RDP-IP	0.9830	0.9991	0.9998	0.9990	1.0000	1.0000	239
RP-MP-S	0.9575	0.9978	0.9995	0.9980	1.0000	1.0000	403
RP-S	0.9566	0.9967	0.9990	0.9973	0.9998	1.0000	403

Remarks

- $\mathsf{RP-S} \leq \mathsf{RP-MP-S} \leq \mathsf{RDP-IP} \leq \mathsf{RDP-MP-IP}$
- Less results (nb gaps) for IP-solved problems (\mathcal{NP} -hard)
- For all problems : the smaller the nb of tasks, the tinier the gap to OPT is
- For all problems : the closer the instance is to a solution, the tinier the gap to OPT is

Modified Smith Rule with

Experimentations

Conclusion 0000

Experimentations

Gaps to the optimum analysis: $LB \div OPT (RD-CP)$

Problem	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.	Gaps
RDP-MP-IP	0.9830	0.9994	0.9999	0.9993	1.0000	1.0000	258
RDP-IP	0.9830	0.9991	0.9998	0.9990	1.0000	1.0000	239
RP-MP-S	0.9575	0.9978	0.9995	0.9980	1.0000	1.0000	403
RP-S	0.9566	0.9967	0.9990	0.9973	0.9998	1.0000	403

Remarks

- RP - $\mathsf{S} \leq \mathsf{RP}$ - MP - $\mathsf{S} \leq \mathsf{RDP}$ - $\mathsf{IP} \leq \mathsf{RDP}$ - MP - IP
- Less results (nb gaps) for IP-solved problems (\mathcal{NP} -hard)
- For all problems : the smaller the nb of tasks, the tinier the gap to OPT is
- For all problems : the closer the instance is to a solution, the tinier the gap to OPT is

Modified Smith Rule with

Experimentations

Conclusion 0000

Experimentations

Gaps to the optimum analysis: $LB \div OPT (RD-CP)$

Problem	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.	Gaps
RDP-MP-IP	0.9830	0.9994	0.9999	0.9993	1.0000	1.0000	258
RDP-IP	0.9830	0.9991	0.9998	0.9990	1.0000	1.0000	239
RP-MP-S	0.9575	0.9978	0.9995	0.9980	1.0000	1.0000	403
RP-S	0.9566	0.9967	0.9990	0.9973	0.9998	1.0000	403

Remarks

- $RP-S \leq RP-MP-S \leq RDP-IP \leq RDP-MP-IP$
- Less results (nb gaps) for IP-solved problems (\mathcal{NP} -hard)
- For all problems : the smaller the nb of tasks, the tinier the gap to OPT is
- For all problems : the closer the instance is to a solution, the tinier the gap to OPT is

Modified Smith Rule w S SOOOOOOOOO Experimentations

Conclusion 0000

Experimentations

Gaps to the optimum analysis: $LB \div OPT (RD-CP)$

Problem	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.	Gaps
RDP-MP-IP	0.9830	0.9994	0.9999	0.9993	1.0000	1.0000	258
RDP-IP	0.9830	0.9991	0.9998	0.9990	1.0000	1.0000	239
RP-MP-S	0.9575	0.9978	0.9995	0.9980	1.0000	1.0000	403
RP-S	0.9566	0.9967	0.9990	0.9973	0.9998	1.0000	403

Remarks

- $RP-S \leq RP-MP-S \leq RDP-IP \leq RDP-MP-IP$
- Less results (nb gaps) for IP-solved problems (\mathcal{NP} -hard)
- For all problems : the smaller the nb of tasks, the tinier the gap to OPT is

• For all problems : the closer the instance is to a solution, the tinier the gap to OPT is

Modified Smith Rule with 0000000000 Experimentations

Conclusion

Experimentations

Gaps to the optimum analysis: $LB \div OPT$ (RD-CP)

Problem	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.	Gaps
RDP-MP-IP	0.9830	0.9994	0.9999	0.9993	1.0000	1.0000	258
RDP-IP	0.9830	0.9991	0.9998	0.9990	1.0000	1.0000	239
RP-MP-S	0.9575	0.9978	0.9995	0.9980	1.0000	1.0000	403
RP-S	0.9566	0.9967	0.9990	0.9973	0.9998	1.0000	403

Remarks

- RP - $\mathsf{S} \leq \mathsf{RP}$ - MP - $\mathsf{S} \leq \mathsf{RDP}$ - $\mathsf{IP} \leq \mathsf{RDP}$ - MP - IP
- Less results (nb gaps) for IP-solved problems (\mathcal{NP} -hard)
- For all problems : the smaller the nb of tasks, the tinier the gap to OPT is
- For all problems : the closer the instance is to a solution, the tinier the gap to OPT is

oduction Modified Smith Rule with MPs Experimentations Conclusion

G-SCOP

4. Conclusion

Conclusion

Conclusion

- MSR with MP compute LB for $1|r_j; d_j| \sum C_j$ in poly time
- Improve the LB compared to MSR
- Does not complexify too much MSR
- Can be used for improving CP resolution
- MP can be constrained for practical applications : personnel needed for a 2-persons tasks in an hospital
- Possible improving toward value of $1|r_j; d_j; pmtn| \sum C_j$
- No direct integration of d_j

Conclusion

Conclusion

- MSR with MP compute LB for $1|r_j; d_j| \sum C_j$ in poly time
- Improve the LB compared to MSR
- Does not complexify too much MSR
- Can be used for improving CP resolution
- MP can be constrained for practical applications : personnel needed for a 2-persons tasks in an hospital
- Possible improving toward value of $1|r_j; d_j; pmtn| \sum C_j$
- No direct integration of d_j

Conclusion

- MSR with MP compute LB for $1|r_j; d_j| \sum C_j$ in poly time
- Improve the LB compared to MSR
- Does not complexify too much MSR
- Can be used for improving CP resolution
- MP can be constrained for practical applications : personnel needed for a 2-persons tasks in an hospital
- Possible improving toward value of $1|r_j$; d_j ; $pmtn|\sum C_j$
- No direct integration of d_j

Modified Smith Rule with MP 000000000 Conclusion ○●○○

Conclusion

- MSR with MP compute LB for $1|r_j; d_j| \sum C_j$ in poly time
- Improve the LB compared to MSR
- Does not complexify too much MSR
- Can be used for improving CP resolution
- MP can be constrained for practical applications : personnel needed for a 2-persons tasks in an hospital
- Possible improving toward value of $1|r_j; d_j; pmtn| \sum C_j$
- No direct integration of d_i

Conclusion

- MSR with MP compute LB for $1|r_j; d_j| \sum C_j$ in poly time
- Improve the LB compared to MSR
- Does not complexify too much MSR
- Can be used for improving CP resolution
- MP can be constrained for practical applications : personnel needed for a 2-persons tasks in an hospital
- Possible improving toward value of $1|r_j; d_j; pmtn| \sum C_j$
- No direct integration of d_i

Conclusion

Conclusion

- MSR with MP compute LB for $1|r_j; d_j| \sum C_j$ in poly time
- Improve the LB compared to MSR
- Does not complexify too much MSR
- Can be used for improving CP resolution
- MP can be constrained for practical applications : personnel needed for a 2-persons tasks in an hospital
- Possible improving toward value of $1|r_j; d_j; pmtn| \sum C_j$
- No direct integration of d_i

Conclusion

Conclusion

- MSR with MP compute LB for $1|r_j; d_j| \sum C_j$ in poly time
- Improve the LB compared to MSR
- Does not complexify too much MSR
- Can be used for improving CP resolution
- MP can be constrained for practical applications : personnel needed for a 2-persons tasks in an hospital
- Possible improving toward value of $1|r_j; d_j; pmtn| \sum C_j$
- No direct integration of d_j

Conclusion

Conclusion

- MSR with MP compute LB for $1|r_j; d_j| \sum C_j$ in poly time
- Improve the LB compared to MSR
- Does not complexify too much MSR
- Can be used for improving CP resolution
- MP can be constrained for practical applications : personnel needed for a 2-persons tasks in an hospital
- Possible improving toward value of $1|r_j; d_j; pmtn| \sum C_j$
- No direct integration of d_i

lodified Smith Rule with MP

Experimentation: 000 Conclusion

Prospects

- Partial integration of d_i
- CP applications
- • •

on Modified Smith Rule with

Experimentation

Conclusion

Prospects

- Partial integration of d_i
- CP applications

••••

n Modified Smith Rule with MPs Ex

Experimentations

Conclusion

Prospects

- Partial integration of d_j
- CP applications

• • • •

Prospects

- Partial integration of d_i
- CP applications
- • •

uction Modified Smith Rule with MPs Experiment

Thank you for your attention !

5. Appendix

Appendix

•0

G. SCOP

Sweep line algo VS list algo

Differences

• List: sorts elements with the same level

Appendix

- Sweep line: sorts elements with the different levels
- List: all elements have same actions
- Sweep line: elements can have different actions