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Problem

Note: here and in the following, we will use dj instead of d̃j for deadlines

Long term objective: improve CP integration of
∑

Cj objective

General problem (even without prec): 1|rj ; dj |
∑

Cj

Polynomial relaxation with a list algorithm: 1|rj ; pmtn|
∑

Cj

We want a Lower Bound (LB) of good quality and computable quickly

idj 1 2 3 4 5 6

pj 14 5 2 3 6 3
rj 0 0 2 12 16 18
dj 24 ∞ 4 ∞ 26 ∞

∑
Cj = 138

(4 + 18 + 24 + 27 + 30 + 35)
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Context

Literature

1||
∑

Cj : Smith Rule (or SPT rule) [Smith, 1956]

1|rj ; pmtn|
∑

Cj : Modi�ed Smith Rule (MSR) [Baker, 1974
and Brucker, 2006] ⇒ 1st Lower Bound (LB)

Objectives

Extend MSR to enforce the tasks Mandatory Parts (MP)

Compute a LB of 1|rj ; dj |
∑

Cj respecting MPs

Long term objective: improve CP solving of 1|rj ; dj |
∑

Cj
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Mandatory Part (MP)

De�nition: Mandatory Part of a task (MP)

Time interval in which a task must be executed under the
hypothesis that it is not late, not preempted and without taking
into account the other tasks.

eftj = earliest �nishing time of task j
lstj = latest starting time of task j
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2. Modi�ed Smith Rule with MPs

5/21



Introduction Modi�ed Smith Rule with MPs Experimentations Conclusion

Modi�ed Smith Rule (MSR)

Theorem: Modi�ed Smith Rule (MSR) [Brucker, 2006]

At each release time or �nishing time of a task, schedule an
un�nished task which is available and has the smallest remaining

processing time (p̂j).

∑
Cj = 105

(4 + 7 + 15 + 21 + 25 + 33)
Complexity: O(n log n) with a list algorithm
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Introduction Modi�ed Smith Rule with MPs Experimentations Conclusion

Optimality of MSR with MPs

Theorem: Optimality of MSR with MPs

MSR with MPs is optimal for 1|rj ; pmtn;MP|
∑

Cj .

Sketch of proof

S = solution of MSR with MPs ;
S∗ = optimal solution

i has a higher priority than j

Starting at t, in S∗, take out the
(non MP) parts of i and j and
re-schedule i before j ⇒ S ′∗

Lemma: the objective value of
S ′∗ is no greater than those of S∗

Repeat until S = S∗
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Lemma

Lemma: Optimality of MSR with MP

The objective value of S ′∗ is no greater than those of S∗.

Notations

p̂k = remaining time of k

Ck (resp. C ′
k) = completion time of k in S∗ (resp. in S ′∗)

eftk = earliest �nishing time of k (start of the MP)

lstk = latest starting time of k (end of the MP)
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Lemma : proof

3 cases

Case 1: No MP after t ⇒ MSR

Case 2: MP of i or j in the middle of its execution in S ′∗

Case 3: i or j ends by its MP in S ′∗

Goal

Show that the objective value of S ′∗ is no greater than those
of S∗

ie. show that C ′
i + C ′

j ≤ Ci + Cj

10/21



Introduction Modi�ed Smith Rule with MPs Experimentations Conclusion

Lemma : proof

3 cases

Case 1: No MP after t ⇒ MSR

Case 2: MP of i or j in the middle of its execution in S ′∗

Case 3: i or j ends by its MP in S ′∗

Goal

Show that the objective value of S ′∗ is no greater than those
of S∗

ie. show that C ′
i + C ′

j ≤ Ci + Cj

10/21



Introduction Modi�ed Smith Rule with MPs Experimentations Conclusion

Lemma : proof

3 cases

Case 1: No MP after t ⇒ MSR

Case 2: MP of i or j in the middle of its execution in S ′∗

Case 3: i or j ends by its MP in S ′∗

Goal

Show that the objective value of S ′∗ is no greater than those
of S∗

ie. show that C ′
i + C ′

j ≤ Ci + Cj

10/21



Introduction Modi�ed Smith Rule with MPs Experimentations Conclusion

Lemma : proof

3 cases

Case 1: No MP after t ⇒ MSR

Case 2: MP of i or j in the middle of its execution in S ′∗

Case 3: i or j ends by its MP in S ′∗

Goal

Show that the objective value of S ′∗ is no greater than those
of S∗

ie. show that C ′
i + C ′

j ≤ Ci + Cj

10/21



Introduction Modi�ed Smith Rule with MPs Experimentations Conclusion

Lemma : proof

3 cases

Case 1: No MP after t ⇒ MSR

Case 2: MP of i or j in the middle of its execution in S ′∗

Case 3: i or j ends by its MP in S ′∗

Goal

Show that the objective value of S ′∗ is no greater than those
of S∗

ie. show that C ′
i + C ′

j ≤ Ci + Cj

10/21



Introduction Modi�ed Smith Rule with MPs Experimentations Conclusion

Lemma : proof

3 cases

Case 1: No MP after t ⇒ MSR

Case 2: MP of i or j in the middle of its execution in S ′∗

Case 3: i or j ends by its MP in S ′∗

Goal

Show that the objective value of S ′∗ is no greater than those
of S∗

ie. show that C ′
i + C ′

j ≤ Ci + Cj

10/21



Introduction Modi�ed Smith Rule with MPs Experimentations Conclusion

Lemma : proof

3 cases

Case 1: No MP after t ⇒ MSR

Case 2: MP of i or j in the middle of its execution in S ′∗

Case 3: i or j ends by its MP in S ′∗

Goal

Show that the objective value of S ′∗ is no greater than those
of S∗

ie. show that C ′
i + C ′

j ≤ Ci + Cj

10/21



Introduction Modi�ed Smith Rule with MPs Experimentations Conclusion

Lemma : proof

3 cases

Case 1: No MP after t ⇒ MSR

Case 2: MP of i or j in the middle of its execution in S ′∗

Case 3: i or j ends by its MP in S ′∗

Goal

Show that the objective value of S ′∗ is no greater than those
of S∗

ie. show that C ′
i + C ′

j ≤ Ci + Cj

10/21
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Lemma: proof of case 2

Case 2: MP of i or j in the middle of its execution in S ′∗

De�nition: MPs are at the same place in S∗ and S ′∗

MPs in the middle ⇒ tasks scheduled around the MPs

These MPs have no in�uence on C ′
i and C ′

j

We can ignore these MPs ⇒ go to case 1 or 3

S∗

C ′
j
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Lemma: proof of case 3 (sub-cases)

Case 3: i or j ends by its MP in S ′∗

3 sub-cases:

Sub-case a): j ends with its MP

Sub-case b): i ends with its MP

Sub-case c): j and i end with their MP
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Lemma: proof of case 3 a)

Sub-case a): j ends with its MP

Cj = C ′
j = eftj

Construction: i processed at t in S ′∗ (1)

Construction: j processed in [t, eftj [ in S ′∗ (2)

(1) + (2) ⇒ CONTRADICTION !
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Lemma: proof of case 3 b)

Sub-case b): i ends with its MP

Construction: i processed in [t, efti [ in S ′∗

S∗ ̸= S ′∗ at time t : Ci > C ′
i = efti (1)

C ′
j = max(Cj ,Ci )

C ′
j = Cj and (1) ⇒ C ′

i + C ′
j < Ci + Cj

C ′
j = Ci : p̂i < p̂j (rule) ⇒ efti < Cj ⇒ C ′

i + C ′
j < Ci + Cj
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3. Experimentations
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Experimental protocol

570 instances generated . . .

with 20, 40, 60, 80 or 100 tasks
with durations in [1, 10] or [1, 100]
with time windows [rj , dj ] more or less close of those of a
possible schedule

Problems studied

RD-CP 1|rj ; dj |
∑

Cj OPT
RDP-MP-IP 1|rj ; dj ; pmtn;MP|

∑
Cj LB

RDP-IP 1|rj ; dj ; pmtn|
∑

Cj LB

RP-MP-S 1|rj ; pmtn;MP|
∑

Cj LB
RP-S 1|rj ; pmtn|

∑
Cj LB
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Experimentations

Gaps to the optimum analysis: LB ÷ OPT (RD-CP)

Problem Min. 1st Qu. Median Mean 3rd Qu. Max. Gaps

RDP-MP-IP 0.9830 0.9994 0.9999 0.9993 1.0000 1.0000 258

RDP-IP 0.9830 0.9991 0.9998 0.9990 1.0000 1.0000 239

RP-MP-S 0.9575 0.9978 0.9995 0.9980 1.0000 1.0000 403

RP-S 0.9566 0.9967 0.9990 0.9973 0.9998 1.0000 403

Remarks

RP-S ≤ RP-MP-S ≤ RDP-IP ≤ RDP-MP-IP

Less results (nb gaps) for IP-solved problems (NP-hard)

For all problems : the smaller the nb of tasks, the tinier the
gap to OPT is

For all problems : the closer the instance is to a solution, the
tinier the gap to OPT is
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4. Conclusion
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Conclusion

Conclusion

MSR with MP compute LB for 1|rj ; dj |
∑

Cj in poly time

Improve the LB compared to MSR

Does not complexify too much MSR

Can be used for improving CP resolution

MP can be constrained for practical applications : personnel
needed for a 2-persons tasks in an hospital

Possible improving toward value of 1|rj ; dj ; pmtn|
∑

Cj

No direct integration of dj
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Prospects

Prospects

Partial integration of dj

CP applications

· · ·
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Thank you for your attention !
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Appendix

Sweep line algo VS list algo

Di�erences

List: sorts elements with the same level

Sweep line: sorts elements with the di�erent levels

List: all elements have same actions

Sweep line: elements can have di�erent actions
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