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Abstract

The weighted vertex p-center problem (PCP ) consists of locating p facilities among a set of

potential sites such that the maximum weighted distance from any client to its closest open facility

is minimized. This paper studies the exact resolution of the two-stage robust weighted vertex p-

center problem (RPCP2). In this problem, the opening of the centers is fixed in the first stage while

the client allocations are recourse decisions fixed once the uncertainty is revealed. The problem

uncertainty comes from both the nodal demands and the edge lengths. It is modeled by box

uncertainty sets. We introduce three different robust reformulations based on MILPs from the

literature. We prove that considering a finite subset of scenarios is sufficient to obtain an optimal

solution of (RPCP2). We leverage this result to introduce a column-and-constraint generation

algorithm and a branch-and-cut algorithm to efficiently solve this problem optimally. We highlight

how these algorithms can be adapted to solve, for the first time to optimality, the single-stage

problem (RPCP1) which is obtained when no recourse is considered. We present a numerical study

to compare the performance of these formulations on randomly generated instances and a case study

from the literature.

Keywords: discrete location; p-center problem; robust MILP formulations; column-and-constraint

generation algorithm; branch-and-cut algorithm

1. Introduction

The vertex p-center problem (PCP ) is one of the most studied facility location problems in the

literature. It consists of installing p centers out of m available sites, assigning n clients to these

p centers, in order to minimize the radius which corresponds to the maximum distance between a
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client and its closest installed center. Likewise, a p-center is weighted if a demand is associated to

each client. The p-center problem under uncertainty is well studied in the literature (Çalık et al.

(2019)). This problem arises when parameters, such as demands or distances, vary across time

or when their exact value is uncertain. The uncertainty is generally represented by parameters

which can take any value in an uncertainty set. Each element of the uncertainty set is called a

scenario. The most classical sets are the box, the ellipsoid and the budgeted uncertainty sets (see

e.g., Ben-Tal et al. (2009); Bertsimas & Sim (2004); Du & Zhou (2018); Paul & Wang (2019)).

Two major approaches have been developed to address uncertainty: stochastic optimization and

robust optimization. Stochastic optimization requires that a discrete or continuous probabilistic

distribution of the uncertain parameters is known, and tries to have the best value on average.

Robust optimization tries to protect itself against the worst case (Ben-Tal et al. (2009)). In this

sense, stochastic optimization is more relevant in the context of repeated experiments while robust

optimization is more suitable when one wishes at all costs to avoid the worst case, for example,

when human lives are at stake.

The incorporation of uncertainty in (PCP ) has important applications in emergency logistics

problems. Two approaches can be considered depending on whether the client allocations to the

centers are made before (see e.g, Averbakh & Berman (1997), Lu (2013)) or after (see e.g, Du et al.

(2020); Demange et al. (2020)) the uncertainty is revealed. The first case corresponds to single-

stage problems while the second case leads to two-stage problems in which the clients allocations

are recourse variables. In this context, most of works has been focused on the investigation of

integer programming modeling and heuristic resolution approaches (see e.g., Baron et al. (2011);

Hasani & Mokhtari (2018); Paul & Wang (2015); Trivedi & Singh (2017, 2019)).

1.1. Contribution and Outline

We study the exact resolution of the two-stage robust weighted p-center problem (RPCP2) in

which the uncertainty on the node demands and the travel times are modeled by box uncertainty sets.

We present robust reformulations of this problem based on three MILP formulations of (PCP ). We

prove that a finite subset of scenarios from the infinite box uncertainty set can be considered without

losing optimality. We use this result to propose a column-and-constraint generation algorithm

(C&CG) and a branch-and-cut algorithm (B&C) for the exact resolution of (RPCP2). We highlight

how these algorithms can be adapted to the single-stage problem (RPCP1) for which no exact

resolution method has been previously introduced. Finally, we show their efficiency on randomly
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generated instances and on the case study inspired from an earthquake that hit central Taiwan in

1999 presented in Lu (2013).

The rest of the paper is organized as follows. Section 2 presents the literature review of the

deterministic and robust versions of the (PCP ). Section 3 describes the robust two-stage problem

(RPCP2), proves how to reduce the number of scenarios, and introduces our three MILP formula-

tions as well as the (C&CG) and (B&C) algorithms. Section 4 presents the computational results.

In Section 5 we draw conclusions together with research perspectives.

2. Literature review

The p-center problem was introduced by Hakimi (1965), who presented and solved the absolute

1-center problem on a graph. In the absolute p-center problem, the center can be located either

on the edges or the vertices of the graph. Later, Minieka (1970) extended the problem to the case

p > 1 and proposed a method to restrict the continuous set of candidate centers to a discrete set of

points, without losing optimality. Since then, several formulations, resolution methods, and variants

of this problem have been presented. We refer to Çalık et al. (2019) for a more exhaustive review

of applications and resolution methods of the p-center problem. In this section, we first focus on

the deterministic p-center problem and then on its robust counterparts.

2.1. MILP formulations of the deterministic weighted p-center

Let U be the set of candidate centers or facility nodes, and V be the set of clients or demand

nodes. The travel time between any possible pair of demand node i in V and center j in U is

denoted by tij. Each demand node i ∈ V faces a demand ξi and must be assigned to a single center

j. In the following formulations, no client demands were originally considered. They only contained

a distance dij between each client i and center j. Nevertheless, to model the weighted p-center dij

can equivalently be replaced by the product of demand ξi and travel time tij .

The classical formulation of the p-center problem was presented in Daskin (1996). This model

considers binary variables xj equal to 1 if and only if center j ∈ U is opened, binary variables yij

equal to 1 if and only if the demand node i is assigned to center j, and a variable z equals to the

radius:
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Minimize z, (1)

s.t. z ≥
∑

j∈U

ξitijyij , i ∈ V, (2)

∑

j∈U

yij = 1, i ∈ V, (3)

(F1) : yij ≤ xj, i ∈ V, j ∈ U, (4)
∑

j∈U

xj = p, (5)

xj ∈ {0, 1}, j ∈ U, (6)

yij ∈ {0, 1}, i ∈ V, j ∈ U. (7)

Constraints (3) ensure that each client is assigned to only one center and Constraints (4) ensure

that no client is assigned to a center that is not open. Constraint (5) fixes the number of open

centers to p. Constraints (2) indicate that the distances between each client and its nearest center

are less than the radius. We minimize the radius through the objective function (1).

An alternative formulation was introduced in Elloumi et al. (2004). This formulation proposes

to associate one variable to each weighted distance in the considered instance. Let D0 < D1 <

. . . < DK be the distinct weighted distances and let K be the set {1, 2, . . . ,K}. The radius variable

z and the assignment variables y are replaced by variables zk with k ∈ K equal to 1 if and only if

the radius is greater than or equal do Dk:

min D0 +
∑

k∈K

(

Dk −Dk−1
)

zk (8)

s.t. zk +
∑

j:ξitij<Dk

xj ≥ 1, i ∈ V, k ∈ K, (9)

(F2)
∑

j∈U

xj = p,

xj ∈ {0, 1}, j ∈ U,

zk ∈ {0, 1}, k ∈ K. (10)

Constraints (9) indicate that a client is covered by a center at a distance less than Dk, or that

the radius is greater than or equal to Dk. Thus, in the objective (8), if zk = 1, (Dk − Dk−1) is
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added to the radius. Elloumi et al. (2004) show that (F2) provides a continuous relaxation that

dominates that of (F1). Calik & Tansel (2013) introduced another formulation deduced from (F2)

by a change of variables. It contains, for all k ∈ K, a binary variable uk equal to 1 if and only if the

optimal radius is equal to Dk (i.e., uk = zk − zk+1). Ales & Elloumi (2018) present a formulation

that improves the resolution performance of the previous formulation (F2). They add the following

family of valid inequalities:

zk ≥ zk+1 ∀ k ∈ {1, 2, . . . ,K − 1} (11)

and show that Constraints (11) enable to remove a significant number of now redundant Con-

straints (9). Let Nk
i be the set of facilities located at less than Dk from client i. Note that, Nk

i is

equal to Nk+1
i if and only if there is no facility at distance Dk from client i. Let Si be the set of

indices k ∈ {1, ...,K − 1} such that Nik is different from Nik+1. Constraints (9) can be replaced by:

zk +
∑

j:ξitij<Dk

xj ≥ 1 i ∈ V, k ∈ Si ∪K (12)

Ales & Elloumi (2018) also presented another compact formulation, which contains less variables

and constraints than (F2). They replace the K binary variables zk with a unique integer variable

r which represents the index of the optimal radius:

min r (13)

s.t. r + k
∑

j:ξitij<Dk

xj ≥ k, i ∈ V, k ∈ K, (14)

(F3)
∑

j∈U

xj = p,

xj ∈ {0, 1}, j ∈ U,

r ≥ 0. (15)

Constraints (14) play a role similar to that of Constraints (9). This formulation (F3) provides a

weaker linear relaxation than the previous formulations. However, as we will see in Section 4, it is

particularly useful for the exact resolution of (RPCP2). Note that every feasible solution (x, z) of

(F2) and (x, r) of (F3) can be easily transformed into a feasible solution (x, y) of (F1), by assigning

each client to his nearest installed center in the feasible solution x.
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2.2. Uncertainty representation and resolution methods

The positioning of facilities is a long-term decision which takes into account parameters such

as client demands or distances between clients and facilities. Since these parameters are likely to

vary, several models have been developed to study facility location problems under uncertainty. The

stochastic optimization and robust optimization are the two main approaches to address uncertainty.

We refer to Snyder (2006) and Correia & Saldanha-da Gama (2019) for a review of the literature

on stochastic and robust facility location problems.

Box, budgeted, ellipsoidal and discrete uncertainty sets are commonly considered (see e.g. Ben-Tal et al.

(2009); Baron et al. (2011); Du & Zhou (2018); Paul & Wang (2019, 2015); Snyder (2006)). Since

most robust facility location problems are harder to solve than their deterministic counterparts,

heuristic approaches have taken precedence over exact resolution methods (Correia & Saldanha-da Gama

(2019)). Most robust facility location problems based on discrete uncertainty sets deal with gen-

eralizations of the p-median problem, focusing exclusively on analytical results or approximated

polynomial-time algorithms (see e.g. Serra & Marianov (1998); Hasani & Mokhtari (2018)).

The presence or absence of recourse variables, the variables which are fixed once the uncertainty

is revealed, has a great influence on the mathematical formulation of the problem. A single-stage

problem can be considered when there is no recourse variables while a two-stage is required other-

wise. Two-stage models are usually very difficult to solve (Ben-Tal et al. (2009)). When the second

stage problem is a linear program, Benders decomposition method can be use to seek optimal so-

lutions (Bertsimas et al. (2013); Rahmaniani et al. (2017)). However, it may not be efficient for

large instances. Zeng & Zhao (2013) develop an other exact resolution method, the (C&CG) gen-

eration algorithm (also called row-and-column or scenario generation), which has performed better

on different problems including facility localization problems (see e.g. An et al. (2014); Chan et al.

(2018)).

Several robust variants of (PCP ) with either a single stage or two stages have been considered.

For example, Averbakh & Berman (1997) consider the weighted p-center problem on a transporta-

tion network with uncertain node weights. They minimize the regret of the worst-case scenario and

show that the problem can be solved through a number of particular weighted p-center problems.

Averbakh & Berman (2000), consider a box uncertainty set for the weighted 1-center problem on a

network with uncertainty node weights and edge lengths. Each uncertain parameter is assumed to

be random with an unknown distribution. They present a polynomial algorithm to find the robust

solution for the problem on a tree. Lu (2013) consider the single-stage weighted vertex p-center
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with uncertain nodal weights and edge lengths using also box uncertainty sets. They consider the

single-stage robust problem (RPCP1), prove that it is sufficient to consider a discrete subset of sce-

narios, and propose a simulated annealing heuristic to solve the problem. Du & Zhou (2018) apply

a single-stage approach to a p-center problem based on symmetric box uncertainty sets and a mul-

tiple allocation strategy. They consider three types of uncertainty sets: box uncertainty, ellipsoidal

uncertainty, and cardinality-constrained uncertainty. Du et al. (2020) propose a two-stage robust

model for reliable facility location problem when some facilities can be disrupted and the clients

can be reallocated to another available facility. They consider uncertain demand and cost. They

propose three resolution methods: a linear reformulation, a Benders dual cutting planes method,

and a column-and-constraint generation method. Demange et al. (2020) introduce the robust p-

center problem under pressure motivated by the context of locating shelters for evacuation in case

of wildfires, where the uncertainty is in the available network connections. They present a MILP

formulation and a decomposition scheme to solve it. Cheng et al. (2021) implement a column-and-

constraint generation algorithm to solve a two-stage fixed-charge location problem, where demand

and facility availability parameters are subject to uncertainties simultaneously.

Our research focuses on a problem (RPCP2) similar to the one in Lu (2013). The two main

differences are that (RPCP2) is a two-stage problem unlike (RPCP1) and that we propose exact

resolution algorithms. We also show how these algorithms can be adapted to solve exactly (RPCP1).

3. Robust weighted vertex p-center problem

We first define (RPCP2). We then prove that it is sufficient to consider a subset of the infinite

scenarios in the box uncertainty set. Finally, we present the (C&CG) and (B&C) algorithms for

the exact resolution of both (RPCP2) and (RPCP1).

3.1. Problem definition

Following Lu (2013), we consider that the clients demand and the travel times can take any

value in a box uncertainty set. More precisely, the demand ξi of client i ∈ V is assumed to be in

[ξ−i , ξ
+
i ] where 0 ≤ ξ−i ≤ ξ+i , while the travel time tij between station i ∈ V and center j ∈ U takes

its value in [t−ij , t
+
ij ] where 0 ≤ t−ij ≤ t+ij .

Let W ⊂ R
|V |+|U |×|V | be the Cartesian product of intervals [ξ−i , ξ

+
i ] and [t−ij, t

+
ij ] for each i ∈ V

and j ∈ U . Let Ω = {x ∈ {0, 1}|U | |
∑

j∈U xj = p} be the set of vectors representing p opened

centers and let Jx = {j ∈ U | xj = 1} be the set of opened centers for vector x ∈ Ω. For a given
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scenario w ∈ W let ξwi and twij respectively be the demand of client i ∈ V and the travel time

between i and j ∈ U in scenario w.

In (RPCP2), the clients are assigned after the uncertainty is revealed. This corresponds to a

two-stage approach in which the opened centers are fixed at the first stage and the client assignments

are the recourse decisions of the second stage. Consequently, the optimal radius associated with

x ∈ Ω when scenario w ∈W occurs is:

Z(w, x) = max
i∈V

{

min
j∈Jx

ξwi t
w
ij

}

(16)

which represents an optimal assignment of clients in scenario w when centers Jx are opened. Let

x∗(w) ∈ Ω be a vector such that the opening of Jx∗(w) leads to an optimal radius for the deterministic

p-center problem in which the uncertain data takes value w ∈ W . We define the robust deviation

of x ∈ Ω for scenario w as:

DEV (w, x) = Z(w, x)− Z(w, x∗(w)) (17)

It corresponds to the increase in radius incurred by the opening of Jx rather than Jx∗(w) for

the scenario w. The robustness cost of solution x ∈ Ω corresponds to the maximal possible robust

deviation if centers Jx are opened.

RC(x) = max
w∈W

DEV (w, x) (18)

We denote by worst-case scenario a scenario which solves (18). The (RPCP2) aims to minimize

the regret in the worst-case scenario for all x ∈ Ω:

(RPCP2) : min
x∈Ω

RC(x) (19)

We now show that the uncertainty set W can be significantly reduced.

3.2. Reducing the number of scenarios

Since a box-uncertainty set contains an infinite number of scenarios for a given solution x ∈ Ω,

the evaluation of the robustness cost (18) is a major challenge when solving (RPCP2). We prove

that it is sufficient to consider n scenarios per solution x ∈ Ω to optimally solve (RPCP2).
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Definition 1. Let wi(x) be the scenario for a client i ∈ V in a feasible solution x ∈ Ω such that:

• ξ
ωi(x)
i =







ξ+i if i = i

ξ−i otherwise

• t
ωi(x)
ij =







t+ij if i = i and xj = 1

t−ij otherwise

We now prove that at least one of the scenarios in {wi(x)}i∈V leads to a maximal deviation for

x ∈ Ω.

Theorem 1. Let x ∈ Ω be a first-stage solution of (RPCP2). There exists a scenario w among the

n scenarios {wi(x)}i∈V that solves (18).

Proof: Let w ∈ W be a scenario which provides a maximal deviation for x (i.e., RC(x) =

DEV (w, x)). By definition, DEV (w, x) = Z(w, x) − Z(w, x∗(w)). Let us consider the two fol-

lowing couples (client, site):

• (i1, j1) ∈ V × Jx such that Z(w, x) = ξwi1t
w
i1j1

(i.e., (i1, j1) allow to reach the optimal radius

Z(w, x)); and

• (i∗, j∗) ∈ V × Jx∗(w) such that Z(w, x∗(w)) = ξwi∗t
w
i∗j∗

(i.e., (i∗, j∗) allow to reach the optimal

radius Z(w, x∗(w))).

We now show that the worst-case scenario w can be transformed into scenario wi1(x) without

altering the value of the deviation. This will imply that wi1(x) is also a worst-case scenario. To

this end, we consider a scenario w initially equal to w and apply five transformations to transform

it into wi1(x).

Transformation 1 :

• ξwi ← ξ−i ∀ i ∈ V \{i1, i∗}

• twij ← t−ij ∀ i ∈ V \{i1, i∗} ∀ j ∈ U .

Neither Z(w, x) nor Z(w, x∗(w)) is affected by this transformation since clients i1 and i∗ remain

at the same distance from their centers. Therefore, the deviation remains the same.
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Transformation 2 :

• ξwi1 ← ξ+i1 .

This transformation increases:

(i) Z(w, x) by (ξ+i1 − ξwi1) minj∈Jx t
w
i1j

;

(ii) Z(w, x∗(w)) by at most (ξ+i1 − ξwi1) minj∈Jx∗(w)
twi1j.

We know that minj∈Jx t
w
i1j
≥ minj∈Jx∗(w)

twi1j (since otherwise Z(w, x∗(w)) > Z(w, x)) thus

Z(w, x) will increase at least as much as Z(w, x∗(w)) during this transformation. Thus, the deviation

cannot decrease. It cannot increase either, because this would imply that w is not a scenario that

maximizes the deviation.

Transformation 3 :

If i1 6= i∗:

• ξwi∗ ← ξ−i∗

• twi∗j ← t−i∗j ∀ j ∈ U .

Since i1 6= i∗, decreasing ξwi∗ and twi∗j does not affect Z(w, x). Therefore, this cannot reduce

Z(w, x∗(w)) as it would increase the deviation.

Transformation 4 :

• twi1,j ← t−i1,j ∀ j ∈ U\Jx.

These decreases do not affect Z(w, x) because they involve closed sites (xj = 0). Therefore, they

cannot decrease Z(w, x∗(w)) because this would increase the deviation.

Transformation 5 :

• twi1,j ← t+i1,j. ∀j ∈ Jx.

Let j2 ∈ U be the center to which client i1 is allocated in an optimal allocation of solution x∗(w)

for scenario w.

Let us first assume that xj2 = 1, then twi1j2 = twi1j1 . Indeed,

(i) if twi1j2 > twi1j1 , then Z(w, x∗(w)) > Z(w, x) which is impossible;

10



(ii) if twi1j2 < twi1j1 , then client i1 would not be associated to j1 when the centers Jx are opened

but rather to j2 .

Thus, Z(w, x) = Z(w, x∗(w)) and the deviation of w is zero. Therefore, the deviation of all the

scenarios is also zero and the theorem is satisfied.

Now suppose that xj2 = 0. For all j ∈ Jx, increasing twi1j does not increase Z(w, x∗(w)) since

client i1 is associated with j2 when centers Jx∗(w) are opened. Z(w, x) cannot either be increased

because this would increase the deviation.

Scenario w is now equal to wi1(x).

�

Since Ω is finite, Theorem (1) enables to only consider a finite set of scenarios

W = {wi(x) | x ∈ Ω, i ∈ V } without losing the optimality:

(RPCP2) : min
x∈Ω

{

max
w∈W

DEV (w, x)
}

(20)

Lu (2013) considered a similar problem that we denote by (RPCP1). He proved that a different

subset of scenarios of W can also be considered without losing optimality. The key difference

between (RPCP2) and (RPCP1) is that the latter is a single-stage problem as it does not consider

any recourse. Consequently, the client assignments are fixed before the uncertainty is revealed.

3.3. MILP formulations of the robust weighted vertex p-center problem

We present how the three formulations of Section (2.1) can be adapted to solve (RPCP2). Let

Z∗
w be the optimal value of the (PCP ) problem when the uncertain parameters take value w ∈ W

(i.e., Z∗
w = Z(w, x∗(w))). In the following formulations, we suppose that Z∗

w can be computed using

by an oracle and it is considered as a parameter.

Our robust formulation based on (F1) uses one set of assignment variables ywij for each scenario

w ∈W to allow different client assignments depending on the scenario:
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min RC (21)

s.t.: RC ≥
∑

j∈U

ξwi t
w
ij · y

w
ij − Z∗

w, i ∈ V, w ∈W, (22)

(RF1) :
∑

j∈U

ywij = 1, i ∈ V, w ∈W, (23)

ywij ≤ xj, i ∈ V, j ∈ U, w ∈W, (24)
∑

j∈U

xj = p,

xj ∈ {0, 1}, j ∈ U,

ywij ∈ {0, 1}, i ∈ V, j ∈ U, w ∈W. (25)

Constraints (22) set a lower bound to the value of the robustness cost (RC) for each scenario.

Objective (21) provides a solution with the lowest maximal deviation. This formulation contains

an exponential number of variables and constraints as the size of W is proportional to |Ω|.

To adapt formulation (F2) to (RPCP2), one needs to sort the values {ξwi t
w
ij}i∈V,j∈U in order to

obtain a set of distinct distances Dw for each scenario w ∈W . From these distances, we deduce the

set of indices Sw
i which plays a similar role than Si in Constraints (12). For each scenario w ∈ W ,

we also consider one set of radius variables zkw:

min RC

s.t.: RC ≥ D0
w+

∑

k∈K

(

Dk
w −Dk−1

w

)

zkw − Z∗
w, w ∈W, (26)

(RF2) : zkw ≥ zk+1
w , k ∈ {1, . . . ,K − 1}, w ∈W, (27)

zkw +
∑

j:ξwi twij<Dk
w

xj ≥ 1, i ∈ V, k ∈ Sw
i ∪K, w ∈W, (28)

∑

j∈U

xj = p,

xj ∈ {0, 1}, j ∈ U,

zkw ∈ {0, 1}, k ∈ K, w ∈W. (29)

Formulation (F3) does not directly provide the value R of the optimal radius but its index

r instead (i.e., Dr = R). This raises a problem when considering the adaptation of (F3) to the

resolution of (RPCP2) as a given index does not necessarily correspond to the same distance in
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different scenarios. Consequently, we first modify (F3) so that it provides a distance rather than

its index. We replace Constraints (14) by:

r +Dk
∑

j:ξitij<Dk

xj ≥ Dk, ∀ i ∈ V, k ∈ K, (30)

We can now obtain a reformulation of (RPCP2) based on (F3):

min RC

s.t.: RC ≥Dk
w(1−

∑

j:ξwi twij<Dk
w

xj)− Z∗
w, i ∈ V, k ∈ K, w ∈W, (31)

(RF3) :
∑

j∈U

xj = p,

xj ∈ {0, 1}, j ∈ U.

Note that (RF3) does not require an exponential number of variables, which is a significant

advantage compared to (RF1) and (RF2).

3.4. Column-and-constraint generation algorithm

We cannot directly solve a formulation with an exponential number of constraints or variables.

Therefore, we first propose a (C&CG) algorithm. Let (RF ) be any of our three robust formulations

(RF1), (RF2), or (RF3) in which W is initially empty. Our (C&CG) algorithm is presented in

Algorithm 1.

At each iteration, Algorithm 1 generates a solution (x,RC) which satisfy all the scenarios cur-

rently in W by solving (RF ) (Step 3). If the solution does not satisfy one of the scenario {wi(x)}i∈V

(Step 10), the most violated scenario is added to W (Step 1). When no violated scenario is found,

an optimal solution is returned.

The value of the optimal radius considering a scenario wi(x) can be calculated by solving a

deterministic (PCP ) (Step 7). Note that the radius associated with the feasible solution x consid-

ering the same scenario wi can be calculated directly as it only requires to determine the distance

between each client and its closest center in Jx (Step 8).
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Algorithm 1: Column-and-constraint generation algorithm

input :

• Instance data (V , U , p, [ξ−i , ξ
+
i ] and [t−ij, t

+
ij ] for each i ∈ V and j ∈ U).

• A robust formulation (RF ) for the (PCP ).

• A solver for the deterministic (PCP ).

output :

• An optimal solution x of (RF ) and its robustness cost RC.

1 RC ← 0, W ← ∅, isOptimal ← false

2 while isOptimal = false do

3 (x,RC)← solve (RF ) with scenarios W

4 isOptimal ← true

5 w← ∅

6 for i ∈ V do

7 Z∗ ← optimal radius of the deterministic (PCP ) for scenario wi(x)

8 Z ← radius for x in scenario wi(x)

9 DEV ← (Z − Z∗)

10 if DEV > RC then

11 isOptimal ← false

12 RC ← DEV

13 w ← wi(x)

14 W ←W ∪ {w}

15 return x and RC
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3.5. Branch-and-cut algorithm

The main advantage of (RF3) over (RF1) and (RF2) is that no new variable is required when

a scenario is added to W . Consequently, we can define a (B&C) algorithm which checks if each

obtained integer solution (x,RC) satisfies all the scenarios {wi(x)}. We generate violated inequali-

ties if it does not. This can be performed through callbacks which is a feature provided by mixed

integer programming solvers. Consequently, Steps 3-14 of Algorithm 1 are performed within the

callbacks. This modification allows us to only generate a single search tree instead of solving (RF )

from scratch at each iteration.

3.6. Adaptation to the single-stage problem

The (C&CG) and (B&C) algorithms previously presented can be adapted to solve the single-

stage problem (RPCP1) using (RF1). For this purpose, we only consider one single set of assignment

variables yij which ensures that the clients assignments are the same regardless of the scenario. Note

that for (RPCP1) the finite set of scenarios that a solution must satisfy to ensure its optimality is

different from {wi(x)}i∈V as proved in Theorem 1 of Lu (2013).

These adaptations are not possible for the (C&CG) and (B&C) algorithms based on (RF2) or

(RF3). Indeed, only considering one set of variables zk in (RF2) would only ensure that the distance

index of the radius is the same in each scenario, not that the client assignments are. For the algo-

rithms based on (RF3) the adaptation seems even less possible as this formulation does not contain

scenario variables and as the client assignments are determined implicitly in Constraints (31).

4. Computational study

We evaluate the efficiency of our (C&CG) and (B&C) algorithms on randomly generated in-

stances and on a case study presented in Lu (2013). It was not possible to make a direct comparison

with Lu (2013), because the solution values presented in Lu (2013) are not consistent with the ones

obtained by an exact resolution. This is illustrated in Appendix A.

Our study was carried out on an Intel XEON W-2145 processor 3,7 GHz, with 16 threads, but

only one was used, and 256 GB RAM. IBM ILOG CPLEX 20.1. For the (B&C) algorithm, we use

the LazyCallback of CPLEX, which gets called whenever a feasible integer solution is found. We

set optimality tolerance EpGap to 10−10. We consider a time limit of 7,200 seconds.
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4.1. Randomly generated instances

To evaluate our exact resolution methods, we created random instances from a deterministic in-

stance following Lu (2013). Two dimensional coordinates were uniformly drawn from [0; 100] × [40; 60].

The travel times tij between clients and centers was set to the nearest integer of their euclidean

distance. The demand ξi of each client i ∈ V was uniformly drawn from the interval [1, 000; 3, 000].

The travel time uncertainty box is [tij; tij(1 + α1)], and the demand uncertainty box is [ξi(1 −

α2); ξi(1 + α2)] with α1 ∈ {0.5, 1.5, 2.5} and α2 ∈ {0.2, 0.4, 0.6}.

We consider 72 instances of the robust problem with the 9 possible combinations of parameter

values α1 and α2 from the following 8 deterministic instances: n = 15, m = 5, p = {2, 3}; n = 40,

m = 8, p = {3, 4}; n = m = 10, p = {2, 3}; and n = m = 15, p = {2, 3}. The results obtained for

these instances are presented in Tables 1, 2, 3, and 4 respectively.

We can see that (RF3) is the fastest (C&CG) algorithm and that the use of the (B&C) algorithm

enables (RF3) to be significantly faster in all instances. This could be explained by the lighter

structure of (RF3) with respect to (RF1) and (RF2), which does not need to add more variables

when adding a scenario.

On the one hand, we can notice how the robustness cost and the resolution time increase with

α1 and α2, i.e., with the size of the box uncertainty set. On the other hand, they decrease as the

value of p increases.

The difficulty of an instance for the (RPCP2) lies mainly in the number of feasible solutions

which is proportional to





m

p



 and to the sizes of the uncertainty boxes considered. The instances

with m = 10 are all solved optimally by all algorithms. However, for m = 15 (RF2) and (RF3) do

not solve the 3 instances with the largest values of α1 and α2 in our time limit of 7,200 seconds.
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Instance Time(s)

n m p α1 α2 RC
C&CG B&C

RF1 RF2 RF3 RF3

15 5 2 0.5 0.2 89,159 0.7 0.7 0.7 0.8
15 5 2 0.5 0.4 124,236 1.0 0.8 0.7 0.7
15 5 2 0.5 0.6 141,984 0.8 0.9 0.6 0.5
15 5 2 1.5 0.2 200,226 1.4 1.4 0.9 0.9
15 5 2 1.5 0.4 261,540 1.0 1.0 0.7 0.7
15 5 2 1.5 0.6 298,980 0.8 0.8 0.6 0.5
15 5 2 2.5 0.2 310,349 1.4 1.4 0.9 0.8
15 5 2 2.5 0.4 392,310 0.9 0.9 0.7 0.7
15 5 2 2.5 0.6 448,470 0.8 0.7 0.6 0.5

15 5 3 0.5 0.2 55,454 0.6 1.1 0.7 0.8
15 5 3 0.5 0.4 67,774 0.4 0.4 0.3 0.3
15 5 3 0.5 0.6 100,032 0.4 0.6 0.4 0.3
15 5 3 1.5 0.2 153,314 1.1 1.0 0.8 0.6
15 5 3 1.5 0.4 178,835 0.9 0.8 0.6 0.5
15 5 3 1.5 0.6 204,403 0.7 0.7 0.5 0.4
15 5 3 2.5 0.2 251,174 1.0 1.0 0.7 0.7
15 5 3 2.5 0.4 292,985 0.8 0.8 0.6 0.6
15 5 3 2.5 0.6 334,873 0.7 0.8 0.5 0.4

Total 15.4 15.7 11.7 10.8

Table 1: Results on randomly generated instances for the (RPCP2) with n = 15, m = 5, and p = {2, 3}.

Instance Time(s)

n m p α1 α2 RC
C&CG B&C

RF1 RF2 RF3 RF3

40 8 3 0.5 0.2 56,365 10 15 9 20
40 8 3 0.5 0.4 91,366 22 15 13 21
40 8 3 0.5 0.6 113,352 14 15 14 14
40 8 3 1.5 0.2 134,883 141 93 80 114
40 8 3 1.5 0.4 182,974 164 125 104 91
40 8 3 1.5 0.6 228,384 200 190 110 94
40 8 3 2.5 0.2 219,164 1,005 776 335 231
40 8 3 2.5 0.4 274,582 603 436 247 246
40 8 3 2.5 0.6 333,060 572 389 213 188

40 8 4 0.5 0.2 45,122 16 15 16 16
40 8 4 0.5 0.4 57,862 16 22 19 16
40 8 4 0.5 0.6 74,638 13 11 15 16
40 8 4 1.5 0.2 132,143 215 184 140 79
40 8 4 1.5 0.4 154,160 154 114 69 55
40 8 4 1.5 0.6 176,218 67 90 90 50
40 8 4 2.5 0.2 216,790 1,118 740 439 298
40 8 4 2.5 0.4 255,680 610 399 291 184
40 8 4 2.5 0.6 292,264 565 445 282 169

Total 5,505 4,075 2,487 1,901

Table 2: Results on randomly generated instances for the (RPCP2) with n = 40, m = 8, and p = {3, 4}.
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Instance Time(s)

n m p α1 α2 RC
C&CG B&C

RF1 RF2 RF3 RF3

10 10 2 0.5 0.2 26,808 0.9 2.1 0.9 0.5
10 10 2 0.5 0.4 51,454 0.7 1.2 0.4 0.5
10 10 2 0.5 0.6 66,958 0.3 0.4 0.3 0.3
10 10 2 1.5 0.2 137,000 14.1 16.9 5.9 1.7
10 10 2 1.5 0.4 127,778 5.6 8.4 3.8 1.5
10 10 2 1.5 0.6 222,318 14.7 23.5 21.2 1.8
10 10 2 2.5 0.2 117,351 1.7 3.3 0.5 0.6
10 10 2 2.5 0.4 190,575 2.1 4.9 1.3 0.8
10 10 2 2.5 0.6 177,420 4.6 7.3 1.6 0.9

10 10 3 0.5 0.2 30,672 8.7 6.8 3.0 1.6
10 10 3 0.5 0.4 51,066 0.8 3.0 0.8 0.8
10 10 3 0.5 0.6 44,911 0.4 0.8 0.3 0.4
10 10 3 1.5 0.2 97,944 5.3 5.0 3.5 1.4
10 10 3 1.5 0.4 67,966 0.8 1.6 0.8 1.2
10 10 3 1.5 0.6 133,830 5.4 7.7 4.4 1.0
10 10 3 2.5 0.2 100,860 7.5 14.8 11.9 1.2
10 10 3 2.5 0.4 147,884 10.5 20.9 3.2 1.5
10 10 3 2.5 0.6 162,844 9.7 13.8 5.6 4.5

Total 93.8 142.2 69.3 22.2

Table 3: Results on randomly generated instances for the (RPCP2) with n = m = 10, and p = {2, 3}.

Instance Time(s)

n m p α1 α2 RC
C&CG B&C

RF1 RF2 RF3 RF3

15 15 2 0.5 0.2 90,270 19 27 22 9
15 15 2 0.5 0.4 137,020 13 18 10 11
15 15 2 0.5 0.6 174,330 11 17 8 4
15 15 2 1.5 0.2 201,110 284 411 61 39
15 15 2 1.5 0.4 266,356 186 220 84 38
15 15 2 1.5 0.6 326,025 196 164 54 26
15 15 2 2.5 0.2 311,950 1,572 722 167 86
15 15 2 2.5 0.4 395,692 1,050 698 242 79
15 15 2 2.5 0.6 473,823 1,154 789 158 52

15 15 3 0.5 0.2 55,455 2 7 2 4
15 15 3 0.5 0.4 84,960 1 5 2 2
15 15 3 0.5 0.6 121254 13 16 7 6
15 15 3 1.5 0.2 132,961 923 1,377 183 46
15 15 3 1.5 0.4 175,380 791 954 113 51
15 15 3 1.5 0.6 224,610 902 962 230 67
15 15 3 2.5 0.2 210,467 TL TL 932 149
15 15 3 2.5 0.4 265,800 TL TL 1,010 181
15 15 3 2.5 0.6 327,966 TL TL 1,063 219

Total 7,118 6,386 4,348 1,071

Table 4: Results on randomly generated instances for the (RPCP2) with n = m = 15, and p = {2, 3}. TL: Instance
not solved within the time limit of 7,200 seconds.
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4.2. Case Study

Lu (2013) presents a case study on the location of urgent relief distribution centers (URDCs)

in a relief supply distribution network responding to the massive earthquake which hit central

Taiwan on September 21, 1999. A three-tier relief supply distribution network was established in

Nantou County immediately after this earthquake. Specifically, relief supplies were collected from

six unaffected counties transported to two URDCs at Nantou Stadium and Jiji Town Hall, and then

delivered to the 51 relief stations in the 11 townships in Nantou County. Five other candidate sites

for URDCs were selected. Due to the difficulty to precisely estimate the relief demand faced by each

relief station, they divided the number of survivors, i.e., the total population minus the number of

deaths, by the number of relief stations of each township. They use the data collected in previous

research for the travel time between a URDC and a relief station.

We solved nine instances obtained from this case study in which the travel time and the demand

values were constructed following the same methodology as the random instances presented in

subsection 4.1, considering 51 clients, 7 possible sites, and the selection of 2 centers. The travel

time uncertainty box of a client i and a center j is in [tij , tij(1 + α1)] and the demand uncertainty

box is [ξi(1− α2), ξi(1 + α2)] with α1 ∈ {0.5, 1.5, 2.5} and α2 ∈ {0.2, 0.4, 0.6}.

Table 5 shows the results obtained for the resolution of (RPCP2) by applying our algorithms to

the case study. Similarly to randomly generated instances, (RF3) is faster than (RF2) and (RF3)

within the (C&CG) and (B&C) algorithms.

Instance Time (s)

n m p α1 α2 RC
C&CG B&C

RF1 RF2 RF2 RF3

52 7 2 0,5 0,2 495,000 5.71 6.27 5.82 6.04
52 7 2 0,5 0,4 838,500 9.01 9.21 6.82 10.83
52 7 2 0,5 0,6 1,159,200 8.56 6.97 6.62 6.12
52 7 2 1,5 0,2 1,238,400 41.23 40.37 34.22 20.68
52 7 2 1,5 0,4 1.705,800 34.30 32.76 29.12 23.97
52 7 2 1,5 0,6 2,150,400 32.67 32.36 28.60 18.84
52 7 2 2,5 0,2 1,981,800 58.74 54.53 41.84 30.42
52 7 2 2,5 0,4 2,573,100 59.61 46.74 43.79 28.05
52 7 2 2,5 0,6 3,141,600 59.63 50.81 47.16 27.77

Total 309.46 280.02 243.99 172.71

Table 5: Results obtained for the resolution of (RPCP2) on the case study instance.

19



5. Conclusions

The weighted vertex p-center problem consists of locating p facilities among a set of potential

sites such that the maximum weighted distance from any demand node to its closest open facility

is minimized. The incorporation of uncertain information within a robust optimization approach

allows us to solve emergency logistics problems. However, the robust counterpart of this problem

is even more difficult. Therefore, most studies propose a heuristic approach instead of an exact

resolution.

We studied the resolution of a robust weighted vertex p-center problem, considering uncertain

nodal weights demand and edge lengths using box uncertainty sets. Two variants of this problem are

possible depending on whether the client assignments to the centers are made after the uncertainty

is revealed (RPCP2) or not (RPCP1).

For (RPCP2), similarly to (RPCP1), we prove that a finite subset of scenarios from the box

uncertainty set can be considered without losing optimality. We use this result to propose three

robust reformulations based on different MILP formulations of the vertex p-center problem. To

optimally solve these reformulations, we introduce a column-and-constraint generation algorithm

and a branch-and-cut algorithm. Moreover, we highlight how they can be adapted to optimally

solve (RPCP1).

We present a numerical study to compare the performances of the algorithms on randomly

generated instances and a case study. We see how our algorithms were able to solve optimally

the 80 instances considered. The column-and-constraint generation algorithm based on formulation

(RF3) is more efficient than the one based on (RF1) and (RF3). This is because adding a scenario

does not require the addition of any variable. This formulation enables the implementation of

branch-and-cut algorithm which significantly reduces the resolution time.

In future work, analysis of larger instances with other random box uncertainty sets could be

considered. To further improve the performance of the branch-and-cut algorithm, other branching

strategies could be evaluated and integrality cuts could be dynamically generated.
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Appendix A. Comparison of results with Lu (2013)

We were not able to compare the performances of our exact algorithms and the heuristic in Lu

(2013) as its results do not seem to be correct. We prove that several robustness costs obtained

with this heuristic and reported in Lu (2013) are undervalued.

Since we consider problem (RPCP1), the client allocations are fixed before the uncertainty is

revealed. Consequently, allocation variables y are now necessary to compute the radius and the

robustness cost of a solution. Given a feasible solution (x, y), let twi be the travel time in scenario

w ∈ W between client i ∈ V and its assigned center (i.e., twi = twij with j ∈ U the only center

such that yij = 1). In this single-stage problem, the radius of solution (x, y) is max
i∈V

ξwi t
w
i and its

robustness cost is RC(x, y) = max
w∈W

{

max
i∈V

ξwi t
w
i − Z∗

w

}

, where Z∗
w is the optimal solution of the

deterministic p-center problem in which the uncertain parameters take value w.

A difficulty to evaluate the robustness costs reported in Lu (2013) is that for each solution only

one client’s allocation is provided. Let us consider the instance described in Subsection 4.2 in which

α1 = 0.5 and α2 = 0.2 and let (xh, yh) be its associated solution in Lu (2013). We only know in

(xh, yh) that centers 1 and 2 are opened and that client 21 is assigned to center 1. Nevertheless,

this is sufficient to obtain a lower bound on the robustness cost as for any scenario w ∈W and any

client i ∈ V , the expression ξwi t
w
i − Z∗

w constitutes a lower bound of RC(xh, yh). Let us consider a

scenario w21 in which the demand of client 21 is ξw21 = ξ+21 = 34, 800 and the distance to its closest

opened center is tw21,1 = t+21,1 = 41. The optimal radius Z∗
w21

= 495, 600 is obtained by solving

a deterministic p-center problem. Consequently, a lower bound on the robustness cost of value

34, 800× 41− 495, 600 = 931, 200 is obtained, which is higher than the value 93, 619 reported in Lu

(2013).

Table A.6 present similar results on several instances. The third column contains the robustness

costs reported in Lu (2013) which are all undervalued. Indeed, they are significantly lower than

their associated lower bounds presented in Column 4. Column 5 contains the robustness cost of

optimal solutions obtained by our (B&C) algorithm adapted to (RPCP1) (see Section 3.6). Note

that the branch-and-cut always returns a solution which robustness cost is always lower than the

lower bound of the heuristic solution.
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Instance
Robustness cost

Heuristic solution from Lu (2013) Optimal solution

α1 α2 According to Lu (2013) According to this article

0.5 0.2 = 93,619 ≥ 931,200 = 495,000

0.5 0.4 = 587,837 ≥ 1,292,900 = 838,500

0.5 0.6 = 1,477,709 ≥ 1,906,600 = 1,159,200

1.5 0.2 = 940,858 ≥ 1,870,800 = 1,238,400

1.5 0.4 = 1,859,069 ≥ 2,389,100 = 1,705,800

1.5 0.6 = 2,934,605 ≥ 3,362,600 = 2,150,400

2.5 0.2 = 1,883,309 ≥ 2,810,400 = 1,981,800

2.5 0.4 = 3,400,291 ≥ 4,029,900 = 2,573,100

2.5 0.6 = 4,356,480 ≥ 4,129,600 = 3,141,600

Table A.6: Comparison of the robustness cost of solutions obtained by the heuristic presented in Lu (2013) and
optimal solutions obtained by the branch-and-cut algorithm adapted for (RPCP1).
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