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Strength or toughness? A criterion for crack onset at a notch

Both energy and stress criteria are necessary conditions for fracture but neither one nor the other are sufficient. Experiments by Parvizi et al. on transverse cracking in cross-ply laminates corroborate this assumption. Thanks to the singularity at the tip of the notch, the incremental form of the energy criterion gives a lower bound of admissible crack lengths. On the contrary, the stress criterion leads to an upper bound. The consistency between these two conditions provides a general form of a criterion for crack nucleation. It enjoys the desirable property of coinciding with the usual Griffith criterion to study the crack growth and with the stress criterion for the uniform traction along a straight edge. Comparisons with experiments carried out on homogeneous notched materials and on bimaterial structures show a good agreement.

Introduction

The problem of a crack onset at a notch is still an open problem if no assumption is made on a hypothetic pre-existing flaw [START_REF] Grenestedt | Crack initiation from homogeneous and bimaterial corners[END_REF][START_REF] Leblond | Crack propagation from a pre-existing flaw at a notch root -I: Introduction and general from of the stress intensity factors at the initial crack tip -II: Detailed form of the stress intensity factors at the initial crack tip and conclusions[END_REF]. When employing classical tools it leads to a paradox as will be seen below. Let us first recall briefly the energy and stress criteria that are commonly used in brittle fracture mechanics.

The energy criterion

We consider the initial state of a loaded structure to be elasto-static. The equilibrium state is characterized by a potential energy W p and a zero kinetic energy W k = 0. Next, we consider the same structure after the onset of a new crack or the growth of a preexisting one. The start point of the energy criterion is an unquestionable balance between these two states:

δW p + δW k + G c δS = 0.
(1)

Here, δW p and δW k are the changes respectively in potential and kinetic energy. The newly created crack surface is denoted δS and G c is the fracture energy per unit surface, the so-called toughness. Since the initial state is static δW k 0 and a necessary condition for fracture derives from (1):

- δW p δS G c . (2) 
This incremental form of the energy criterion is the foundation of Finite Fracture Mechanics (FFM). It requires the knowledge of the crack increment surface δS. If the crack grows continuously, the above condition must hold for any small surface change δS, then considering the limit δS → 0 leads to the differential (Griffith) form of (2):

- ∂W p ∂S = G G c , (3) 
1
where G is the energy release rate. Nevertheless, there are some contra-indications to the use of the differential form (3) as explained at the end of Section 1.2.

The stress criterion

The stress criterion is based on the data of a critical tension σ c (or shear τ c ), the so-called strength, that a material can bear before it breaks. The fracture of a surface occurs if:

σ σ c (or τ τ c ), (4) 
where σ and τ are the tension and shear components of the stress tensor acting on the surface. Such a criterion sounds like a necessary and sufficient condition for failure. A counter example will evidence that in fact it is only a necessary one. Applied to a crack onset at a notch, these two criteria lead to the announced paradox. The Griffith criterion (3) is unable to predict such a mechanism. The energy release rate G vanishes and thus can never reach the critical toughness G c . On the other hand, the notch tip is singular, the stress field tends to infinity when approaching this point and then tension and shear stress components are always above the material strength. The stress criterion would thus conclude systematically to a crack onset whatever the applied load. The two criteria are contradictory. Moreover, neither one nor the other conclusion agree with the experiments. It can be observed that such a notch is a privileged site for crack nucleation and fracture does occur at this point but not for any small applied load.

Failure of a bar

A first example can be obtained from the simple problem of the failure of a homogeneous isotropic bar submitted to an increasing applied strain ε a . At a given load level the bar breaks in two parts and the potential energy vanishes. Then, the change in potential energy to take into account in ( 2) is simply the potential energy of the bar before failure:

-δW p = W p = 1 2 SLσ a ε a = 1 2 SL σ 2 a E , (5) 
where S is the cross-section area of the bar, L its length and E is the Young's modulus. The energy criterion (2) gives:

1 2 SL σ 2 a E G c S ⇒ σ a 2EG c L . (6) 
This inequality holds for a sufficiently large L leading to the contradictory conclusion that the bar breaks whatever the applied load provided it is sufficiently long! It is clear that it is the stress criterion that prevails in that case, omitting it and fulfilling only the energy condition induces an erroneous statement.

The Parvizi et al. experiments

Although the situation departs from the original topic of this paper, the experiments by [START_REF] Parvizi | Constrained cracking in glass fibre-reinforced epoxy cross-ply laminates[END_REF] proposed an answer to the above paradox that will be a key point for the present work. They carried out traction tests on a cross-ply glass fiber reinforced composite made of two outer layers oriented at 0 • (fibers are parallel to the traction direction) and a 90 • inner one. As first damage, they observed that transverse cracks appear in the inner ply and plotted the applied strain vs. the inner ply thickness at the first occurrence of a transverse crack (Fig. 1).

As long as the inner ply keeps sufficiently thick, the first transverse crack appears for a constant applied strain. It is the stress criterion that predicts correctly this mechanism (and it will be checked that the energy criterion automatically holds true). Below a critical thickness e 0 , the applied strain must be increased in order to trigger inner ply cracking. Obviously, the stress criterion no longer prevails.

Using the shear-lag model, they showed that the change in potential energy between the initial uncracked state and a new one containing just one transverse crack is written:

-δW p = Aσ 2 a e 2 d, (7) 
where σ a is the applied stress, e is the inner ply thickness, d the constant width of the specimen (plane strain elasticity) and A a scaling coefficient. The energy balance (2) gives:

Aσ 2 a e 2 d G c ed ⇒ σ a G c Ae . (8) 
Condition (8) imposes that if e<e 0 , the applied stress triggering a transverse crack increases like 1/ √ e, a condition that matches with the experiments (Fig. 1). The energy criterion now governs the process while the stress criterion is trivially fulfilled. The two conditions are complementary. 

Conclusion

The main conclusion to draw from these examples is that, when fracture occurs the two criteria are fulfilled simultaneously, even if one often hides the other. Both are necessary conditions and together they seem to form a sufficient one. Based on this ascertainment, a criterion for crack onset at a notch is derived in the next section using the singular stress field around the notch tip. It ensures that the two criteria hold true. The answer to the question suggested in the title is then "strength and toughness". Giving both the toughness G c and the strength σ c brings us to define a characteristic length for crack onset. The failure is assumed to be a sudden and quasi-spontaneous mechanism as proposed by [START_REF] Aveston | Theory of multiple fracture of fibrous composites[END_REF], [START_REF] Parvizi | Constrained cracking in glass fibre-reinforced epoxy cross-ply laminates[END_REF], [START_REF] Wang | Initation and growth of transvers cracks and edge delamination in composite laminates, part 1. An energy method[END_REF] and [START_REF] Nairn | The strain energy release rate of composite microcracking: a variational approach[END_REF]. Other recent works are based on neighbouring arguments: [START_REF] Hashin | Finite thermoelastic fracture criterion with application to laminate cracking analysis[END_REF], [START_REF] Francfort | Revisiting brittle fracture as an energy minimization problem[END_REF], Leguillon (1999Leguillon ( -a, 1999-b)-b), Leguillon andLacroix (2000-a, 2000-b).

Crack onset at a notch

The singular stress field

In plane linear elasticity, the displacement field in the vicinity of the tip of a notch with angle ω (see Fig. 2) in a homogeneous material is given by:

U (x 1 ,x 2 ) = U (0, 0) + kr λ u(θ) +•••. ( 9 
)
The origin is at the tip of the notch, x 1 ,x 2 and r, θ are respectively the Cartesian and polar coordinates. The singularity exponent is such that 1/2 λ 1. It is 1/2 for a crack (ω = 0) and it is 1 (no longer singular) for a straight edge (ω = π ). The function u(θ) is an angular shape function and k is the generalized intensity factor. The exponent λ and the function u(θ) are solutions to an eigenvalue problem [START_REF] Leguillon | Computation of Singular Solutions in Elliptic Problems and Elasticity[END_REF]. The first term in ( 9) is constant and present for consistency, it is the irrelevant rigid translation. Moreover, it is assumed that there is a single real governing singularity term, it is the case for a symmetric loading for instance. In the particular case of the crack (9) is written:

U (x 1 ,x 2 ) = U (0, 0) + k I √ ru I (θ) +•••, (10) 
where k = k I is the usual mode I stress intensity factor and √ ru I (θ) the opening mode I. For the straight edge the expansion is written: where k = T is the uniform traction parallel to the edge. As a consequence of ( 9), the stress field, which behaves like r λ-1 , tends to infinity as r decreases to 0. The stress criterion is thus trivially fulfilled at the tip of such a notch.

U (x 1 ,x 2 ) = U (0, 0) + Trt(θ) +•••, (11) 

The crack initiation length

The potential energy change at a crack onset in the direction θ 0 is written [START_REF] Leguillon | Calcul du taux de restitution de l'énergie au voisinage d'une singularité[END_REF]:

-δW p = k 2 K(ω, θ 0 )ℓ 2λ d +•••, ( 12 
)
where ℓ is the small newly created crack length and d the width of the specimen (plane elasticity). The coefficient K(ω, θ 0 ) is a scaling term depending on the local geometry (ω) and on the direction of fracture (θ 0 ) (see [START_REF] Leguillon | Computation of Singular Solutions in Elliptic Problems and Elasticity[END_REF] and the Appendix). The condition (2) becomes:

-δW p G c ℓd ⇒ k 2 K(ω, θ 0 )ℓ 2λ-1 G c . (13) 
The intensity factor k is proportional to the applied load:

k = κσ a , (14) 
and ( 13) is a lower bound for the increment lengths ℓ:

ℓ 2λ-1 G c K(ω, θ 0 )κ 2 σ 2 a (2λ -1 > 0). ( 15 
)
Since the applied load at onset cannot be infinitely large, the increment length ℓ cannot be infinitely small. At onset, there is a jump from 0 to ℓ which is an illustration of the FFM. Of course, this lower bound must be compatible with the asymptotic framework, it has to be small with respect to a characteristic length of the structure. However, it is essential to recall that the energy balance is only a necessary condition.

In the two previous examples, the failure is assumed to occur spontaneously, which seems reasonable since the critical traction acts uniformly all over the fracture surface. This condition will be extended to the present case to provide an upper bound for the crack extension length. The singular tension σ θ (i.e. the component σ θθ of the stress tensor) at a distance ℓ from the tip in the direction θ 0 reads:

σ θ (ℓ, θ 0 ) = kℓ λ-1 s θ (θ 0 ) +•••. ( 16 
)
It is a decreasing function of ℓ. If the condition (4) holds at any point between 0 and ℓ, it becomes an upper bound for ℓ:

σ θ (ℓ, θ 0 ) σ c ⇒ ℓ 1-λ κσ a s θ (θ 0 ) σ c (1 -λ>0). ( 17 
)
Once again, this bound must be small in order to be sure that higher order terms in (16) are negligible. For a small applied load σ a , (15) leads to a high lower bound while (17) defines an incompatible low upper bound, thus for a monotonically increasing load the solution is achieved when equality holds in both ( 15) and ( 17). The increment length derives from these two equalities:

ℓ 0 = G c s θ (θ 0 ) 2 K(ω, θ 0 )σ 2 c . ( 18 
)
The structure embedding the micro-crack with length ℓ 0 is in equilibrium in the sense that the elastic solution is characterized by the absence of kinetic energy. However, it is highly unstable from the point of view of the growing crack. The energy release rate at the tip of the newly created crack is an increasing function of its length and moreover is still above the critical toughness G c :

G(ℓ 0 ) = 2λG c (λ > 1/2), (19) 
where G(ℓ 0 ) is computed using ( 12) and considering a small increment δℓ to ℓ 0 :

G(ℓ 0 ) =-lim δℓ→0 W p (ℓ 0 + δℓ) -W p (ℓ 0 ) δℓ . (20) 
Here, W p (ℓ 0 ) denotes the potential energy of a structure embedding a crack with length ℓ 0 . In a first step the crack length jumps from 0 to ℓ 0 and then grows continuously. There are two particular cases. If λ = 1 (the straight edge, ω = π ) the stress criterion does not provide any upper bound:

ℓ G c s θ (θ 0 ) 2 K(π, θ 0 )σ 2 c . ( 21 
)
If λ = 1/2 (the crack tip, ω = 0), it is the energy criterion that does not impose any lower bound:

ℓ G c s θ (θ 0 ) 2 K(0,θ 0 )σ 2 c . ( 22 
)
The crack increment length can be taken as small as needed and the differential approach of Griffith is permitted. Indeed, another conclusion would definitely condemn the approach.

The crack onset criterion

It is now commonly admitted that the intensity factor k is the relevant parameter to define a crack onset criterion at a notch [START_REF] Seweryn | Brittle fracture criterion for structures with sharp notches[END_REF][START_REF] Dunn | Fracture initiation at sharp notches: correlation using critical stress intensities[END_REF][START_REF] Qian | An experimental investigation of failure initiation in bonded joints[END_REF][START_REF] Reedy | Comparison of butt tensile strength data with interface corner stress intensity factor prediction[END_REF], 1997, 1999). It takes the Irwin-like form:

k k c , (23) 
where k c is the critical value of the intensity factor. Experiments are required for each notch angle to determine the critical value k c = k c (ω). Herein, it will be derived in terms of material toughness G c and strength σ c (or τ c ). Replacing for (18) in ( 13) or (17) leads to a condition for a crack onset in the direction θ 0 :

k G c K(ω, θ 0 ) 1-λ σ c s θ (θ 0 ) 2λ-1 . ( 24 
)
The direction of fracture θ c can be determined by the minimum value of the right-hand side of (24). In a homogeneous material, if the fracture properties are isotropic, i.e. independent of the direction of fracture, G c and σ c are constant and θ c is characterized by:

K(ω, θ c ) 1-λ s θ (θ c ) 2λ-1 K(ω, θ 0 ) 1-λ s θ (θ 0 ) 2λ-1 , ∀θ 0 , 0 <θ 0 < 2π -ω. (25) 
This condition coincides with the G-max branching criterion for a crack (λ = 1/2) [START_REF] Leguillon | Fracture in heterogeneous materials, weak and strong singularities[END_REF]. Once θ c is known, the eigenmode r λ u(θ) can be normalized in such a way that:

s θ (θ c ) = 1 (note that usually it is s θ (θ c ) = 1 √ 2π for a crack), (26) 
and the criterion takes the simplified form:

k G c K(ω, θ c ) 1-λ σ 2λ-1 c . ( 27 
)
It enjoys the following very nice property, it coincides with the Griffith criterion for a crack (λ = 1/2) and with the strength criterion for a straight edge (λ = 1) (see ( 10) and ( 11)).

For a notch in a homogeneous isotropic material under symmetric loading the fracture direction is known θ c = πω/2, thus we can define a critical value k c of k as a function of the material properties σ c and G c and of the notch angle ω (through λ and K):

k c = G c K(ω) 1-λ σ 2λ-1 c , ( 28 
)
where K(ω) holds for K(ω, πω/2). 

The outer wedge

It can be considered as a particular case entering in the same framework with ω>π (Fig. 3).

The first exponent to consider is λ>1 (it remains one term corresponding to λ = 1 but it is the irrelevant rigid rotation). As a consequence the stress field in the vicinity of the wedge vanishes, it is now an increasing function of the distance to the corner tip:

σ θ (r, θ 0 ) = kr λ-1 s θ (θ 0 ) → 0a s r → 0 (λ -1 > 0). ( 29 
)
Thus the stress criterion can never be fulfilled and then, as expected, a crack cannot initiate from an outer wedge.

Comparison with Seweryn's formula

Seweryn (1994) proposed a similar formulation that is written with the present notations (and especially with ( 26)):

k (S) c = 2 2(1-λ) λ G c K(0) 1-λ σ 2λ-1 c = 2 2(1-λ) λ K(ω) K(0) 1-λ k c . (30) 
It has been derived from the singular stress field, assuming an average stress condition (31) (similar arguments are employed in the average stress criterion of Whitney and Nuismer (Isupov and Mikhailov, 1998;[START_REF] Whitney | Stress fracture criteria for laminated composites containing stress concentrations[END_REF]) without any reference to the energy criterion (except for ω = 0, see below the calibration of d 0 ):

1 d 0 d 0 0 σ dr σ c . ( 31 
)
The distance d 0 is calibrated for a crack (ω = 0) and is expressed in terms of k Ic (which is equivalent to G c through the Irwin formula):

d 0 = 4k 2 Ic σ 2 c . ( 32 
)
Thus the length d 0 keeps constant for any notch angle ω, moreover it is four times larger than the distance ℓ 0 computed using ( 22) with ω = 0. c . Unit for k c is MPa m 1-λ as a consequence of (26).

ωk (D)

c from [START_REF] Dunn | Fracture initiation at sharp notches: correlation using critical stress intensities[END_REF] k c from (28)k The average stress criterion ( 31) is somewhat artificial, it looks like a non local law and is much more questionable than (17). All along ℓ 0 (18) the tension is above the limit strength of the material, while it is not along d 0 (32), the necessary condition (4) is not fulfilled. Moreover, the increment length ℓ 0 changes with the notch angle, it is typically a structural effect, while Seweryn tried to identify d 0 to a material property, making many references to Novozhilov's work.

Nevertheless the two formulations give numerical results close to each other, the deviation between ( 28) and ( 30) does not exceed 10% in the example of the next section (see Tables 1 and2). [START_REF] Dunn | Fracture initiation at sharp notches: correlation using critical stress intensities[END_REF] performed three-point flexure experiments on a specimen of PMMA for different notch angle ω and depth (measured by the ratio a/h, see Fig. 4). They also used a finite element simulation to identify the intensity factor k (9) of the singularity. They showed, by varying the notch depth, that it is the relevant parameter to define a crack onset criterion at the notch under the Irwin-like form: Table 1 compares the experimental critical values of Dunn et al. and the estimates derived from ( 28) and (30) using the following material data for PMMA: E = 2.3GPa,ν = 0.36, σ c = 12 MPa and G c = 394 J m -2 . Table 2 exhibits the singularity exponent λ and the scaling coefficient K(ω) and also compares the crack increment lengths ℓ 0 (18) (the present analysis) and d 0 (32) (Seweryn approach). The exponent λ and the coefficient K(ω) involved in (28) are numerically determined (using procedures described in [START_REF] Leguillon | Computation of Singular Solutions in Elliptic Problems and Elasticity[END_REF][START_REF] Leguillon | Fracture in heterogeneous materials, weak and strong singularities[END_REF], see also the Appendix) even for ω = 0 where both are analytically known. This explains the very slight discrepancy observed in line 1 of Table 1. The same eigenmode normalization ( 26) is used in both approaches, thus the values on line 1 (the crack) differs from the classical one by √ 2π (see ( 26)). Although there is not a perfect coincidence, a good agreement is found (Fig. 5) and the energy balance seems to play a predominant role even for notch openings quite different from the crack. 

Experimental results

Initiation at a notch in a homogeneous body

Failure of a butt joint

The failure of a butt joint is another example that shows the efficiency of the proposed criterion. Although there is no notch, the situation is very similar at the singular points. [START_REF] Reedy | Comparison of butt tensile strength data with interface corner stress intensity factor prediction[END_REF], 1997, 1999) made many experiments on epoxy (E = 3.5GPa,ν = 0.35) joints of different thicknesses in aluminum (E = 69 GPa, ν = 0.33) and steel (E = 207 GPa, ν = 0.30) specimens. Their main goal was to bring into evidence the influence of the joint thickness e on the intensity factor of the singularity located at the ends of the interface between the substrates and the joint (see Fig. 6).

Using a stretching of the domain by 1/e allows, at the leading order, rewriting of the problem in an unbounded domain undergoing a uniform vertical traction Trt(θ) (see ( 11) and the Appendix) at infinity:

U e (x 1 ,x 2 ) = U e (ey 1 ,ey 2 ) = Cte + Te ρt(θ) + V (y 1 ,y 2 ) +•••, (34) 
where y 1 ,y 2 are the stretched variables, y i = x i /e and ρ = r/e (Fig. 6). In this domain the joint thickness is now unity, V (y 1 ,y 2 ) is the solution to a well-posed problem and is singular at the two ends of the interfaces separating the substrates and the joint (see ( 9)):

V (y 1 ,y 2 )) = V (0, 0) + kρ λ u(θ) +•••. ( 35 
)
Note that the well-posedness of the problem is not trivial since ρu (θ) is not admissible within the layer and through the interfaces between the layer and the substrates [START_REF] Leguillon | Mode III near and far fields for a crack lying in or along a joint[END_REF]. Table 3 Comparison with [START_REF] Reedy | Comparison of butt tensile strength data with interface corner stress intensity factor prediction[END_REF], 1997, 1999) The fictitious intensity factor k in ( 35) is independent of the applied loads, it depends only on the elastic properties of the substrates and the joint. Using (34) and the stretching allows us to write the actual intensity factor k of the singularity (expressed in the unstretched, i.e. physical, coordinates):

k = Te 1-λ k, (36) 
as already proposed by [START_REF] Reedy | Comparison of butt tensile strength data with interface corner stress intensity factor prediction[END_REF] (with another method to introduce the coefficient k). The thickness e is a parameter of the experiments, they checked many different values from 0.25 mm to 2 mm. They also measured the ultimate strength of the specimen σ ult , it corresponds to the critical intensity factor T = T c = σ ult we are interested in. Thus, it is sufficient for our purpose to compute once for all the scaling coefficient k to get the critical intensity factors for different joint thicknesses and load levels:

k (RG) c = σ ult e 1-λ k. ( 37 
)
Gathering informations from the three articles leads to the results of Table 3. The toughness G c and strength σ c involved in (28) are taken to be the bulk properties of the epoxy: G c = 45 J m -2 , σ c = 45 MPa, although it is observed that failure occurs at the interface between the joint and one of the substrates where the stress concentration takes place. Experimental results are scattered and the predicted values lie well within the range of measures. The effect of thermal residual stresses can also be taken into account, predictions are in good agreement with results by Qian and Akisanya (1998) on butt and scarf joints.

Conclusion

As in other models (CZM, damage), the fracture onset criterion requires two parameters, the toughness (in general a characteristic energy) and the strength (in general a peak stress). These two data are equivalent to one of them plus a characteristic length. This length derives herein from a consistency argument between the classical energy and stress criteria. It is not a material parameter but a structural one, it depends for instance on the notch opening.
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 1 Fig. 1. The Parvizi et al. (1978) results. Theoretical (1) denotes the energy criterion, theoretical (2) the stress criterion, they are compared to the experimental results.
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 2 Fig. 2. The cracked notch in a homogeneous material.
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 3 Fig. 3. The unbreakable outer wedge.

  of the intensity factor beyond which fracture occurs.
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 4 Fig. 4. The three-point bend test on the notched PMMA specimen.
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 5 Fig. 5. Comparison of the theoretical critical intensity factor values with Dunn et al. (1997) and Yosibash (2001) experimental measures.

  

Table 1

 1 Comparison of theoretical critical intensity factor values k c and k

	(S) c (Seweryn, 1994) with Dunn et al.

Table 2

 2 Singular exponent, scaling coefficient and fracture lengths (from (18) and (32)). Unit for K is somewhat meaningless and not specified here.

	ωλK ( ω ) (×10 2 )	ℓ 0 from (18) (µm)	d 0 from (32) (µm)
	0 • 30 • 45 • 60 • 90 • 120 • 150 • 165 • 180 •	0.50 .248 0.502 0.243 0.506 0.242 0.513 0.237 0.545 0.212 0.616 0.176 0.752 0.128 0.857 0.098 10 .079	10.34 1 .3 10.54 1 .3 10.64 1 .3 10.84 1 .3 12.14 1 .3 14.64 1 .3 20.04 1 .3 26.14 1 .3 32.44 1 .3

  results on the critical intensity factor value for butt joint failure. Here k c is expressed in MPa mm 1-λ .

		λk	(RG) c	from (37)	k c from (28)
	Steel	0.70	11.4 k c 15.0	14.3
	Aluminum	0.73	14.0 k c 19.6	16.2

The main assumption made to get these results lies in the truncated expansion (9) of the elastic solution in terms of singular modes in the vicinity of the notch tip. The omitted part is supposed to be negligible. In the case of the butt joint there is a single singular exponent, the others are larger than 1 and then the assumption holds true. It is also true for a notch in a homogeneous body under symmetric loading. The first mode (retained) is symmetric while the second one (omitted) is anti-symmetric and then not relevant (the corresponding intensity factor vanishes). Moreover, in that last case, the results extend obviously to a pure anti-symmetric loading considering the shear strength.For a notch in a bimaterial wedge, the above arguments based on symmetries fail. Two singular terms must in general be accounted for, they are characterized by a pair of generalized intensity factors k 1 and k 2 (or even a complex one). The consistency between the two fracture conditions can no longer be explicitly solved. Nevertheless, a new expression of the criterion can be derived, it involves a mixity parameter evaluating the mixture of singular modes[START_REF] Leguillon | Finite fracture mechanics -Application to the onset of a crack at a bimaterial corner[END_REF]. Results are compared to some experiments worked out byMohammed and Liechti (Hutchinson, 2000;[START_REF] Mohammed | Cohesive zone modeling of crack nucleation at bimaterial corners[END_REF] on a notched bimaterial.In this respect, the only case that is easily accessible concerns a multiple singular eigenvalue. The definition of the mode mixity is no longer troublesome. It is for instance trivially the case for a crack in a homogeneous body (multiplicity of λ = 1/2 equals 2 in plane elasticity) but it applies also to a crack impinging orthogonally on an interface[START_REF] He | Crack deflection at an interface between dissimilar elastic materials[END_REF] Leguillon and Lacroix, 2000-a, 2000-b) where the double root λ is no longer 1/2. It will be the topic of a forthcoming paper dealing with new conditions for crack deflection by an interface derived from the above criterion.

Appendix

This appendix is dedicated to a brief recall of the matched asymptotics procedure that leads to some of the expressions used within the paper.

In plane linear elasticity, we consider a domain in which a corner is slightly perturbed by a flaw (a short crack or a small cavity for instance, Fig. 7(a)). The dimensionless diameter of this flaw is denoted ε. The solution U ε (x 1 ,x 2 ) to an elasticity problem in this domain can be expressed as the unperturbed solution U 0 (x 1 ,x 2 ) defined in 0 ( 0 is the limit of ε as ε → 0, Fig. 7(b)) plus a small correction:

where f 1 (ε) → 0asε → 0. Such an expansion (38) a so-called 'outer', is valid in the whole domain 0 (or ε ) except near the corner point where the geometry is perturbed. The solution U 0 (x 1 ,x 2 ) is singular at the corner point and can be expanded as:

See ( 9) and Fig. 2 for the meaning of the different terms. For simplicity, it is assumed that the leading singular term is a single real one.

In order to have a description of the near fields, the domain ε is stretched (×1/ε)andasε → 0 it leads to the unbounded 'inner' domain in spanned by the stretched variables y 1 = x 1 /ε and y 2 = x 2 /ε. The perturbation diameter is now 1. The solution can be expanded in this domain as:

where

It is the 'inner' expansion. Conditions at infinity are missing to define well-posed problems for the unknown functions V 0 (y 1 ,y 2 ) and V 1 (y 1 ,y 2 ). They derive from the matching conditions based on the existence of an intermediate area where both expansions ( 38) and ( 40) hold. In other words, the behaviour of the outer terms (in ( 38)) when approaching the singular point must match with the behaviour of the inner terms (in ( 40)) at infinity. The asymptotic behaviour of U 0 (x 1 ,x 2 ) being defined by ( 39), it leads to:

In addition the behaviour of V 1 (y 1 ,y 2 ) at infinity is prescribed: The function V 1 (y 1 ,y 2 ) is independent of the applied loads, it depends only on the local geometry and on the shape of the singular mode defining the condition at infinity (42). Using a superposition principle:

allows us to conclude that the second term of the inner expansion ( 40) is well-defined.

Let us now consider the change in potential energy δW p between the solutions in the unperturbed U 0 (x 1 ,x 2 ) and perturbed U ε (x 1 ,x 2 ) situations for unchanged boundary conditions (unchanged applied loads). Betti's theorem gives:

where Ŵ is any contour surrounding the corner and n its normal pointing toward the origin. The integral can be taken either in 0 (or ε )orin in . Selecting the inner domain and substituting the asymptotics ( 40)-( 43) in ( 44) leads finally to:

with (here d = 1, see ( 12)):

Clearly K depends on the shape of the perturbation through V 1 but not on its actual size since it has been stretched to 1. Moreover it is independent of the applied loads that appear in the inner expansion ( 40)-( 41) only through the coefficient k.The function V 1 can be computed once for all by finite elements and K can be derived using the contour-independent integral (46).