
HAL Id: hal-03641285
https://hal.science/hal-03641285

Submitted on 14 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Dependability of Alternative Computing Paradigms for
Machine Learning: hype or hope?

Cristiana Bolchini, Alberto Bosio, Luca Cassano, Bastien Deveautour, Giorgio
Di Natale, Antonio Miele, Ian O’Connor, Elena Ioana Vatajelu

To cite this version:
Cristiana Bolchini, Alberto Bosio, Luca Cassano, Bastien Deveautour, Giorgio Di Natale, et al..
Dependability of Alternative Computing Paradigms for Machine Learning: hype or hope?. IEEE
International Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS
2022), Apr 2022, Prague, Czech Republic. �10.1109/DDECS54261.2022.9770138�. �hal-03641285�

https://hal.science/hal-03641285
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Dependability of Alternative Computing Paradigms
for Machine Learning: hype or hope?

Cristiana Bolchini1, Alberto Bosio2, Luca Cassano1, Bastien Deveautour2

Giorgio Di Natale3, Antonio Miele1, Ian O’Connor2, Ioana Vatajelu3
1Politecnico di Milano, Dip. di Elettronica, Informazione e Bioingegneria, Milano, Italy

2Univ Lyon, ECL, INSA Lyon, CNRS, UCBL, CPE Lyon, INL, UMR5270, 69130 Ecully, France
3TIMA - CNRS / Université Grenoble Alpes, UMR 5159, Grenoble, France

Email: cristiana.bolchini@polimi.it, alberto.bosio@ec-lyon.fr, luca.cassano@polimi.it,
bastien.deveautour@cpe.fr, giorgio.di-natale@univ-grenoble-alpes.fr,

antonio.miele@polimi.it, ian.oconnor@ec-lyon.fr, ioana.vatajelu@univ-grenoble-alpes.fr

Abstract—Today we observe amazing performance achieved
by Machine Learning (ML); for specific tasks it even sur-
passes human capabilities. Unfortunately, nothing comes for free:
the hidden cost behind ML performance stems from its high
complexity in terms of operations to be computed and the
involved amount of data. For this reasons, custom Artificial
Intelligence hardware accelerators based on alternative com-
puting paradigms are attracting large interest. Such dedicated
devices support the energy-hungry data movement, speed of
computation, and memory resources that MLs require to realize
their full potential. However, when ML is deployed on safety-
/mission-critical applications, dependability becomes a concern.
This paper presents the state of the art of custom Artificial
Intelligence hardware architectures for ML, here Spiking and
Convolutional Neural Networks, and shows the best practices to
evaluate their dependability.

Index Terms—Machine Learning (ML), ML-specific HW Ar-
chitectures, Neuromorphic Computing, ML Dependability

I. INTRODUCTION

Machine Learning (ML) has proven to give very good
results for many complex tasks and applications, such as object
recognition in images/videos, natural language processing,
satellite image recognition, robotics, aerospace, smart health-
care, and autonomous driving [1]–[4]. Unfortunately, nothing
came for free. Indeed, the hidden cost behind ML performance
stems from their high complexity in terms of operations to
be computed and the involved amount of data. The direct
consequence is the need of high performance computers, long
execution time (especially during training) and high power
consumption. For example, the famous AlphaGo [4] required
4 to 6 weeks of training executed on a machine composed of
2,000 CPUs and 250 GPUs consuming about 600kW.

The direct consequence is that the computational workload
is limited, in particular for embedded platforms, by the two
well-known walls of computing architectures: (1) The mem-
ory wall due to the increasing gap between processor and
memory speeds, and the limited memory bandwidth making
the memory access the killer of performance and power for

memory access dominated applications; (2) The power wall as
the practical power limit for cooling is reached, meaning no
further increase in CPU clock speed.

Nowadays, there is intense activity in designing custom
Artificial Intelligence hardware accelerators based on alter-
native computing paradigms to support the energy-hungry
data movement, speed of computation, and memory resources
that MLs require to realize their full potential [5]–[7]. A
promising solution leverages on the Computation in Memory
(CiM) paradigm that moves the computation directly inside
the memory, reducing thus the need for data transfer between
memory and processor [8]. Other solutions leverage on the
Neuromorphic computing aiming at reproducing the biological
neurons/synapse structure directly in hardware [9], [10].

Independently on the adopted computing architecture and
technology, specialized hardware for machine learning is sub-
ject to design and fabrication issues, such as: variations in fab-
rication process parameters, fabrication process defects, latent
defects, i.e., defects undetectable at time-zero post-fabrication
testing that manifest themselves later in the field of application,
silicon ageing, e.g., time-dependent dielectric breakdown, or
even environmental stress, such as heat, humidity, vibration,
and Single Event Upsets (SEUs) stemming from ionization.

All these problems can lead to performance degradation
or operational failures, which in turn can have important
consequences, especially for safety-critical systems [11]–[14].
It is thus crucial to determine the reliability of ML ap-
plications implemented leveraging on emerging computing
paradigms, especially when they are deployed in safety-critical
and mission-critical applications, such as robotics, aerospace,
smart healthcare, and autonomous driving.

This paper presents the state of the art of custom hardware
architectures for ML. In particular, we will focus on two well
known Deep Neural Network (DNN) types, the Spiking and
the Convolutional Neural Network. For each type of DNN,
we analyze the best practice related to their dependability
assessment. Section II presents the main concepts of Artificial
Intelligence focusing on Spiking and Convolutional Neural
Networks, while the Section III is devoted to the state of978-1-6654-9431-1/22/$31.00 ©2022 IEEE

Fig. 1. The typical topology of a Convolutional Neural Network (CNN).

the art of hardware architectures specific to DNN. Section IV
presents the methodologies to asses the robustness of DNN.
Section V discusses the main challenges and opportunities
about the deployment of DNN for safety-critical applications.

II. BACKGROUND

Artificial intelligence (AI) is indeed a vast scientific field
including several disciplines: from biology to computer sci-
ence. We focus on the computer engineering aspects of AI,
in particular the hardware architectures designed to accelerate
the inference of AI applications. Let us first present a brief
taxonomy of AI adapted from [15]:

• Artificial Intelligence (AI): is the superset of method-
ologies devoted to the simulation of human intelligence
processes by machines;

• Machine Learning (ML): encompasses methods that
enable machines to improve with experience;

• Deep Learning (DL): architectures with multiple layers
to learn from data sets;

• Deep Neural Networks (DNN): networks composed
of multiple layers that mimic the connectivity of the
biological neural network;

• Spiking Neural Networks (SNN): a specialized subset of
DNN in which information is encoded as “spikes” instead
of constant logic “level”. SNNs are designed to mimic the
real behavior of biological neurons.

• Convolutional Neural Networks (CNN): a specialized
subset of DNN in which a certain amount of layers
execute convolutions. Those layers aim to easily extract
transition-independent features from the input.

A. Convolutional Neural Network (CNNs)

A CNN [16] is a Deep Learning model generally employed
in image processing and computer vision to carry out a
high-end task, such as item classification, object detection
and image segmentation. As shown in Figure 1, a CNN
is internally organized in a sequence of layers, each one
processing multidimensional data, dubbed tensors, by means
of a number of operators. A tensor is of a multi-dimensional
stack of bi-dimensional value matrices, dubbed feature maps,
that generate a multidimensional grid. The most employed
operators can be grouped into the following classes:

• Convolution, used to extract features from the input by
inferring the appropriate weights, and thus to “learn”;

• Batch normalization, used to fix the data distribution,
speeding up the learning process;

• Activation function, used to mimic the biological activa-
tion of neurons by means of a mathematical function.
Common examples of activation functions are the Sig-
moid, the softmax and the Rectified Linear Unit (ReLU);

• Max-pooling (and other similar operators for dimension-
ality reduction), used to reduce the size of the tensor thus
increasing the degree of generalization;

• Element-wise operators used to carry out mathematical
operations or single-element manipulation, such as addi-
tion, multiplication, exponent and bias addition.

The operators in a CNN are usually organized in a sequence
of layers devoted to the feature learning: each operator takes
a tensor in input and produces a tensor in output (as shown
in the example in left-hand side of Figure 1). The output of
the feature learning is a tensor as well; when the goal of
the CNN is image segmentation or object identification, such
output tensor is considered as the output of the CNN itself.
On the other hand, when the CNN is used for classification
purposes, such final tensor is first flattened and then fed into a
fully-connected Neural Network and a softmax operator that
produce the probability values representing the likelihood of
the identified object to be classified according to a set of pre-
defined classes (as shown in right-hand side of Figure 1).

Given the complexity of designing CNNs, a number
of frameworks, such as TensorFlow [17], Caffe [18], Py-
Torch [19] and Keras [20], has been proposed. These design
frameworks provide general and extensible programming inter-
faces to specify the structure of a CNN in terms of its dataflow
and employed operators. Moreover, these frameworks provide
tools to automatically train the model and an automated back-
end support to target several processing devices such as CPUs
or Graphic Processing Units (GPUs) to optimize performance.

B. Spiking Neural Network (SNNs)

Artificial neural networks, inspired by the computing ca-
pabilities of the biological brain, have been and still are
intensely researched. Several electronic substrates are currently
studied that offer interesting characteristics to achieve the
promises of energy efficiency of the biological model and
the technological maturity and the programming capacities
expected by the applications. The ambition of neuromorphic
chips is to get closer to brain-inspired neuron and synapse
computation models. Spiking Neural Networks (SNN) [21] are
an important class of bio-inspired computing paradigms of-
fering promising solutions for on-chip cognitive applications.
The SNNs incorporate the concept of time in their operation
models and they process data encoded in spikes.

Due to their biological plausibility and promise of low
power operation, the SNNs have been widely studied both
as a new paradigm for neuromorphic computing as well as a
replacement for common DNNs. Irrespective of their use, all
SNNs require spike-coded signals and spiking neurons.

The literature proposes various methods for numerical-to-
spike conversion [22], [23] such as, for instance, the rate-
coding which produces a train of spikes, by encoding the
numerical value as spike frequency. Since in bio-systems

the temporal placement of spikes appears random, a Poisson
distribution is usually applied to rate-coding [24]. An other
example of numerical-to-spike conversions is the time-coding
(also known as latency-coding or time-to-first-spike) [25],
[26] where the numerical value is encoded as the delay of
a single spike (inversely proportional to the input amplitude).

Different spiking neuron models such as the integrate-
and-fire spike response, or Hodgkin-Huxley have been pro-
posed [27]. Typically they integrate currents from arriv-
ing spikes and generate new spikes whenever some thresh-
old is crossed. The neuron model must be computation-
ally simple and capable of producing firing patterns. The
Hodgkin–Huxley-type models is bio-plausible but computa-
tionally prohibitive, while the integrate-and-fire model is com-
putationally effective, but simple and less bio-plausible. When
SNN is used to emulate the nervous system, Hodgkin–Huxley-
type neurons are preferred, while for machine learning appli-
cations, SNNs are using (leaky) integrate and fire neurons.

As previously mentioned, when seeking for power-efficient
artificial neural networks, researchers have started considering
the possibility of using SNNs in machine learning applications
to replace the formal DNNs. In this context, the SNN is
mainly used for inference, with the training being done offline
(as is the case for formal DNNs). Several training techniqes
for SNNs have been proposed, the most common one is the
the conversion method trains. The conversion method trains
a formal neural network by traditional means (such as back-
propagation for instance) and then maps the trained network
on SNN [28] by transcoding the synaptic weights taking into
account the numerical-to-spike conversion used by the SNN
and the neuron model. Another solution is to apply backprop-
agation (BP) directly to train SNNs. However, the BP process
needs all operations through a network to be derivable, while
the spiking neuron activation function is usually not. This
problem can be solved by introducing a surrogate derivable
parameter [29], [30]. However, the networks trained by BP
are implemented in hardware only for inference, since a BP
learning is prohibitively expensive in hardware. To bring the
training closer to the biology, and find means of training
the SNN directly on hardware, the Spike-Timing-Dependent-
Plasticity (STDP) rule proposed [31] is being considered for
low power applications. The STDP is a local learning rule,
which updates the synaptic weight as a function of the delay
before the input and output spike. This learning rule represents
a relation of temporal causality between the input and the
output spikes of any given neuron. STDP has been used in
unsupervised learning of single layer SNNs [24] or several
layers SNNs [25]. It has also been used in supervised learning
by adapting the backpropagation to STDP [32].

III. HARDWARE ARCHITECTURES FOR MACHINE
LEARNING

A. CNN

CNNs were initially implemented in software and executed
on general purpose CPUs. In order to accelerate their band-
with, GPU-based implementations have been proposed [33]

where specific kernels (i.e., portions of the code) were de-
ployed to the GPU.

The first proposed CNN-specific hardware accelerators were
implemented as ASICs [34]–[36], and they achieved orders
of magnitude improvements in energy efficiency compared
to GPUs. This gain nevertheless comes at the expense of
flexibility, with the design cost being very high. FPGAs, on
the other hand, provide a good balance between flexibility,
design cost, and performance [37], [38].

Independently of the target (ASIC or FPGA), CNN-specific
hardware accelerators adopt the same strategy of maximizing
data reuse, an element that has been extensively studied by
Chen & al. in [35]. The main architectures adopted by re-
configurable accelerators such as FPGAs is a dedicated grid
of Processing Element (PE) [35], while the main architec-
ture adopted by ASICs are based on more generic systolic
arrays [36]. This is mainly because a systolic array is more
flexible once designed and can efficiently process matrix
products, while a PE array requires tuning some parameters
for efficiently execute a DNN (like the number of PEs and
the size of the memory bus), making them more suitable for
re-configurable accelerators.

B. SNN

As introduced in Section II-B there are issues to consider
when looking for the implementation of an SNN, such as
the numerical-to-spike coding, the neuron model, and, most
importantly the learning rule. There are a plethora of proposals
for off-line and on-line learning in SNNs, which opens up the
research community to look for hardware solutions for their
implementations. In this field, the research has not reached
the industry-grade maturity levels and it is mostly developed
at academic levels or on industrial prototypes. Today, there
are several brain-inspired chips able to simulate numerous
spiking neurons to investigate new kinds of computer ar-
chitectures (SyNAPSE [39], TrueNorth [40], DYNAPs [41],
Loihi [42], and Braindrop [43]), or to speed-up neuroscience
simulations through the Human Brain Project (SpiNNaker [44]
and BrainScaleS [45]). These solutions are mainly dedicated
to perform inference tasks. They are designed with distinct
technologies, and their working principles and capabilities
all differ. Loihi and SpiNNaker are using fully digital, core-
based designs, while Braindrop and BrainScaleS are based on
mixed or fully analog designs. The SpiNNaker is a many core
architecture with optimized spike communication network and
programmable local learning, while the BrainScaleS is build
with analog neural cores and digital spike communication and
it is capable of programmable local learning. Digital neuro-
morphic prototypes, such as Loihi and TrueNorth deploy a
fully digital circuit-based strategy for the neuron and synaptic
model parameters and also for learning algorithms, providing
a larger flexibility of network configuration. Many academic
solutions focus on hybrid and heterogeneous architectures
where hardware architectures operate on spike coding (rate,
frequency, time) to reach better energy efficiency [46] and
to allow local learning rules thanks to the bio-inspired Spike

Time Dependent Plasticity (STDP). Proposed solutions include
explorations of state-of-the-art CMOS and emerging nano-
electronic technologies capable of mimicking the computa-
tional primitives of spiking neural networks. In this context,
the most significant improvements come from the utilization
of memristive devices to emulate the synaptic plasticity and
facilitate local learning [47] [48].

IV. TOOLS AND METHODOLOGIES FOR ROBUSTNESS
ANALYSIS

A. CNN

There is a large literature related to the analysis of the
reliability of CNNs, as surveyed in [49]. Several papers
(e.g. [50], [51]) analyzed how faults corrupting the weights
of the convolutional layers affect the final output of the CNN.
Other works (e.g. [52], [53]) presented approaches that trace
the propagation of errors through the layers of the CNN to
analyze how the application is able to mask them and how
the propagated errors affect the produced output. All these
works consider faults corrupting both the memory storing the
weights and the internal registers of the underlying processing
platform. Finally, in [54] the effects of faults are analysed
by observing how they affect the precision and recall of the
considered object detection application.

Commonly, CNNs are accelerate by exploiting GPUs, there-
fore tools and methodologies for fault injection in such
technology may be exploited to analyse the reliability of
CNNs themselves. Several Fault Injection (FI) tools have
been proposed to emulate faults in GPUs. GPU-Qin [55]
exploits the CUDA-GDB debugger for NVIDIA devices to
inject single bit-flips in the registers exposed by the Instruction
Set Architecture (ISA); the solution is quite sophisticated and
presents a 100x slowdown w.r.t. nominal execution. A similar
debugging-based approach is used by CAROL-FI [56] which
acts at the source code-level to inject both bit-flips and random
values. CAROL-FI presents less than a 5x execution time
degradation and the benefit of performing both the injection
and the error propagation at the same level of the source
code. However, the approach limits the injection sites to the
variables. An alternative approach is adopted in SASSIFI [57]
and LLFI-GPU [58]: the source code is instrumented for FI
before being executed on the GPU. SASSIFI, proposed by
NVIDIA, is able to corrupt all registers of the ISA by means
of several injection modes, with a 5x slowdown as reported
in [56]. LLFI-GPU uses a similar approach while acting at
instruction level, claiming a speedup w.r.t. GPU-Qin about
42x on the execution time and similar benefits as CAROL-
FI in terms of the analysis of the effects of the errors. Finally,
in other works [50], [53], FI is performed again at the software
level by manually modifying the application code to integrate
the corruption facilities. All these tools are based on complex
modification and recompilationof the target code to enable FI,
thus leading to considerable performance degradation. More
recently, the new NVIDIA tool, called NVBitFI, has been
proposed [59]. This tool overcomes several limitations of
previous tools by performing a dynamic and selective code

instrumentation. On the other hand, implementation issues still
persist when working with external libraries.

Working at a higher abstraction level than the architecture-
level fault injection would be beneficial for two main rea-
sons: i) to dominate the complexity of CNN applications,
and ii) to speed-up and simplify experiments set-up and
execution. Several simulation-based approaches have been
proposed where errors are injected during the execution of the
considered CNN. A representative example of error simulation
environment for Machine Learning (ML) is TensorFI [60]
which is integrated in the commonly employed TensorFlow
framework. TensorFI works at the level of the application
dataflow and it injects errors by manipulating the output of
the operators, thus emulating the effects of faults affecting
the ML operators execution. A similar strategy but integrated
in other ML frameworks is the one presented in [52], [61],
[62], integrated in the Keras, Pytorch and Caffe frameworks,
respectively. Finally, a cross-layer approach, implemented in
PyTorch, where the CNN is executed via software and the fault
injection is carried out by switching down to the Hardware
Description Language (HDL) description of the processing
unit has been proposed in [63].

The most recent contributions, from which our proposal
moves the steps, are Fidelity [64] and BinFi [65]. The former
defines a set of error models adherent to what is observed after
FI experiments and it then analyses the effects of the faults in
terms of the Architectural Vulnerability Factor (AVF). On the
other hand, the latter identifies the safety-critical bits in the
considered ML application, relying on TensorFI to carry out
fault injection in the operators. The effects of the faults on the
produced outputs are then analyzed w.r.t. the application, to
determine whether they would deeply affect its behavior, or
not. Our proposal integrates and merges these two strategies:
indeed, we first extract error models, like Fidelity does, and
we then perform a classification of the effects of the errors on
the produced outputs, like BinFI. Indeed, we believe that our
proposal fills the gap between FI, Fuctional Error Simulation
(FES) and an application-related resiliency classification.

1) Cross-layer CNN Reliability Analysis: Our proposal is
a cross-layer framework for the reliability analysis of CNNs
that relies on an error simulation engine. Such engine in turn
exploits a set of validated error models previously extracted
from a detailed fault injection campaign performed on the
operators that compose the considered CNN. Therefore, our
proposal bridges the gap between fault injection and error
simulation, exploiting the advantages of both approaches.

The first step of the flow is dubbed the “Operators Extrac-
tor” that extracts all the operators from the considered CNN.
For each identified operator a standalone test program, namely
“Experiment Instance”, is generated in Caffe. The program
transmits input tensors to the GPU, executes the operator on
that device, and retrieves the output tensor. These programs
represent the code that will be executed in the FI experiments.

The subsequent step of the flow is the actual fault injection.
Since we target CNNs accelerated on GPUs, FI environments
specifically meant for this processing platforms, e.g., SASSIFI

Fig. 2. The designed Fault Injection flow.

or NVBitFI, are suitable for our flow. Due to the complexity
of modern GPUs and to the size of the their memory, an
exhaustive FI campaign is unfeasible. Nevertheless, it is possi-
ble to exploit the extreme regularity of the Single Instruction
Multiple Data (SIMD) architecture to reduce the number of
required experiments. Indeed, several threads simultaneously
executing the same code, elaborate on different bunch of data
of the same type and are run on different instances of the
same hardware resources. Thus, the output corruption patterns
observed when injecting faults during the execution of one of
the threads will be representative of the effects of faults in all
the threads. To make our FI experiments as general as possible,
in each experiment we change the input of the operator and
we randomly chose the fault-injected thread.

The outputs of the FI campaign are the collected and
compared against the expected output. The correct output are
discarded while the erroneous ones are further inspected to
identify recurrent error patterns by semi-automated scripts.
The goal of this activity is the identification of recurrent
corruption patterns in the output tensors, to be exploited for the
definition of functional error models. Every time a corruption
pattern is statistically relevant and it can be implemented by
means of an algorithm, it leads to the definition of an error
model. We may identify and classify the corruption patterns
according to:

• the cardinality (i.e. the number) of erroneous values in
the output tensor,

• the domains the erroneous values belong to, and
• the spatial distribution of the erroneous values.

These three aspects (in particular the last one) are highly
influenced by the characteristics of the CNN application, the
multidimensionality of the processed data, and the SIMD
architecture of the GPU. The result of this modeling activity
is the description of the identified error models in terms of an
algorithm to reproduce their effects (erroneous values cardi-
nality and domains and spatial pattern of the erroneous values)
and the occurrence probability. This detailed information is at

Output
tensor

Corrupted
output tensor

Error
models

Saboteur
M=selectRndSpatialDistr(conv);
randomizeParameters(M);
selectRndCardinality(M);
randomizeCorrValues(M);
corr_tensor=applyError(conv, M);

Input
image

ReLuConv

W

Add

!
Batch
Norm

u, σ, ", β

Output
image

Fig. 3. Error simulation exploiting sabouters.

the basis of the library of validated error models to support
the error simulation frameworks.

After a repository of error models has been identified, the
actual error simulation can be carried out. More in details, we
implemented the defined error models in an error simulation
engine based on TensorFlow, being it much more popular and
versatile than Caffe. However the error models are valid per-
se, and can be exploited in any framework. The error injection
mechanism has been implemented by means of saboteurs,
i.e., new operators inserted in the CNN graph intercepting
the output tensor and corrupting it. The previously observed
occurrence probabilities of the various error models are used
to randomly select the error to inject. Figure 3 depicts the
overall scheme on a toy example.

B. SNN

When considering a SNN at a high level of abstraction
and without considering the on-line learning (i.e., only during
the inference mode), techniques for robustness and reliability
assessment developed for CNNs and DNNs can be easily
adapted to SNNs, since they work at functional level. Nev-
ertheless, when considering the online learning aspect, it is
necessary to develop new methodologies dedicated to the
particular properties of the SNN, as the ones proposed in
[66] and [67]. In addition, when the hardware implementations
are based on memristive technologies, new defects and fault
models have to be considered for an accurate robustness
and reliability estimation. Due to the aggressive technology
scaling and the introduction of new steps at back-end-of-
line for the fabrication of the memristive element, it suf-
fers from fabrication-induced variability. Moreover, due to
intrinsic properties of the memristive technologies, they are
more susceptible to variations and defects, so there is a
need for high quality test and fault tolerance. In addition,
because of the different operation modes (analog storage and
computing for local learning) compared to traditional digital
memories, they require fundamentally new testing schemes. A
hardware implementation of an SNN requites architectural co-
localization of the processing and memory (non-Von Neumann
architecture). The circuits solutions used to implement silicon
neurons are application depended, but the vast majority are
built with a temporal integration block, a spike generation
block, a refractory period mechanism, and a spike adaptation

block. Synapses are required to exhibit plasticity (i.e., mod-
ulation in their efficacy) and to support online learning algo-
rithms, that manifest in changes in their strengths. Emerging
memory devices can be used as synaptic elements thanks to
their tunable conductivity, compatibility with advanced CMOS
fabrication process, low power consumption, non-volatility
and scalability. The synaptic conductance modulation can be
emulated using: (i) the analog approach (cumulative decrease
and increase of resistance), where multiple resistance states
emulate long-term potentiation and depression; or (ii) the
binary approach, uses two distinct resistance states per device
associated with a probabilistic programming scheme. In order
to rigurously analyse the faults that can occur in a Spiking
Neural Network (SNN) and the assessment of fault-tolerance
quality of such a network, we have developed pertinent fault
models and methodologies for conducting a fault injection
campaign and have identified scenarios of faulty operation
happening before and after the STDP learning [66].

We propose the fault analysis to be performed by two ap-
proaches: top-down and bottom-up. In the top-down approach,
the correctness of the SNN algorithm is evaluated under the
effect of different faults, and the results to be validated by
functional evaluation of the SNN architecture. Starting from
the behavioral model of the SNN under study, we investigate
how the network behaves under different issues such as:
defective or dead neuron, defective or dead synapse. We
evaluate the functional accuracy of the SNN during inference
and learning. The obtained results will answer questions such
as: which is more detrimental to the functionality of a Neural
Network (NN): defective neuron or defective synapse? How
many of these critical components have to fail such that the
entire network fails? Which is the more critical defect location:
inner or outer layer of a NN? In which state does a certain
defect matter most: learning or inference? In the bottom-
up approach we evaluate the effect of fabrication-induced
defects and variability on the operation of the neuron and
synapse and a fault modeling campaign is conducted. The
faults are injected at system level and the robustness of the
SNN is evaluated. This approach requires a complete analysis
of possible defects, defect mapping and defect modeling. It
is based on a complete analysis of circuit failure modes and
a set of technology-dependent fault models, together with a
comprehensive evaluation of the application-dependent spatial
and temporal dependencies of the circuit failures the functional
modules of the SNN: the neuron and synapse. With this
analysis we can develop appropriate fault models based on the
technology-specific failure mechanisms and defects as well as
the SNN functional module and full network.

V. CHALLENGES AND OPPORTUNITIES

The research in this field has received a lot of attention,
to offer initial solutions for allowing the adoption of ML
in domains where robustness is paramount. However, the
complexity of the context motivates towards the development
and adoption of solutions that are specifically targeted for this
domain, also considering the deep relation between the appli-

cation and its data. As reported, a lot of effort is being devoted
to design and implement hardware accelerators optimized
for executing ML-based applications, creating new challenges
and opportunities to explore dependability-related solutions
tailored for these new building blocks, to enable their adoption
in critical application environments. In all these contexts,
considering the complexity of hardware, application and data,
it will be pivotal to identify the most appropriate abstraction
level for both the robustness analysis and its enforcement,
supporting the designer in the achievement of a robust system,
from the performance and dependability perspectives.

ACKNOWLEDGMENT

This work has been co-founded by the ANR project RE-
TRUSTING, ANR-21-CE24-0015 and by the ANR project
EMINENT, ANR-19-CE24-0001.

REFERENCES

[1] L. Deng et al., “Recent advances in deep learning for speech research at
microsoft,” in 2013 IEEE International Conference on Acoustics, Speech
and Signal Processing. IEEE, 2013, pp. 8604–8608.

[2] A. Krizhevsky et al., “Imagenet classification with deep convolutional
neural networks,” Communications of the ACM, vol. 60, no. 6, pp. 84–
90, 2017.

[3] C. Chen et al., “Deepdriving: Learning affordance for direct perception
in autonomous driving,” in Proceedings of the IEEE International
Conference on Computer Vision, 2015, pp. 2722–2730.

[4] D. Silver et al., “Mastering the game of go with deep neural networks
and tree search,” Nature, vol. 529, no. 7587, pp. 484–489, Jan 2016.
[Online]. Available: http://dx.doi.org/10.1038/nature16961

[5] A. D. Mauro et al., “Always-on 674 w@4gop/s error resilient binary
neural networks with aggressive sram voltage scaling on a 22-nm
iot end-node,” IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 67, no. 11, pp. 3905–3918, 2020.

[6] B. Moons et al., “14.5 envision: A 0.26-to-10tops/w subword-parallel
dynamic-voltage-accuracy-frequency-scalable convolutional neural net-
work processor in 28nm fdsoi,” in 2017 IEEE International Solid-State
Circuits Conference (ISSCC), 2017, pp. 246–247.

[7] Y.-H. Chen et al., “Eyeriss v2: A flexible accelerator for emerging deep
neural networks on mobile devices,” IEEE Journal on Emerging and
Selected Topics in Circuits and Systems, vol. 9, no. 2, pp. 292–308,
2019.

[8] T.-J. Yang et al., “Design considerations for efficient deep neural
networks on processing-in-memory accelerators,” in 2019 IEEE Inter-
national Electron Devices Meeting (IEDM), 2019, pp. 22.1.1–22.1.4.

[9] M. Ezzadeen et al., “Low-overhead implementation of binarized neural
networks employing robust 2t2r resistive ram bridges,” in ESSCIRC 2021
- IEEE 47th European Solid State Circuits Conference (ESSCIRC), 2021,
pp. 83–86.

[10] D. Markovic et al., “Physics for neuromorphic computing (vol 2, pg
499, 2020),” NATURE REVIEWS PHYSICS, vol. 3, no. 9, pp. 671–671,
2021.

[11] A. Lotfi et al., “Resiliency of automotive object detection networks on
gpu architectures,” in 2019 IEEE International Test Conference (ITC),
2019, pp. 1–9.

[12] L. Matanaluza et al., “Emulating the effects of radiation-induced soft-
errors for the reliability assessment of neural networks,” IEEE Transac-
tions on Emerging Topics in Computing, pp. 1–1, 2021.

[13] E.-I. Vatajelu et al., “Special session: Reliability of hardware-
implemented spiking neural networks (snn),” in 2019 IEEE 37th VLSI
Test Symposium (VTS), 2019, pp. 1–8.

[14] T. Spyrou et al., “Reliability Analysis of a Spiking Neural Network
Hardware Accelerator,” in Design, Automation and Test in Europe
Conference (DATE), Antwerp, Belgium, Mar. 2022. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-03501968

[15] O. I. Abiodun et al., “State-of-the-art in artificial neural network
applications: A survey,” Heliyon, vol. 4, no. 11, p. e00938, nov 2018.

[16] Y. LeCun et al., “Backpropagation applied to handwritten zip code
recognition,” Neural computation, vol. 1, no. 4, pp. 541–551, 1989.

[17] M. Abadi et al., “TensorFlow: Large-Scale Machine Learning on
Heterogeneous Systems,” http://tensorflow.org/, 2015, (Accessed on
03/20/2020).

[18] Y. Jia et al., “Caffe: Convolutional Architecture for Fast Feature Em-
bedding,” in Proc. Intl. Conf. Multimedia, 2014, p. 675–678.

[19] A. Paszke et al., “PyTorch: An Imperative Style, High-Performance
Deep Learning Library,” in Advances in Neural Information Processing
Systems 32, H. Wallach et al., Eds. Curran Associates, Inc., 2019, pp.
8026–8037.

[20] F. Chollet et al., “Keras,” https://keras.io, 2015, (Accessed on
03/27/2020).

[21] W. Maass, “Networks of spiking neurons: The third
generation of neural network models,” Neural Networks,
vol. 10, no. 9, pp. 1659–1671, 1997. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0893608097000117

[22] A. A. Arvind Kumar, Stefan Rotter, “Spiking activity propagation in
neuronal networks: reconciling different perspectives on neural coding,”
Nature Reviews Neuroscience 11, p. 615–627, 2010.

[23] S. J. T. R Van Rullen, “Rate coding versus temporal order coding: what
the retinal ganglion cells tell the visual cortex,” Neural Computation, p.
1255–1283, 2001.

[24] M. C. Peter U. Diehl, “Unsupervised learning of digit recognition
using spike- timing-dependent plasticity,” Frontiers in Computational
Neuroscience, 9, 2015.

[25] S. T. T. M. Saeed Reza Kheradpisheh, Mohammad Ganjtabesh, “Stdp-
based spiking deep convolutional neural networks for object recogni-
tion,” Neural Networks, 99, pp. 56–67, 2018.

[26] B. Rueckauer et al., “Conversion of analog to spiking neural networks
using sparse temporal coding,” in 2018 IEEE International Symposium
on Circuits and Systems (ISCAS). IEEE, 2018, pp. 1–5.

[27] M. P. T. Pfeil, “Deep learning with spiking neurons: Opportunities and
challenges,” Frontiers in Neuroscience, 12, 2018.

[28] Y. H. M. P. S.-C. L. Bodo Rueckauer, Iulia-Alexandra Lungu, “Con-
version of continuous-valued deep networks to efficient event-driven
networks for image classification,” Frontiers in Neuroscience, 2017.

[29] T. D. Jun Haeng Lee et al., “Training deep spiking neural networks
using backpropagation,” Frontiers in Neuroscience, 2016.

[30] E. O. Neftci et al., “Surrogate gradient learning in spiking neural
networks: Bringing the power of gradient-based optimization to spiking
neural networks,” IEEE Signal Processing Magazine, vol. 36, no. 6, pp.
51–63, 2019.

[31] Y. D. Natalia Caporale, “Spike timing-dependent plasticity: a hebbian
learning rule,” Annu Rev Neurosci., 2008.

[32] “Deep learning in spiking neural networks,” Neural Networks, vol. 111,
pp. 47–63, 2019.

[33] A. Guzhva et al., “Multifold acceleration of neural network computa-
tions using gpu,” in Artificial Neural Networks – ICANN 2009, C. Alippi
et al., Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp.
373–380.

[34] Y. Chen et al., “Dadiannao: A machine-learning supercomputer,” 2014
47th Annual IEEE/ACM International Symposium on Microarchitecture,
pp. 609–622, 2014.

[35] ——, “Eyeriss: a spatial architecture for energy-efficient dataflow for
convolutional neural networks,” in CARN, 2016.

[36] N. P. Jouppi et al., “In-datacenter performance analysis of a tensor pro-
cessing unit,” in 2017 ACM/IEEE 44th Annual International Symposium
on Computer Architecture (ISCA), 2017, pp. 1–12.

[37] K. Guo et al., “Angel-eye: A complete design flow for mapping cnn
onto customized hardware,” in 2016 IEEE Computer Society Annual
Symposium on VLSI (ISVLSI), 2016, pp. 24–29.

[38] R. Reddy et al., “Dlau: A scalable deep learning accelerator unit on
fpga,” International Journal of Research, vol. 5, pp. 921–928, 2018.

[39] A. S. Cassidy et al., “Cognitive computing building block: A versatile
and efficient digital neuron model for neurosynaptic cores,” in The 2013
International Joint Conference on Neural Networks (IJCNN), 2013, pp.
1–10.

[40] P. A. Merolla et al., “A million spiking-neuron integrated circuit
with a scalable communication network and interface,” Science,
vol. 345, no. 6197, pp. 668–673, 2014. [Online]. Available:
https://www.science.org/doi/abs/10.1126/science.1254642

[41] S. Moradi et al., “A scalable multicore architecture with heterogeneous
memory structures for dynamic neuromorphic asynchronous processors
(dynaps),” IEEE Transactions on Biomedical Circuits and Systems,

vol. 12, no. 1, p. 106–122, Feb 2018. [Online]. Available:
http://dx.doi.org/10.1109/TBCAS.2017.2759700

[42] M. Davies et al., “Loihi: A neuromorphic manycore processor with on-
chip learning,” IEEE Micro, vol. 38, no. 1, pp. 82–99, 2018.

[43] A. Neckar et al., “Braindrop: A mixed-signal neuromorphic architecture
with a dynamical systems-based programming model,” Proceedings of
the IEEE, vol. 107, no. 1, pp. 144–164, 2019.

[44] X. Jin et al., “Modeling spiking neural networks on spinnaker,” Com-
puting in Science Engineering, vol. 12, no. 5, pp. 91–97, 2010.

[45] “Structural plasticity on an accelerated analog neuromorphic hardware
system,” Neural Networks, vol. 133, pp. 11–20, 2021.

[46] L. Khacef et al., “Confronting machine-learning with neuroscience
for neuromorphic architectures design,” in 2018 International Joint
Conference on Neural Networks (IJCNN), 2018, pp. 1–8.

[47] S. H. Jo et al., “Nanoscale memristor device as synapse in neuromorphic
systems,” Nano Letters, vol. 10, no. 4, pp. 1297–1301, 2010, pMID:
20192230. [Online]. Available: https://doi.org/10.1021/nl904092h

[48] A. Sengupta et al., “Magnetic tunnel junction mimics stochastic cortical
spiking neurons,” Scientific Reports, vol. 6, 10 2015.

[49] Y. Ibrahim et al., “Soft errors in DNN accelerators: A comprehensive
review,” Microelectronics Reliability, vol. 115, p. 113969, 2020.

[50] A. Bosio et al., “A Reliability Analysis of a Deep Neural Network,” in
Proc. Latin American Test Symp., 2019, pp. 1–6.

[51] A. P. Arechiga et al., “The Robustness of Modern Deep Learning Archi-
tectures against Single Event Upset Errors,” in Proc. High Performance
extreme Computing Conf., 2018, pp. 1–6.

[52] B. Reagen et al., “Ares: A framework for quantifying the resilience of
deep neural networks,” in Proc. Design Automation Conf., 2018.

[53] G. Li et al., “Understanding Error Propagation in Deep Learning Neural
Network (DNN) Accelerators and Applications,” in Proc. Intl. Conf.
High Performance Computing, Networking, Storage and Analysis, 2017,
pp. 8:1–8:12.

[54] F. Fernandes et al., “Evaluation of Histogram of Oriented Gradients
Soft Errors Criticality for Automotive Applications,” ACM Trans. Archit.
Code Optim., vol. 13, no. 4, 2016.

[55] B. Fang et al., “GPU-Qin: A methodology for evaluating the error
resilience of GPGPU applications,” in Proc. Intl. Symp. Performance
Analysis of Systems and Software, 2014, pp. 221–230.

[56] D. Oliveira et al., “Increasing the Efficiency and Efficacy of Selective-
Hardening for Parallel Applications,” in Proc. Intl. Symp. Defect and
Fault Tolerance in VLSI and Nanotechnology Systems, 2019, pp. 1–6.

[57] S. Hari et al., “Sassifi: An architecture-level fault injection tool for
GPU application resilience evaluation,” in Proc. Intl. Symp. Performance
Analysis of Systems and Software, 2017, pp. 249–258.

[58] G. Li et al., “Understanding error propagation in GPGPU applications,”
in Proc. Intl. Conf. High Performance Computing, Networking, Storage
and Analysis, 2016, pp. 240–251.

[59] T. Tsai et al., “NVBitFI: Dynamic Fault Injection for GPUs,” in Proc.
Intl. Conf. Dependable Systems and Networks, 2021, pp. 284–291.

[60] Z. Chen et al., “TensorFI: A Flexible Fault Injection Framework for
TensorFlow Applications,” in Proc. Intl. Symp. on Software Reliability
Engineering, 2020, pp. 426–435.

[61] A. Mahmoud et al., “PyTorchFI: A Runtime Perturbation Tool for
DNNs,” in Proc. Intl. Conf. Dependable Systems and Networks Work-
shops, 2020, pp. 25–31.

[62] M. A. Neggaz et al., “Are CNNs Reliable Enough for Critical Applica-
tions? An Exploratory Study,” IEEE Design & Test, vol. 37, no. 2, pp.
76–83, 2020.

[63] A. Ruospo et al., “A Pipelined Multi-Level Fault Injector for Deep
Neural Networks,” in Proc. Intl. Symp. Defect and Fault Tolerance in
VLSI and Nanotechnology Systems, 2020.

[64] Y. He et al., “FIdelity: Efficient Resilience Analysis Framework for Deep
Learning Accelerators,” in Proc. Intl. Symp. on Microarchitecture, 2020,
pp. 270–281.

[65] Z. Chen et al., “BinFI: An Efficient Fault Injector for Safety-Critical
Machine Learning Systems,” in Proc. Intl. Conf. High Performance
Computing, Networking, Storage and Analysis, 2019, pp. 1–23.

[66] E.-I. Vatajelu et al., “Special session: Reliability of hardware-
implemented spiking neural networks (snn),” in 2019 IEEE 37th VLSI
Test Symposium (VTS), 2019, pp. 1–8.

[67] E. I. Vatajelu et al., “Fully-connected single-layer stt-mtj-based spiking
neural network under process variability,” in 2017 IEEE/ACM Interna-
tional Symposium on Nanoscale Architectures (NANOARCH), 2017, pp.
21–26.

