
HAL Id: hal-03641789
https://hal.science/hal-03641789

Submitted on 14 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Extending Smith’s Rule with Task Mandatory Parts and
Release Dates

Camille Bonnin, Margaux Nattaf, Arnaud Malapert, Marie-Laure Espinouse

To cite this version:
Camille Bonnin, Margaux Nattaf, Arnaud Malapert, Marie-Laure Espinouse. Extending Smith’s Rule
with Task Mandatory Parts and Release Dates. PMS 2022 (18th International Workshop on Project
Management and Scheduling), Apr 2022, Ghent, Belgium. �hal-03641789�

https://hal.science/hal-03641789
https://hal.archives-ouvertes.fr

1

Extending Smith's Rule with Task Mandatory Parts

and Release Dates

Bonnin Camille1,2, Nattaf Margaux1, Malapert Arnaud2 and Espinouse Marie-Laure1

1 Univ. Grenoble Alpes, CNRS, Grenoble INP⋆⋆, G-SCOP, 38000 Grenoble, France
camille.bonnin@grenoble-inp.fr, marie-laure.espinouse@grenoble-inp.fr,

margaux.nattaf@grenoble-inp.fr
2 Université Côte d'Azur, CNRS, I3S, France

arnaud.malapert@univ-cotedazur.fr

Keywords: 1-Machine Scheduling, Flow Time, Mandatory Parts, Release Dates, Preemp-
tion.

1 Context and problem description

Smith's rule is well-known in scheduling for solving the one-machine problem in which
the �ow time is minimized, i.e. 1||

∑
Cj . A �rst extension of this rule including release

date and allowing preemption has been developed in Brucker P. (2006). This rule is called
the Modi�ed Smith Rule (MSR). This paper aims to extend MSR to include the notion
of task mandatory part, a key concept in Constraint Programming (CP). This extension
aims at computing lower bounds for the more general problem 1|rj ; dj |

∑
Cj and to use it

to improve the solving of this problem by CP.
CP is, currently, a well established method to solve scheduling problems as shown in

Baptiste P. et al. (2001). However, constraint programming techniques are oriented toward
feasibility and makespan minimization. Recently, some e�orts have been made to integrate
other objective functions such as the maximum lateness, or the weighted �owtime. Recently,
a lot of e�orts have been made to integrate several objective functions such as the maximum
lateness, or the weighted �ow time like Kovács A. and Beck J. C. (2011). Still, few of them
consider the �ow time as objective.

One crucial notion in CP is the task mandatory part. A Mandatory Part (MP) is the
time interval in which the non-preemptive task is executed in each feasible solution of
the problem. It is de�ned as the intersection between the time interval where the task
starts at its release date and the time interval where the tasks ends at its deadline. In this
intersection (if it is not empty), the task is sure to be executed in each feasible solution
of the problem. Typically, in CP, task time-windows narrow during the solving. Thus, the
MP size increases.

A key concept in CP is �ltering. Filtering consists in removing value from the domain of
a variable that will not lead to feasible solutions. In practice, this process is used very often
during the solving procedure. Thus, the algorithm used in the �ltering process must be as
quick as possible. As shown in Nattaf M. and Malapert A. (2020), it is possible to use lower
bounds to design �ltering algorithms. Therefore, it is interesting to compute lower bounds
for 1|rj ; dj |

∑
Cj in polynomial time. Since it is an NP-hard problem, we cannot �nd a

polynomial algorithm to solve it. Thus, to �nd e�cient lower bounds for 1|rj ; dj |
∑

Cj ,
we need to consider its polynomial relaxations. Among those relaxations, only two can be
solved in polynomial time, 1|rj ; pmtm|

∑
Cj and 1|sp− graph|

∑
wjCj . In this paper, the

�rst relaxation is considered. Then, to improve the lower bounds for 1|rj ; dj |
∑

Cj a new
constraint is added to the relaxed problem: the mandatory part constraint (MP). This
constraint ensures that the MPs of the tasks are respected.

⋆⋆ Institute of Engineering Univ. Grenoble Alpes

2

2 Modi�ed Smith's Rule with Mandatory Parts (MSRMP)

There already exist algorithms that compute a lower bound for 1|rj ; dj |
∑

Cj in poly-
nomial time. One of those algorithms is the modi�ed Smith rule given by Brucker P. (2006)
that solves 1|rj ; pmtn|

∑
Cj . This rule is an adaptation of the Smith rule and states that

at each release date and at each competition time (Cj) of a task, the available task with
the shortest remaining processing time must be scheduled (a task can then be interrupted
by the release of a quicker task).

In this section, we are describing a rule to �nd the optimal solution of a relaxation
of 1|rj ; dj |

∑
Cj , 1|rj ; pmtn;MP |

∑
Cj . This rule is based on the modi�ed Smith rule in

which we are adding the execution of the mandatory parts (MP) of the tasks. It is called
the Modi�ed Smith's Rule with Mandatory Parts (MSRMP).

Rule 1 (Modi�ed Smith's Rule with Mandatory Parts (MSRMP)) Schedule the
mandatory parts (MPs) in the correct time slots. At each release date or completion time
of a task, schedule an un�nished task that is available and has the shortest remaining
processing time. In case of equality, schedule the un�nished task without MP or with the
earliest MP.

Example 1.
Table 1 and Figure 1 present an example of the appli-
cation of the MSRMP with six tasks. The MPs are in
gray. To execute this rule, we begin by computing and
scheduling the MPs and then, we apply the modi�ed
Smith rule on the rest by taking care of the equality
cases. We can notice that even if tasks 3 and 5 are
�nished on time, task 1 is too long and �nishes late, a
long time after its MP.

Table 1: Example the ap-
plication of the MSRMP -
instance-

j 1 2 3 4 5 6

pj 9 5 2 3 6 3
rj 0 0 2 9 9 14
dj 15 ∞ 4 ∞ 17 ∞

d3 d1 d5

0 4 10 16 19 22 28

2 3
MP

2 1
MP

2 5 5
MP

5 4 6 1

Fig. 1: Example of application of the MSRMP

Proposition 1 (Optimality of the Modi�ed Smith Rule with Mandatory Parts).
The Modi�ed Smith Rule with Mandatory Parts gives an optimal solution to the
1|rj ; pmtn;MP |

∑
Cj problem.

Proof. Clearly, the rule gives a feasible solution to the 1|rj ; pmtn;MP |
∑

Cj problem.
The proof relies on an exchange argument and is similar to the one of Theorem 4.9 in

Brucker P. (2006). Therefore, we only present the exchange argument which is di�erent
here.

Let us assume that for the same feasible instance of 1|rj ; pmtn;MP |
∑

Cj , S is the
schedule obtained with MSRMP and S∗, an optimal one. Those two schedules are identical
until time t, where task i is scheduled in S, and task j in S∗. We then construct a new
schedule S′∗ based on S∗ by re-scheduling, after t, the non-mandatory parts of i before
those of j. As rj ≤ t and ri ≤ t, S′∗ is a feasible schedule. Lemma 1 shows that S′∗ is still
optimum. We then take S′∗ as S∗, update t and redo the same reasoning until S′∗ and S
are the same. We then have proven the optimality of S.

Lemma 1 (Optimality of the exchange argument) Let assume S∗ and S′∗ are con-
structed as in the proof of Proposition 1, the objective value of S′∗ is no greater than those
of S∗.

3

We de�ne p̂k as the remaining processing time of a task k, pk its processing times, Ck

and C ′
k its completion time respectively in S∗ and S′∗, and [lstk, eftk[= [dk − pk, rk + pk[

its MP.

Proof. We need to consider three cases based on the presence and the position of the MPs
of i and j after t. We can notice that by the de�nition of an MP, there are executed at
simultaneously in S∗ and S′∗ and so cannot be executed at time t.

S∗

S′∗

t

t

j i
MP

j i
j

MP
j j i

Cj Ci

i i
MP

i j
j

MP
j j

C ′
i C ′

j

(a) Case 2

S∗

S′∗

t

t

j i j i
MP

i j i j

Ci Cj

i i
MP

j j j j

C ′
i C ′

j

(b) Case 3

Fig. 2: Examples of the cases 2 and 3 of the proof

Case 1 : neither i nor j has an MP after t. It is the modi�ed Smith rule.
Case 2 : the mandatory part of i and/or j is in the middle of its execution.

This case is represented by Figure 2a. By de�nition, the MPs of i and j are executed
simultaneously in S∗ and in S′∗. Also, as the MP of i (resp. j) is in the middle of the
execution of i (resp. j) in S′∗, it has no in�uence on C ′

i (resp. C
′
j). So we can ignore

the MP of i (resp. j) and return to case 1 or 3 depending on the situation.
Case 3 : i and/or j ends by its MP in S′∗. If j has an MP located at the end of its

execution, as the MP of j is scheduled simultaneously in S∗ and S′∗, we can deduce
that C ′

j = Cj = eftj . By construction, we have that C ′
i ≤ Ci so the objective value of

S′∗ is no greater than those of S∗. If, as in Figure 2b, it is i that have its MP at the
end of its execution in S′∗, then by de�nition of the MP, if i �nishes at efti, then it
starts at ri and is executed without preemption. So in S′∗, i is processed in [t, efti[.
As S∗ and S′∗ di�er after t, at least one part of i is scheduled after its MP in S∗, so
Ci > C ′

i = efti. For C
′
j = max(Ci, Cj), if C

′
j = Cj , then S′∗ is strictly better than S∗,

which contradict the optimality of S∗. If C ′j = Ci, then p̂i < p̂j . Indeed, p̂i cannot be
equal to p̂j as otherwise j would have been scheduled before i in S (if j has an MP
after t, it is after those of i, else i could not be scheduled in all [t, efti[). Thus p̂j > p̂i
and then :

△FT
= Ci − C ′

i + Cj − C ′
j

=��Ci − C ′
i + Cj −��Ci

= Cj − C ′
i

= Cj − efti

and △FT
≥ 0 as Cj > efti (p̂j > p̂i). It is also impossible to have i and j �n-

ishing together by their MP as otherwise, they will be processed simultaneously on
[t,min(efti, eftj)[which is impossible as there is only one resource.

The MSRMP can be implemented in polynomial time. An example of such implementa-
tion, whose complexity is O(n log n), is a sweep line algorithm. Indeed, each task generates
one event linked with its release date, and two events linked with the start and end of its
mandatory part (if any). Then, the events are sorted in non-decreasing order where ties are
broken by the earliest start of the mandatory part. Finally, events are processed sequen-
tially so that a preemptive schedule is built under MSRMP. The worst-case complexity of

4

this algorithm is coming from the events sort and the selection of the task with the shortest
remaining processing time.

3 Non optimality of MSRMP with deadlines (dj)

MSRMP computes in polynomial time a better lower bound of 1|rj ; dj |
∑

Cj than
1|rj ; pmtn|

∑
Cj as 1|rj ; pmtn|

∑
Cj is a relaxation of 1|rj ; pmtn;MP |

∑
Cj . However, its

direct adaptation to include the deadlines by prioritazing tasks that just have the time to
�nish is not optimal, as shown by this example.

Example 2.
Table 2 and Figure 3a present an example of the application of
the MSRMP with deadlines and three tasks. This adaptation of
MSPMP is trivial: if a task has just the time to �nish before be-
ing late, it has higher priority than all the other tasks. Figure 3a
gives us the objective value of the MSRMP with deadlines on
the instance of Table 2: it is 33 (0 + 4 + 14 + 15). However,
Figure 3b gives a better solution for the same problem as its
objective value is 30 (4 + 11 + 15). As Figure 3b is not follow-
ing the MSRMP with deadlines, we can deduce that this rule is
not optimal.

Table 2: Example
the application of
the MSRMP with
dj -instance-

j 1 2 3

pj 0 0 0
rj 7 4 4
dj 14 ∞ ∞

0 4 14 15

2 3 1 3

d1

(a) MSRMP with dj

0 4 11 15

2 1 3

d1

(b) Optimal solution

Fig. 3: Example of the non optimality of MSRMP with dj

4 Conclusion and prospects

In this paper, we extended Smith rule to 1|rj ; pmtn;MP |
∑

Cj . It can solve this prob-
lem in polynomial time and so be used as a lower bound for 1|rj ; dj |

∑
Cj to improve

its CP �ltering algorithms. We also show that the adaptation of the rules to include the
deadlines is not trivial. Even though, 1|rj ; dj |

∑
Cj and 1|rj ; dj ; pmtn|

∑
Cj are NP-hard,

�nding an algorithm which takes the deadline into account in a better way than ours is a
challenging research direction.

References

Baptiste P., Le Pape C. and Nuijten W., 2001, �Constraint-Based Scheduling: Applying Con-
straint Programming to Scheduling Problem�, International Series in Operations Research &

Management Science, Vol. 39, Verlag Springer US, pp. xiii-198, https://doi.org/10.1007/
978-1-4615-1479-4.

Brucker P., 2006,�Single Machine Scheduling Problem�, Scheduling Algorithms, Springer, Berlin,
Heidelberg, ch. 04, pp. 61�106, https://doi.org/10.1007/978-3-540-69516-5.

Kovács A. and Beck J. C., 2011, �A global constraint for total weighted completion time for
unary resources �, Constraints, Vol. 16, No. 1, pp. 100�123, https://doi.org/10.1007/

s10601-009-9088-x.
Nattaf M. and Malapert A., 2020, �Filtering Rules for Flow Time Minimization in a Par-

allelMachine Scheduling Proble�, CP 2020: Principles and Practice of Constraint Pro-

gramming, pp. 462-477, https://doi.org/10.1007/978-3-030-58475-7_27, https://hal.
archives-ouvertes.fr/hal-3013857.

