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Figure 1: A dragon springing out of water. Our method couples a FLIP fluid simulation and 2D wave propagation. The dotted ellipse shows
the limit between the two.

Abstract
This paper proposes a method for simulating liquids in large bodies of water by coupling together a water surface wave simu-
lator with a 3D Navier-Stokes simulator. The surface wave simulation uses the equivalent sources method (ESM) to efficiently
animate large bodies of water with precisely controllable wave propagation behavior. The 3D liquid simulator animates com-
plex non-linear fluid behaviors like splashes and breaking waves using off-the-shelf simulators using FLIP or the level set
method with semi-Lagrangian advection.
We combine the two approaches by using the 3D solver to animate localized non-linear behaviors, and the 2D wave solver
to animate larger regions with linear surface physics. We use the surface motion from the 3D solver as boundary conditions
for 2D surface wave simulator, and we use the velocity and surface heights from the 2D surface wave simulator as boundary
conditions for the 3D fluid simulation. We also introduce a novel technique for removing visual artifacts caused by numerical
errors in 3D fluid solvers: we use experimental data to estimate the artificial dispersion caused by the 3D solver and we then
carefully tune the wave speeds of the 2D solver to match it, effectively eliminating any differences in wave behavior across the
boundary. To the best of our knowledge, this is the first time such a empirically driven error compensation approach has been
used to remove coupling errors from a physics simulator.
Our coupled simulation approach leverages the strengths of each simulation technique, animating large environments with
seamless transitions between 2D and 3D physics.
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1. Introduction

Progress in fluid simulation has made water scenes in animated
movies and games increasingly realistic. However, the simulation
of very large scenes with convincing visual details is still extremely
expensive and challenging. This paper proposes an efficient method
for simulating large bodies of water like a sea by splitting the do-
main into regions of complex and simple motions: We simulate
complex fluid motions like splashes, breaking waves, and droplets
with a fully 3D Navier-Stokes solver, while we simulate the calmer
areas of water with a 2D heightfield solver based on fundamental
solutions of the Helmholtz equation [SHW19].

Unlike previous methods for coupling 3D and 2D fluid anima-
tion techniques, our approach avoids the use of a fixed grid for wave
simulation, which allows us to simulate arbitrarily detailed waves
and infinitely large bodies of water. This 2D solver is based on
Airy wave theory, which faithfully reproduces the relative speeds
of waves in any water depth, not just shallow water. We then cou-
ple the simulations together using state-of-the-art techniques for
limiting artificial wave reflections where the 2D and 3D domains
meet.

Despite our measures to minimize numerical artifacts when cou-
pling the simulations together, we show that differences in numer-
ical errors between wave simulations can to produce distracting
numerical artifacts. To solve this problem, we introduce a novel
systematic approach to compensate for numerical errors between
wave simulations, by matching the effective wave speeds of a 3D
fluid solver. Our contributions are the following:

• A method to couple any 3D liquid simulation with a 2D wave
propagation method based on fundamental solutions.
• A method to estimate the effective dispersion law for any 3D

liquid simulator, which we use to match wave properties between
different simulations and eliminate spurious numerical refraction
artifacts.

2. State of the Art

2.1. 3D Liquid Simulation

The motion of a liquid surface is typically described by the incom-
pressible Euler Equations:

∂vvv
∂t

+ vvv ·∇vvv =−∇P+ggg (1)

∇· vvv = 0 (2)

where vvv is the 3D velocity of the fluid, P is the pressure, and ggg
is the acceleration due to gravity. Researchers in computer graph-
ics solve these equations numerically. Advection is typically han-
dled using a variant of semi-Lagrangian advection [Sta99] or La-
grangian particles [BR86]. The incompressibility constraint in the
second equation is enforced by treating pressure as a Lagrange mul-
tiplier and solving a Poisson equation [Bri15]. To track the motion
of the surface, one can advect an implicit surface using the level
set method [OF06], track an explicit surface mesh [WMB11], or
reconstruct a surface from FLIP particles [YT13].

Simulating liquids in this manner has immense advantages: it

creates highly detailed motions, including non-linear wave propa-
gation and effects like splashes and overturning waves that cannot
be captured by a heightfield alone. The main disadvantage of this
approach is its computational complexity; detailed visual effects
require very fine grids, which require long computation times and
large amounts of memory.

To combat this computational complexity, many researchers
proposed adaptive simulation methods [MWN*17] which gain
speedups and reduce memory by locally reducing simulation de-
tail where it may not be needed. These methods typically use
adaptive spatial data structures like octrees [LGF04], warping
grids [IWT*18], or meshes [ATW13; BWHT07; WT08; KFCO06]
instead of regular grids. Zhu et al. [ZLC*13] adaptively stretch out
the grid cells away from a central point of interest, effectively ex-
tending the size of the computational domain and reducing detail
away from the grid center. By adaptively reducing computational
degrees of freedom, these methods all make trade-offs between vi-
sual detail and computational speed. For surface wave simulation,
reducing simulation resolution has the unfortunate side effect of
removing detailed water surface ripples with short wavelengths.

2.2. 2D Water Wave Simulation

To reduce computational complexity without removing details at
the surface, several researchers investigated the simulation of water
waves on top of a flat fluid surface. One approach assumes that the
fluid velocity is irrotational, allowing it to be expressed as the gradi-
ent of a velocity potential. This assumption significantly simplifies
the equation so it can be solved using lower-dimensional degrees
of freedom limited to the two-dimensional surface [Tes04; Tes14;
CMT*16; JW15; JW17; JSM*18] or even the one-dimensional
boundary of the fluid domain [SHW19]. Another approach to the
problem assumes that the water is so shallow that the fluid velocity
is effectively constant throughout the depth. This assumption gives
rise to tall cell methods [IGLF06; CM11] and the shallow water
equations (SWE) [LvdP02; WMT07; CM10; SBC*11] which again
lead to a computational speed-up due to the reduction in dimen-
sionality from 3D to 2D. The equivalent sources (i.e., “fundamen-
tal solutions”) approach of Schreck et al. [SHW19] also enables
infinitely large, open fluid domains. The water wavelength is also
independent from simulation degrees of freedom, so the method
creates high frequency visual details without increasing the simu-
lation resolution.

Despite their computational efficiency and increased visual de-
tail, these specialized wave simulation approaches have significant
limitations. They enforce particular constraints on the velocity of
the fluid below the surface (e.g. potential flow or constant with
respect to depth), so they are not as expressive as fully three-
dimensional simulations. The potential-flow methods follow Airy
wave theory (also known as “linear” wave theory) [Air41], so they
cannot model non-linear wave propagation. These methods also as-
sume the water surface is a heightfield, so they cannot model break-
ing waves or flows that make the surface exhibit interesting topol-
ogy changes.
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2.3. Coupling 2D and 3D liquid simulations

Inspired by the strengths of both techniques, several researchers
have combined 2D wave simulation methods with 3D fluid solvers.
Many methods (ours included) take advantage of the efficiency of
2D solvers to simulate extremely large simulation domains by com-
bining a 3D simulation in the area of interest with a 2D simulation
further away. Thuerey et al. [TRS06] combines 3D and 2D sim-
ulations based on the Lattice Boltzmann method, while Thuerey
et al. [TMSG07] and Chentanez et al. [CM10] use a wave solver
on a 2D grid and add 3D details where appropriate. Chentanez
et al. [CMK15] couples a 3D particle-based simulation with a
2D shallow water simulation for large open scenes, and Huang et
al. [HQT*21] combines a FLIP-based fluid solver with a surface-
only liquid solver using boundary elements.

Other methods leverage the complementary strengths of 2D
and 3D methods to add detailed waves directly on top of a 3D
fluid surface. Examples in the computer graphics literature solve
a wave equation [TWGT10; BLW12; YWTY12; YHW*16], the
iWave method [PTM09; KTT13; MBT*15], vortex sheet equa-
tions [KSK09; BW13] and simulate wave packets [SSJ*20].

On a related note, some researchers proposed methods for cou-
pling a 3D fluid simulation into an existing fluid environment.
Nielsen & Bridson [NB11] propose using an existing fluid simu-
lation as a guide shape for a new 3D fluid simulation; English et
al. [EQYF13] propose a “chimera grid” strategy for matching fluid
simulation variables at domain boundaries; Bojsen-Hansen & Wo-
jtan [BW16] use generalized perfectly matched layers to blend the
3D simulation into the surrounding environment; and Stomakhin et
al. [SS17] describe how to compute fluid fluxes through the ani-
mated boundary of a fluid simulation domain.

Our method couples the 2D wave solver of Schreck et
al. [SHW19] to the boundary of a 3D fluid simulation. This partic-
ular surface wave solver has a number of unique advantages over
ones used in the past: First of all, unlike the constant-speed waves
produced by SWE and Lattice Boltzmann method wave simula-
tions, [SHW19] is based on Airy wave theory and produces waves
with physical behaviors closer to those of the 3D fluid simulation.
Secondly, contrary to the methods that use 2D grids or meshes
to represent the surrounding water surface waves, our combined
method allows fluid domains that are literally infinitely large. Fi-
nally, because [SHW19] gives us full control over the dispersion
behavior of the waves, so we can actually modify the wave solver’s
behavior to compensate for numerical errors in the 3D fluid simula-
tion, practically eliminating visual artifacts at the domain boundary.

3. Technical background

3.1. 3D liquid simulation

Our work couples a 3D fluid simulation to a 2D wave solver. We
consider 3D fluid simulators based on a regular grid, which rep-
resents velocity and pressure fields as functions discretized on the
grid, and also tracks the location of the liquid surface. We have
implemented our technique into two different methods: the fluid
solver implemented in the Houdini software by SideFX, which ap-
pears to use narrow-band FLIP [FAW*16] for advection and ex-
tracts the surface from the FLIP particles [YT13]; and the solver

described by Bojsen-Hansen & Wojtan [BW16], which uses semi-
Lagrangian advection and represents the liquid surface using the
level set method [OF06].

3.2. 2D Water wave simulation

We use the method of Schreck et al. [SHW19] for 2D water wave
simulation. By assuming that water depth is constant and that waves
are not sloped too steeply, they represent the water surface motion
with Airy theory [Air41]. The water surface can then be decom-
posed as a set of sinusoidal frequency components of wave number
k –related to the wavelength λ by k= 2π

λ
. Each component is a func-

tion of the form a cos(kx−ωt), where a is the amplitude and ω is
the angular frequency (ω = 2π f where f is the time frequency).
The heightfield is a discrete sum of these frequency components:

η(xxx, t) = Re(u(xxx, t)) and u(xxx, t) = ∑
k

pk(xxx)e
−iωkt , (3)

where pk is the complex spatial field corresponding to wavenumber
k. Each pk is a solution of the Helmholtz equation:∇2 p+k2 p = 0.

Water waves are dispersive, which means that their angular fre-
quency depends on their wavenumber. This dispersion relation
makes their phase speed cp depend on wavelength as well, via the
relationship cp =

ω

k . In particular, gravity waves follow the theoret-
ical relation ωk =

√
gk tanh(kh) with g being the gravity constant

and h being water depth. We refer interested readers to [Joh97] for
a more complete introduction to the linear theory of water surface
waves.

Schreck et al. propose to use the Equivalent Sources Method
(ESM) to compute the spatial components psc

k of the field usc scat-
tered by the obstacle. The idea of ESM is to approximate a field by
a set of n fundamental solutions:

psc
k (xxx) =

n

∑
i=1

ak,iφk(xxx− xxxi) (4)

where the ak,i are complex amplitudes and φk(xxx− xxxi) is a funda-
mental solution of the Helmholtz equation, or source, located at
xxxi. More precisely, this source is a point emitting circular waves
and can be explicitly computed as φk(xxx−xxxi) =− i

4 H(2)
0 (k||xxx−xxxi||)

where H(2)
0 is the 0th order Hankel function of the second kind. The

sources are uniformly set on an offset curve inside the obstacle.

To compute how an incoming wave uinis scattered by an obsta-
cle, Schreck et al. define the boundary condition at the border of
the simulation domain:

usc(xxx, t) =−uin(xxx, t) (5)

for all times t and for all xxx on the boundary. The functions{
e−iωkt

}
k

(defined in Equation 3) are orthogonal, so the boundary

conditions are enforced separately for each wave number k. Com-
bining Equation 3 and Equation 5 gives the boundary condition for
each k:

psc
k (xxx) =−pin

k (xxx) ∀x on the boundary. (6)

By discretizing Equation 6 at a set of m points
{

yyy j

}
j=1..m

and
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combining it with Equation 4, a set of m linear equations with the
amplitudes

{
ak,i
}

i=1..n as unknown is obtained for each k:

n

∑
i=1

ak,iφk(yyy j− xxxi) = pin
k (yyy j)∀yyy j. (7)

Schreck et al. then solve this using a least squares optimization.
The height of the surface can finally be computed using Equation 3
as

η(xxx, t) = Re

(
∑
k

∑
i

ak,iφk(yyy j− xxxi)e
−iωkt +uin(xxx, t)

)
. (8)

To animate aperiodic wave motions, Schreck et al. replace
each amplitude ak,i by a time-dependent function ak,i(t). The
latter is a linear interpolation of a set of discrete amplitudes{

ah
k,i = ak,i(tT )

}
, where tT is the time after T timesteps. In this

case, pk(xxx, t) = ∑i ak,i(t − xxx/cg)φk(x− xi), where cg = ∂ω

∂k is the
wave’s group speed. This method animates time-dependent waves
at the cost of solving a system similar to Equation 7 at each time
step.

Note that, unlike 2D wave simulations that discretize the height-
field onto a grid, this method analytically defines the wave heights
everywhere onR2. This makes it trivial to represent infinitely large
bodies of water and to represent high-frequency ripples without us-
ing an adaptive grid representation. In a sense, it maximizes the
benefits of 2D wave simulations (efficient computation of large
heightfield domains) and is a good candidate for coupling to a 3D
simulation for locally enhanced details.

4. Objectives and Overview

The goal of this project is to propose a tool to efficiently simulate a
detailed scene on an arbitrarily large water surface. For this we want
to use a computationally expensive full 3D fluid simulation only
where really needed and a cheaper 2D surface wave propagation
using sources everywhere else (see Figure 2).

As waves propagate outward from a disturbance, the law of en-
ergy conservation causes their amplitudes to decrease, and these
small-amplitude waves are well-described by linear wave theory.
We assume that the 3D fluid simulation is large enough not only
to capture all 3D non-linear effects, but also such that the waves
leaving the 3D simulation domain can be approximated using Airy
theory –the water depth and wavelengths are significantly larger
than the wave height– (see Figure 3).

The surface in these regions can then be approximated using the
equivalent sources method.

The 3D fluid simulation represents only part of a larger surface,
so we need to prevent any erroneous internal reflections on the
border of the simulation. We use either a perfectly matched layer
(PML) method or an increasing viscosity to damp to waves before
they reach the end of the simulated domain.

We consider a fluid surface represented by domain D that can
be divided into two subdomains D3d and D2d (see Figure 2). D2d
corresponds to the regions where the surface of the fluid can be
represented by linear (Airy) waves and displayed on a heightfield.

D3d is the domain where more complex behavior is needed (3D
water droplets or breaking waves, for example).

In Section 5, we explain how to ensure a seamless transition be-
tween D2d and D3d for linear waves radiating from D3d . We build
upon [SHW19] and use the state given by the 3D liquid simulation
as boundary conditions for the 2D solver. We also discuss how to
modify the boundary conditions of the 3D fluid simulation to pre-
vent artificial internal reflections, and to send in new waves from
the 2D simulation.

When a physical wave propagates from one medium to another,
it can exhibit reflections and refractions. We observe similar ef-
fects when coupling two different simulation wave representations;
the subtle differences in discretization affect the way that waves
propagate and can lead to similar artificial wave reflections and
refractions when a wave exits one simulation and enters another.
This is a common problem with spatially adaptive discretizations,
where high-frequency waves cannot be represented by a coarser
discretization and cause an internal reflection [Vic81]. Artificial
damping and dispersion from the 3D simulation can significantly
change the behavior of water surface waves, especially when com-
pared to the theoretically exact behaviors described by linear wave
theory. These differences cause significant artificial refraction ar-
tifacts at the boundary between the 3D and 2D simulations, as il-
lustrated in Figure 6. In Section 6, we explain how to estimate the
effective wave behaviors from any 3D fluid simulation; we then use
these imperfect behaviors in our 2D wave solver to remove artificial
refractions.

Figure 2: Side view of our configuration: waves radiating from the
3d simulation are propagated as 2d wave on the surface.

5. Coupling method

To obtain a seamless transition between the two regions, we must
take care to set boundary conditions of each solver so that waves
cleanly propagate from one domain to the other. We first describe
our novel method for transferring waves from the 3D simulation
into the 2D simulation. Afterward, we describe wave-blending
techniques for transferring waves back from 2D to 3D.

5.1. Boundary conditions for the 2D simulation

In Section 3, we explained how Schreck et al. approximate the
waves dispersed by an obstacle. We use a similar approach to ap-
proximate the wave field radiating from a 3D domain with a set of
2D sources.

As explained in Section 4, we assume that the 3D surface re-
spects Airy theory near the boundary and can be represented as a
heightfield. Let’s call u3d the field representing the surface of the
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water from the fluid simulation inD3d and u2d its approximate rep-
resentation inD2d using a set of n fundamental sources centered in
{xxxi}i=1...n:

u2d(xxx, t) = ∑
k

n

∑
i=1

ai,k(t)Φ(xxx− xxxi)e
−iωkt (9)

We then use a method similar as the one described in Section 3 to
compute the complex amplitudes ai,k such that the transition be-
tweenD3d toD2d is as seamless as possible. For this we simply set
the 2D heightfield equal to the 3D surface:

u2d(xxx, t) = u3d(xxx, t)∀xxx ∈ δD, (10)

where δD is the boundary between the two domains. By resolv-
ing the boundary condition separately for each wave number k, we
have:

p2d
k (xxx, t) = p3d

k (xxx, t)∀xxx ∈ δD (11)

with p2d
k (xxx, t) = ∑

n
i=1 ak,i(t)φk(xxx−xxxi). In our examples, we set δD

to be an ellipse bounding the 3D simulation, though this choice
of domain boundary is up to the user. The sources (red crosses
in Figure 3) are placed at an offset distance from δD. To satisfy
this boundary condition, we discretize δD as a set of m bound-
ary points

{
yyy j

}
. As done in [SHW19], we uniformly sample the

sources and boundary points with respect to the Nyquist sampling
criterion. This gives us a linear system to solve for the amplitudes
ak,i(t):

n

∑
i=1

ak,i(t)φk(yyy j− xxxi) = pk
3d(yyy j, t)∀yyy j, j = 1 . . .m (12)

Figure 3: Top: side view of the 3d fluid simulation and 2d height-
field. Bottom: Top view of the configuration. Boundary points (pur-
ple dots) are placed on the border region of the 3d fluid simulation
where the waves can be approximated as linear. The sources (red
crosses) are placed at an offset distance from them. The surface of
the fluid and the 2d heightfield are linearly interpolated (interpola-
tion function in purple) to smooth the transition (between the dotted
lines (top) and in the gray region (bottom).

This system requires a frequency decomposition of the 3D
heightfield at each boundary point yyy j. Setting H j(t) = u3d(yyy j, t) =

∑k p3d
k (yyy j, t)e

−iωkt , we apply a Fast Fourier Transform (FFT) over
a small time window of size T = w∆t centered at time τ:

FFT ([H j(τ−
T
2
), . . . ,H j(τ+

T
2
)]) = [p3d

f0 (τ), . . . , p3d
fw (τ)], (13)

where [ f0, . . . , fw] is a range of discrete frequencies separated by
∆ f = 1/T . Note that the set of wave numbers used in Equation 9 are
the ones corresponding to these frequencies: [k0, . . . ,kw] with fξ =
2πω(kξ). The precision of the spectral decomposition depends on
the window size, so a compromise must be found between precision
in frequency and in time. Our implementation uses w = 256 for
wavelengths ranging between 0.13 and 33 meters. In practice we
only keep a few of them that recover the wavelengths created by the
simulation. In our examples, we usually use a dozen of wavelengths
ranging from 0.6m to 10m.

5.2. Boundary conditions for the 3D simulation

Next we discuss how to inject waves from the 2D region into the
3D fluid simulation. Though similar techniques already exist in
the computer animation literature [BW16; SS17], we describe our
approach here for completeness. Our results use two different 3D
fluid simulation solvers, so this section will discuss how we enforce
boundary conditions for both types of simulations.

For the semi-Lagrangian level set simulation, we use the gen-
eralized perfectly-matched layers approach of Bojsen-Hansen &
Wojtan, treating our 2D wave solver as the background flow. For
the narrow band FLIP simulation, we add a boundary layer with
gradually increasing viscosity near the boundary, and we blend the
positions and velocities of the FLIP particles close to the boundary.
Though this gradual blending is not as efficient as the PML-based
approach, we found it sufficient to inject the 2D waves and dampen
artificial internal reflections.

In any case, the 3D boundary conditions require us to compute
the 3D velocity and displacement fields induced by the 2D waves.
For a planar wave η(xxx, t) = a cos(kx−ωt) (with xxx = (x,y,z) and
z being the vertical direction), Airy wave theory gives us an ex-
pression for the velocity and particle displacement below the sur-
face [SS17]:

vx(xxx, t) = ẋ(t) = aωekz cos(kx−ωt) (14)

vz(xxx, t) = ż(t) = aωekz sin(kx−ωt) (15)

Similarly, the displacement can then be computed as:

ξx(xxx, t) =−aekz sin(kx−ωt) (16)

ξz(xxx, t) = aekz cos(kx−ωt) (17)

We adapt these formulae for a wave field defined by sources. For
a surface defined by a source η(xxx, t) = a φk(xxx− x0)e

−iωt centered
in xxx0, we obtain the following fields:

vr(xxx, t) = ṙ(t) = aωekz
φk(r)e

−iωt (18)

vz(xxx, t) = ż(t) = aωekz
φk(r)e

−i(ωt+ π

2 ) (19)

ξr(xxx, t) =−aekz
φk(r)e

−i(ωt− π

2 ) (20)

ξz(xxx, t) = aekz
φk(r)e

−iωt (21)
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with r = |xxx− xxx0|.

The waves coming toward the 3D domain can be for example
coming from reflection on an obstacle (represented by another set
of sources as described in [SHW19]), or background planar wind
waves. When injecting back these waves –represented by additional
background heightfield ηbg– into the fluid simulation, we need to
account for them by enforcing the boundary condition η2d(xxx, t)+
ηbg(xxx, t) = η3d(xxx, t). Figure 7 shows how this 2D-to-3D coupling
looks for circular waves entering a level-set simulation.

6. Matching wave behaviors

Every numerical method for simulating fluids adds some amount
of numerical error to the solution. When coupling two simulations
which use two different numerical methods, or even coupling two
simulations using the same method but with different resolutions,
visible artifacts will appear. These errors usually result in different
wave speeds or damping rates, known as numerical dispersion and
numerical viscosity. If the two simulations have different apparent
values for the dispersion relation ω(k), waves will visibly refract at
the boundary between the simulations.

In our case, the 2D wave solver has a hard-coded dispersion re-
lation, so it actually exhibits no numerical dispersion errors. On the
contrary, in the 3D simulation, the grid discretization significantly
affects the behavior of the fluid — the effective dispersion law de-
pends on the parameters of the simulation. Instead of trying to make
the 3D simulation more accurate, we propose to intentionally add
errors to the hard-coded 2D dispersion law, so that it better matches
the 3D simulation. We do this by estimating the effective dispersion
relation of the 3D fluid, and then using this estimated law in place
of the analytic ωk in ESM. Rather than analytically trying to derive
the dominant error for each specific method, we chose an easy to
run method which is based on numerical experiments and agnostic
to the kind of 3D solver.

We use the following experiment to estimate a 3D fluid simula-
tion’s frequency response f = 2πω to a given wavelength λ = 2 π

k :
we initialize a standing wave of wavelength λ centered within a
a virtual wave tank of size l = 2λ. We then begin the simulation
and measure the height H(t) of the point in the center of the tank
over time. Next, we apply an FFT on H(t) and identify the fre-
quency of the spectrum with the highest amplitude to compute f
and ω = f/2π. Figure 4 illustrates this experimental setup.

By repeating the experiment for different wavelengths we can
plot the dispersion law ω = ωs(k) and compare it to the theoreti-
cal one ω =

√
gk tanh(kh). Figure 5 plots our findings for both the

FLIP simulation and levelset simulators for a fixed simulation reso-
lution and time step ∆t = 0.033. For the levelset simulation we use
a cell size of 0.0625m, and for FLIP we use a particle separation
of 0.075 with the Houdini parameters particle radius scale equal to
1.2 and a grid scale equal to 2. Figure 5 shows the dispersion laws
we obtained for these two simulations compared to the theoretical
gravity waves dispersion.

The FLIP simulation substantially increases the wave speed and
adds noise. This discrepancy is illustrated in Figure 6 (a) where the
difference between the dispersion laws between the 3D FLIP sim-
ulation (left) and 2D wave simulation (right) leads to sharp wave

refraction at the interface. To compensate for this increased fre-
quency, we found that simply re-scaling the theoretical law by a
constant coefficient d ≈ 1.4 is sufficient to practically eliminate ar-
tificial wave refractions, as illustrated in Figure 6 (b).

Although the level-set simulation is close enough to theory for
the refraction to be far less noticeable, it still exhibits slightly
slower waves than Airy wave theory predicts. This difference in
wave speed can create inconsistencies along the border when inject-
ing 2D waves into the 3D simulation, resulting in spurious waves as
shown in Figure 7 (left).To correct this, we directly use data from
the experiments to associate a more accurate frequency (ω = 3.13)
to the injected wavelength (λ = 6m).

Although our examples apply simple approaches to match the
sources dispersion law with the data from the 3D simulation, any
data-fitting approach could work; our only requirement is that
ωs(k) be differentiable, so we can compute the group speed ∂ω

∂k
for Schreck et al. [SHW19]’s wavelet propagation.

Figure 4: Set up of our simulation of a standing wave. The tank
measures exactly two times the wavelength λ. We record the height
in the middle of the tank.

Figure 5: The recorded dispersion laws for a FLIP simulation and
a levelset simulation compared to the theoretical relation of gravity
waves.

7. Post-processing details

Surfaces reconstructed from particles tend to exhibit high-
frequency noise, which makes the 3D FLIP simulations look sub-
stantially different from the perfectly smooth analytical solutions
given by the 2D wave solver. To make the surfaces look similar, we
add Perlin noise [Per85] to the 2D wave surfaces:

ηnoise(xxx, t) = Re(a(xxx)e−iωt)
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(a) (b)

Figure 6: A FLIP simulation on the left side of the dotted line cou-
pled with fundamental sources using the theoretical gravity wave
dispersion law (a) and a corrected law to match better the recorded
law shown in Figure 5 (b). The left picture shows a spurious refrac-
tion effect due to the difference of speed of the waves between the
3d fluid simulation and the 2d wave propagation. This effect is cor-
rected on the right by using the new law.

Figure 7: Injecting the waves from a source inside a levelset simu-
lation using Bojsen-Hansen & Wojtan’s [BW16] method. Left: The
difference of velocity between the theoretical dispersion law used
by the source and that of the simulation causes spurious waves.
Right: Correcting the law of the source removes these artifacts.

where a(xxx) is a complex amplitude whose real and imaginary parts
are two noise functions with the same parameters. We also linearly
blend the surface functions between the 2D and 3D domains, as
illustrated by the purple interpolation curve in Figure 3.

Figure 8 shows an example with and without these post-
processing steps.

8. Results

Please see our supplementary video for animations of our results.
We first verify our coupling method in the absence of complicating
factors by replacing the 3D fluid simulation with a 2D heightfield
with a known analytical solution. Figure 9 shows how we gener-
ated a few circular ripples within the dashed ellipse, and solved for

the fundamental solutions which best matched the behavior at the
simulation boundary.

Figure 10 illustrates the consequences of different dispersion
laws, comparing the deep water dispersion law ω =

√
gk tanh(kh)

to the shallow water one ω = k
√

gh. The two laws exhibit very
different behaviors; the velocity of the waves is similar for all fre-
quencies for shallow water, but they are dispersive in deeper water.
Deep water waves also have a phase velocity that differs from their
group velocity, causing waves to fade away at the edge of the group
(see the video). This is not the case for shallow water for which the
group velocity and phase velocity are equal.

Our method is practically agnostic to the type of 3D fluid sim-
ulation used. To illustrate this benefit, we show examples using
two different kinds of simulation. Figure 11 shows coupling with
a semi-Lagrangian levelset method to simulate a few drops falling
into water with ripples propagating far away from the original 3D
domain. Figure 1 shows a FLIP simulation with a dragon spring-
ing out of water, with 2D waves propagating outward into an un-
bounded fluid domain.

Our method’s choice of 2D wave propagation gives an analyti-
cal solution defined everywhere in the 2D domain, so the surface
can be adaptively computed at render-time to represent very large
scenes as well as more detailed close-ups. Figure 12 shows a rotat-
ing water wheel with the camera zooming out to view waves propa-
gating far away. Figure 13 shows a zoom on the boundary between
the 2D and 3D domain of the example shown in Figure 1, using a
finer grid to obtain a smooth and detailed close-up view.

Finally, we compare our coupling method with a full 3d fluid
simulation in Figure 14. The visual results are very similar, but our
method takes only a fraction of the time to compute: our coupling
method takes around 30 seconds per frame (20s for generating the
3D simulation at the center and 11s to compute the 2D wave prop-
agation) and the full simulation takes more than 2 minutes.

Table 1 shows the times for our examples as well as the number
of sources, boundary points, and resolution of the display grid. Note
that, as described in [SHW19], we are using a different number of
sources for each wavelength. For example in Figure 14 (left), the
biggest wavelength is 45 meters and the corresponding number of
sources is 16. The smallest wavelength is 1.5m with 566 sources.

Discussion about previous work: The recent article from Huang
et al. [HQT*21] achieves impressive results by coupling a FLIP
simulation with a Boundary Element Method (BEM). Our ap-
proach uses fundamental solutions instead of BEM to couple the
2D and 3D domain, leading to significantly different practical con-
sequences. Although both methods assume linear waves outside of
the 3D domain, our method is strictly limited to height field waves,
while the BEM used by Huang et al. is not. On the other hand, our
method is distinct from meshing-based approaches in that it can
handle infinite domains and can simulate arbitrarily high-frequency
waves without any spatial adaptivity in the simulation domain. Our
work also offers preliminary insights into how to address the cou-
pling errors at simulation boundaries, which may be applicable to
methods like Huang et al.
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Figure 8: Our method with both linear blending and noise (left), without the linear blending (center-left), without noise (center-right) and
without any post-processing (right).

# wavelengths # sources # bound points Surface grid resolution time / frame (2D) time / frame (3D)
Figure 1 17 7274 2000 450x600 141s 222s
Figure 6 7 142 600 300x150 0.6s 3.7s
Figure 9 7 140 300 200x200 0.4s -
Figure 11 6 368 900 300x400 2.4s 1.2s
Figure 12 18 3839 1200 150x200 6.8s 26s
Figure 14 (left) 10 2352 2000 300x300 11s 20s
Figure 14 (right) - - - - - 138s

Table 1: Number of wavelengths, number of sources and boundary points, resolution of the 2D grid for our examples, as well as the time per
frame for computing the 2D waves and the time per frame for the original 3D fluid simulation.

Figure 9: A controlled experiment to verify our approach: Our cou-
pling method produces 2D waves that radiate away from another
2D domain within the dashed ellipse.

9. Discussion and Conclusion

We first note that our method only approximates the outgoing
waves from a 3D simulation, so, despite our efforts to reduce vi-
sual artifacts, there will still be errors when the two simulations do
not exactly match up on the boundary. One potential error source
is the finite time source on our FFT used to estimate the 2D wave
amplitudes; the choice of time window trades off between accuracy
in spatial and temporal frequencies (also known as the Fourier un-
certainty principle). The 2D wave solver also requires a choice of

Figure 10: Left: a full levelset simulation of one drop in the wa-
ter in a deep pool. Right: a levelset simulation (in the center ring)
coupled with 2D wave propagation using shallow water dispersion
(top) and deep water dispersion (bottom). The dispersion law used
by the 2D simulator has a significant affect on the resulting wave
pattern and coupling, and should be chosen to match the 3D simu-
lation.

how densely to discretize the boundary and the space of wavenum-
bers; insufficient discretization here can also cause mismatches in
the outgoing waves.

We chose to match the wave speeds across simulation boundaries
by approximating the effective dispersion relation of the 3D solver.
However, damping can also differ across simulations. Our initial
investigations show that this is not nearly as strong of an effect as
the mismatched wave speeds, but it is possible to develop a method
for matching the effective damping rate in the future.

Finally, we note that our implementation does not take full ad-
vantage of the equivalent sources method. We used a parallel im-
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Figure 11: Drops falling into water. Our coupling method used with a levelset simulation (inside the dashed ellipse).

Figure 12: Zooming out from a water wheel while still displaying waves radiating from the FLIP simulation in the center.

plementation on CPU but due to constraints in implementing the
method within Houdini, we did not parallelize the 2D wave solver
on the GPU. We believe the performance of our method would be
much faster with a more optimal implementation.

To conclude, we presented a method that adds radiating 2D
waves to a localized 3D fluid simulation by coupling it with the
equivalent sources method. The method allows efficient simulation
of large open domains with arbitrarily high spatial frequencies, and
it produces more physically plausible wave behaviors than other
2D solvers which assume constant wave speeds. Finally, we intro-
duced a novel method for discovering and matching the effective
dispersion behaviors of an arbitrary 3D fluid simulation, leading to
a practical elimination of refraction artifacts at the boundary be-
tween simulations.
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