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Abstract

In this paper, we consider the question of the existence of disjoint
maximal independent sets (mis) in graphs and hypergraphs. The question
was raised in the 1970’s independently by C. Berge and C. Payan. They
considered the question of characterizing the graphs that admit disjoint
mis, and in particular whether regular graphs do. In this paper, we are
interested in the existence of disjoint mis in a graph or in its complement,
motivated by the fact that most constructions of graphs that do not admit
disjoint mis are such that their complement does. We prove that there
are disjoint mis in a graph or its complement whenever the graph has
diameter at least three or has chromatic number at most four. We also
define a graph of chromatic number 5 and diameter 2 which does not
admit disjoint mis nor its complement.

As our work was first motivated by a more recent work on disjoint
mis in hypergraphs by Acharya (2010), we also consider the question of
the existence of disjoint mis in hypergraphs. We answer a question by
C. Jose and Z. Tuza (2009), proving that there exists balanced k-connected
hypergraphs admitting no disjoint mis.

1 Introduction

We first introduce common definitions to graphs and hypergraphs, classical on
graphs, that will be used throughout the rest of the paper. Specificities of the
definitions for hypergraphs are discussed in Section 3
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In a graph or a hypergraph H = (V,E), the neighborhood N(x) of a vertex
x of V is the set of all the vertices that belong to a common edge with x.
More generally, the neighborhood of a subset S ⊆ V of vertices is defined as
N(S) =

⋃
x∈S N(x). A subset S of V is an independent set of H if no two

vertices of S belong to a same edge. An independent set S is maximal (inclusion-
wise) if there exist no superset S′ ) S that is also independent. Observe that a
maximal independent set of H is also a dominating set of H, i.e. every vertex
in H has a neighbor in the set S. Maximal independent sets are also known
as independent dominating sets, which have been extensively studied in the
literature, we refer to the survey by W. Goddard and M. Henning [5].

In this paper, we are interested in the existence of disjoint maximal inde-
pendent sets (disjoint mis) in graphs and hypergraphs. Observe first that all
graphs do not contain disjoint mis. An example of a graph with no disjoint mis
can be made by adding an isolated vertex to any connected graph. A connected
example is depicted in Figure 1: any mis of G2 contains at least three among the
four degree 1 vertices, so any two mis intersect in at least two degree 1 vertices.

G1 G2

Figure 1: Red and blue vertices form disjoint mis of G1. The graph G2 does
not admit disjoint mis.

Another known infinite family of graphs admitting no disjoint mis is formed
by the coronas of odd cycles. Those graphs are obtained by adding a degree
one vertex adjacent to every vertex of an odd cycle (see Figure 2). In these
graphs, any maximal independent set contains at most half the vertices of the
odd cycle, and thus more than half the degree one vertices. Therefore any two
mis intersect in at least one of the degree one vertices.

Figure 2: Coronas of odd cycle have no disjoint mis.
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Based on this observation, O. Schaudt [11] gave a polynomial time algorithm
that either computes disjoint mis in a graph or returns an induced corona of
an odd cycle. Note however that having no induced corona of a cycle is not a
necessary condition to have disjoint mis. For example, the graph G1 in Figure 1
does contain an induced corona of a 3-cycle, as well as disjoint mis. Actually,
deciding whether a graph admits disjoint mis is a NP-complete problem, as
shown by M. Henning et al. in [6].

C. Berge proposed in conferences (as mentionned in [2, 3]) the following
conjecture, which was independently proposed by C. Payan in [9]:

Conjecture 1 (C. Berge and C. Payan, 1970’s) Every non empty regular
simple graph contains disjoint mis.

Though, C. Payan [10] has found a family of counter-examples to the above
conjecture, the smallest graph of which contains 630 vertices, all of degree 280.

However, the conjecture was proven to be true for (n − k)-regular graphs
where 1 ≤ k ≤ 7 (see [3]), k ≤ 10 (see [9]) and for k < 2

√
2n − 2 (see [4]).

Morever C. Payan proved also the conjecture in particular for claw-free regular
graphs [8].

2 About disjoint MIS or disjoint maximal cliques.

We consider here the question of the existence of disjoint mis in a graph or in its
complement, or equivalently the question of a graph admitting disjoint mis or
disjoint maximal cliques (i.e. disjoint maximal complete subgraphs). Observe
that the simple examples of graphs not admitting disjoint mis shown above all
admit disjoint maximal cliques. First, if a non trivial graph contains an isolate
vertex v, then v itself is a maximal complete subgraph disjoint from any other
clique in the graph. In the family of coronas of odd cycles, there are many
maximal cliques formed by a vertex of degree one with its single neighbor, and
all are disjoint. Similarly, we do not detail C. Payan’s construction here, but it
does contain disjoint maximal cliques.

The study of existence of disjoint mis in a graph and in its complement was
already initiated by E. Cockayne and S.Hedetniemi in [3], though with a different
perspective, since Conjecture 1 was not disproved yet. They conjectured that if
a graph admits disjoint mis, then its complement does too, which is disproved
by the examples mentionned above.

This section is thus motivated by the following question, which we explore
further :

Question 2 Let G be a non trivial graph. Is it true that either G or G admits
disjoint mis? Equivalently, is it true that either G admits disjoint mis, or G
admits disjoint maximal cliques?
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2.1 About the diameter

One first direction to consider the question is in regard of the diameter of the
graph. Note that the only graphs of diameter one are complete graphs, where
each vertex is a mis in the graph. Thus non trivial graphs with diameter one
admit disjoint mis. For larger diameters, we get the following:

Theorem 3 If G is a graph of diameter at least 3, then G contains disjoint
maximal cliques.

Proof: Let G be a graph of diameter at least 3. Consider two vertices u and v
at distance at least three in G, and two maximal cliques, one containing u and
the other containing v. Since u and v are at distance more than two, they have
no common neighbors, and the two cliques may not share a vertex. They are
thus disjoint. 2

Observe in particular that the above theorem covers the (easy) case when
the graph is not connected.

Corollary 4 If a graph admits neither disjoint mis, nor disjoint maximal cliques,
it must be of diameter two.

2.2 About the chromatic number

Our next result uses the chromatic number of the graph as a parameter. Recall
that a proper coloring of a graph G is an assignment of colors to the vertices so
that no adjacent vertices receive the same color. The chromatic number χ(G)
of the graph G is the minimum number of colors in a proper coloring of G. We
consider the following greedy algorithm for producing a proper coloring of a
graph: take the vertices in some order, and assign to each vertex the least color
not used among its already colored neighbors.

Observation 5 For every graph, there exists an ordering of the vertices so that
the greedy algorithm produces an optimal coloring.

Proof: Let G be a graph with chromatic number k, and c be an optimal coloring
of G, with colors 1 to k. Consider any order of the vertices which begins with
all vertices receiving color 1 in c, then all vertices receiving color 2, and so on
until color k.

Let c′ be the coloring of G obtained by applying the above greedy algorithm
with this ordering. Note that for a vertex v, the color c′(v) may differ from
c(v) (for example if c(v) = 2 but v has no neighbor colored 1). However,
we can ensure inductively that for all v, c′(v) ≤ c(v): by induction, all the
already colored neighbors of a vertex v received colors less than c(v), so the
least available color is at most c(v). Therefore, the coloring obtained by the
greedy algorithm from that ordering uses at most k colors. 2

We proceed with a series of lemmas that will allow us to show that any graph
with chromatic number at most 4 admits disjoint mis or disjoint cliques.
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Lemma 6 If G is a connected graph with chromatic number χ(G) = 2, then G
contains disjoint mis.

Proof: Consider a two-coloring of G, and denote by V1 and V2 the set of vertices
colored 1 and 2, respectively (in other words, V1 and V2 are the partite sets of the
bipartite graph G). Obviously, V1 and V2 are independent sets. Since the graph
is connected, every vertex colored 2 has a neighbor colored 1, and reciprocally.
So V1 and V2 are also maximal, they thus are disjoint mis. 2

Lemma 7 If G is a connected graph with chromatic number χ(G) = 3, then G
contains disjoint mis or disjoint maximal cliques.

Proof: Consider an ordering of the vertices so that the greedy coloring of G
uses three colors, and denote V1, V2 and V3 the sets of vertices attributed the
corresponding colors by the greedy algorithm. Note that by definition, every
vertex in V2 or V3 has a neighbor in V1, So V1 is necessarily a mis. Suppose first
that every vertex in V1 is adjacent to at least one vertex in V2. Then V2 is a
dominating set in G, and thus V1 and V2 are disjoint mis, as required. Suppose
next that every vertex in V1 is adjacent to at least one vertex in V3. Then V3
dominates V1, and it may be completed into a mis S using only vertices from
V2. Then V1 and S are disjoint mis, as required.

We now assume that both the above assumptions are false, i.e. there exists
a vertex u in V1 that has no neighbor in V2, and a vertex w in V1 that has no
neighbor in V3.

Since neither u nor w are isolated, there exists a vertex u′ ∈ V3 adjacent to
u and a vertex w′ ∈ V2 adjacent to w. Since u has no neighbor in V1 ∪ V2 and
u′ has no neighbor in V3, the complete subgraph {u, u′} is maximal.

Similarly, since w has no neighbor in V1 ∪ V3 and w′ has no neighbor in V2,
the set {w,w′} is a maximal clique. Therefore, the sets {u, u′} and {w,w′} form
disjoint maximal cliques. 2

Lemma 8 If G is a connected graph with chromatic number χ(G) = 4, then G
contains disjoint mis or disjoint cliques.

Proof: Consider an ordering of the vertices so that the greedy coloring of G
uses three colors, and denote V1, V2, V3 and V4 the sets of vertices attributed
the corresponding colors by the greedy algorithm.

Similarly as in the proof of the previous lemma, if there exists t ∈ {2, 3, 4},
such that every vertex of V1 has a neighbor in Vt, then V1 and a mis containing
Vt form disjoint mis. We thus assume that for every t ∈ {2, 3, 4}, there exists a
vertex of V1 that has no neighbor in Vt.

Suppose some vertex u ∈ V1 has no neighbor in two other partite sets (e.g.
V2 and V3), and denote by Vt the only partite set where u has neighbors (in the
example, V4). Since u is not isolated in G, u necessarily has a neighbor u′ in
Vt. Since u has neighbors only in Vt, and Vt is an independent set, {u, u′} is a
maximal clique in G. Let w ∈ V1 denote a vertex with no neighbor in Vt. Then
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any maximal clique Cw containing w contains neither u nor u′, and so Cw and
{u, u′} are disjoint maximal cliques.

Now suppose that neither of the above conditions hold, and thus that there
are three distinct vertices u, v and w in V1 that do not have neighbors in V2, V3
and V4 respectively. Let Cu, Cv and Cw denote three maximal cliques containing
u, v and w respectively. Note that by our assumption, each of Cu, Cv and Cw
contain at most three vertices. If any two such cliques are disjoint, the graph G
contains disjoint maximal cliques, so let us assume they pairwise intersect.

Since u has no neighbor in V2 and v has no neighbor in V3, Cu and Cv
may only intersect in some vertex from V4, say w′′. Similarly, Cu and Cw must
intersect in some vertex v′ in V3, and Cv and Cw intersect in some vertex u′ in
V2. A picture of the current identified subgraph is provided in Figure 3.

V1 V2 V3 V4

u

v

w

u′

v′

w′

Figure 3: Situation in the proof of Lemma 8

Note that since u has no neighbor in V2, v has no neighbor in V3 and w
has no neighbor in V4, we necessarily have Cu = {u, v′, w′}, Cv = {u′, v, w′}
and Cw = {u′, v′, w}. Moreover, {u, u′}, {v, v′} and {w,w′} are independent
sets. Let Iu be a maximal independent set containing both u and u′, and Iv a
maximal independent set containing both v and v′. If Iu and Iv are disjoint,
the lemma holds, thus assume by way of contradiction that there exist a vertex
z in the intersection Iu ∩ Iv, and let Cz be a maximal clique containing z.

If Cz does not contain w′, then since u and v′ are not incident to z, Cz and
Cu are disjoint, and the lemma holds.

Thus assume Cz contains w′. Then necessarily, w /∈ Cz. But then since the
vertices u′ and v′ are not adjacent to z either, Cw and Cz are disjoint, and the
lemma holds. 2

As a corollary, we get the following result.

Theorem 9 If G is a connected graph with chromatic number χ(G) ≤ 4, then
G contains disjoint mis or disjoint cliques.

So we now can infer that the only graphs that may have neither disjoint mis
nor disjoint maximal cliques have diameter two and chromatic number at least
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5. Actually, we found a family of split graphs that have this property, which we
describe now:

Let Kp be a complete graph with vertex set {x1, x2, ..., xp}, where p > 4. Gp
is a graph obtained from Kp by connecting any vertex zij of Z = {zij | i, j ∈
{1, 2, . . . , p} i < j} to any vertex xr of Kp, where r /∈ {i, j}. The graph Gp has
p+

(
p
2

)
vertices, diameter 2 and chromatic number p (see Figure 4 for p = 5).

Figure 4: The graph G5 which has neither disjoint mis nor disjoint maximal
cliques.

Proposition 10 For p > 4, Gp has neither disjoint mis nor disjoint maximal
cliques.

Proof: In the graph Gp, a maximal independent set may contain at most
one vertex of the complete subgraph Kp. It is thus either the set Z, or a set
Si = {xi} ∪ {zkl | i ∈ {k, l}} for some 1 ≤ i ≤ p. No two of these independent
sets are disjoint for p ≥ 4. In particular, Si and Sj intersect in zi,j . Thus the
graph Gp admits no disjoint mis.

On the other hand, a maximal clique in Gp contains at most one vertex in
Z, and thus is either Kp or a clique Cij of the form {zij} ∪ {xk | k /∈ {i, j}} for
1 ≤ i < j ≤ p. Any two such cliques intersect in at least p−4 vertices, and thus
no two are disjoint for p ≥ 4. This concludes the proof. 2

This implies that both above results are best possible in the way they are
defined. However, the question of characterization of graphs with no disjoint
mis nor disjoint maximal cliques remains open.

3 Hypergraphs

The study of disjoint mis in hypergraphs was started by B. Acharya in [1] where
he asks for a characterization of hypergraphs having disjoint mis [1, Problem 2].
Recall that we here use for definition of an independent set in a hypergraph a
set where no two vertices belong to the same edge. With this definition, a set in
a hypergraph is independent if and only if it corresponds to an independent set
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in the graph made from the hypergraph by replacing every edge by a complete
subgraph. Though, we are interested in a conjecture from B. Jose and Z. Tuza
[7] about balanced hypergraphs, for which the equivalence may not be used.

A cycle in a hypergraph is an alternating sequence of vertices and edges
(x1, E1, x2, E2, . . . , xk, Ek), with all edges and vertices distinct, such that xi, xi+1 ∈
Ei for all 1 ≤ i < k, with the special case of Ek containing both xk and x1. A
hypergraph is balanced if every odd cycle uses an edge containing three vertices
in the cycle (see Figure 5).

x0

x1
x2

x3

x4

x5
x6

Figure 5: A balanced odd cycle in a hypergraph

As for graphs, the existence of disjoint mis in hypergraphs is not verified in
general. B. Acharya conjectured that every balanced hypergraph admits disjoint
mis. B. Jose and Z. Tuza disproved that conjecture [7], and suggested that the
question might still be relevant for k-connected balanced hypergraphs [7, Prob-
lem 4], that is hypergraphs where there are no subset of k − 1 vertices whose
removal would disconnect the hypergraph. Here, we answer to this question
by the negative proposing for any k an infinite family of balanced k-connected
hypergraphs Hk,t that does not have disjoint mis.

The hypergraphs Hk,t = (V, E) are constructed as follows: let V = {ui,j |
1 ≤ i ≤ k + 1, 1 ≤ j ≤ t} and E = {Xi | 1 ≤ i ≤ k + 1, i 6= 2} ∪ {Yj , Zj | 1 ≤
j ≤ t} where Xi = {ui,1, . . . , ui,t}, Yj = {u2,j , . . . , uk+1,j} and Zj = {u1,j , u2,j}.
Figure 6 illustrates that construction.

Proposition 11 Let k ∈ N, t ≥ 2k + 1. the hypergraph Hk,t is balanced, k-
connected, and does not have disjoint mis.

Proof: We first prove that Hk,t is balanced. Note that any vertex of Hk,t
belongs to precisely two edges, one in E1 = {Yj | 1 ≤ j ≤ t} ∪ {X1} and one in
E2 = {Zj | 1 ≤ j ≤ t} ∪ {Xi | 3 ≤ i ≤ k + 1}. Therefore, any cycle C of Hk,t
uses alternating edges among the two sets E1 and E2. Thus |C ∩ E1| is equal
to |C ∩ E2| and C is an even cycle.

We now prove that the hypergraph Hk,t is k-connected, by giving at least
k vertex disjoint walks between any two non-adjacent vertices ui,j and ui′,j′

(1 ≤ i ≤ i′ ≤ k, 1 ≤ j, j′ ≤ t). Note first that if i = i′, then both are equal to
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X1 X3 X4 X5 Xk+1

Y1
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Y3

Y4

Y5
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Z1

Z2

Z3

Z4

Z5

Zt

..
.
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.
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.

..
.

..
.

..
.

Figure 6: The hypergraph Hk,t

2 (or the corresponding vertices would be adjacent). For each case, we propose
the (at least k) following vertex disjoint walks :

• if i = i′ = 2, {(u2,j , uα,j , uα,j′ , u2,j′), 1 ≤ α ≤ k + 1, α 6= 2}

• if i 6= 2 and i′ 6= 2, {(ui,j , ui,β , ui′,β , ui′,j′), 1 ≤ β ≤ t}

• if i = 2, i′ ≥ 3, {(ui,j , uα,j , uα,j′ , [u2,j′ , ]ui′,j′), 1 ≤ α ≤ k + 1, α 6= 2}

• if i = 1, i′ = 2, {(u1,j , u1,α, u2,α, uα,α, uα,j′ , u2,j′) | 1 ≤ α ≤ k + 1, α 6= 2}

Let us finally show that Hk,t has no disjoint mis. We denote by U2 the set
of vertices {u2,j | 1 ≤ j ≤ t}. Let S be a maximal independent set of Hk,t.
Note first that S \U2 contains at most k vertices, or 2 would be in a same edge
Xi. For any j such that {ui,j | 1 ≤ i ≤ k + 1} ∩ (S \ U2) = ∅, by maximality
of S, u2,j ∈ S. Therefore, S contains at least t − k vertices in U2. Now, since
t ≥ 2k+1, any two maximal independent sets intersect in some vertex u2,j , and
Hk,t contains no disjoint MIS. 2
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