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Abstract

Lu this paper we establish the exponential convergence of the nonparamet-
rie kernel density estimator /* to the imknown density / in Ll(K?*,dx) for a
Mrf-valued <f)-mixing process verifying Ylk ^k < +oo and yield an exponential
inequality of Hoeffding’s type.

Keywords : kernel density estimator, <p~mixingness, Hoeffding type’s in-
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1 Introduction

Let {Xi; i > 1} be a sample taken from a «^-mixing process with values in Wl, defined
on probability space (O, T, P) with marginal distribution measure dp, — f(x)dx,
where the density f <5 Ll(Md) is unknown.'

i
The empirical measure is Ln — ~- ■ Let K be a measurable function

such that

(Hl) K > 0, JRd Kdx = 1,

and set Kh(x) —

as:

■~K(~). The kernel density estimator of / is defined as usually
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fn(x) — Khn * dLn(x) = • x e w>d
(1.1)

where {hn,n > 1} is a sequence of positive numbers (width of bands) satisfying

(H2) K —> 0, nhd —» +oo as n —> oo.

A natural measure of closeness of f* to the unknown / is its L\ distance below,

(1.2)
In the independent and identically distributed (i.i.d in short) case, L. Devrove,

in a fundamental paper [5], proved

Theorem 1.1. Let (X») be i.i.d. and K a nonnegative Borel measurable function
on M.d with f k(x)dx — 1 (i.e., (Hl)), then the following conditions are équivalent:

(i) Jn —> 0 in probability as n —» oo (weak consistency);
(ii) Jn 0 almost surely as n —» oo (strong consistency);

(iii) .Jn —> 0 exponentially as n oo, i.e., for any 5 > 0,

(13)(iv)limn hn = 0 and limnnhd — oo (i.e., (H2)).

Reeentiy Louani [il] (2000) prove the existence of limit in (1.3) and identifies
that limit —I(ô) (i.e., a large déviation principle). And we (together with B. Xie)
[10] establish a weak large déviation principle of f* in Ll (and it is known that
the good large déviation principle faits). Gao [8] (2002) establishes the large and
moderate déviation principle for f* in L°° under mild condition on K, f and (hn).

The study of kernel density estimators in the dépendent cases were realized by
manv people from different points of view : see Peligrad [13] (1992), T.M. Adams and
A.B. Nobel [1] (1998), Bosq, Merlevède and Peligrad [3] (1999) and the references
therein. For instance Peligrad [13] established the uniform consistency of f* (i.e,, in
L°° instead of L1) under weaker condition on the 0-dependence coefficient ((j>k) than
that used in this Note (nevertheless his conditions on K, /, (hn) are much stronger).
In T.M. Adams and A.B. Nobel [1] (1998), a general procedure to construct ergodic
processes for which the kernel density estimator fails to be weakly consistent under
(Hl) and (H2) is exhibited.

Note however that in the ^-mixing case, how to extend those results of large and
moderate déviations in [11], [8], [10] in the i.i.d. case is an interesting open question.
This question is quite délicate because even for stationary Doeblin récurrent Markov
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chains (for which (f>k decays exponentially to zéro), the large déviation principle
about partial sums fails in general (see Bryc and Dernbo [4]).

In this Note we wiîl carry out a first step towards the large déviations of /*,
i.e., to establish the exponential convergence of f* to / in Ll (Rd, dx) for 0-mixing
sequences verifying Yhk < +oo, under (Hl) and (H2). Moreover we will yield
an exponential inequality of Hoeffding type. Our main tool is the Hoeffding type
inequality established recently by Rio [14] (2000).

2 Main results

We brieflv recall what is meant by the terminology of 0-mixing process. Given a
sequence of randorn variables (Xi)i>\ with values in Md defined on (fl, T, P). For
two sub-(j-algebras A, B in T, define

Define for every integer k,

(j)k - sup {(f>(a(Xu ■■■ , Xm), a(Xm+i] l > /c))} .
m>1

Theorem 2.1. Let (Xi)iÇw be a stationary sequence ofM.d-valued r.v. with marginal
lav) fi(dx) — f(x)dx. Assume that

OG

(2.1)

Let K be a nonnegative measurable function on Rd with f K(x)dx — 1 (i.e. (Hl))
and (hn) a sequence of positive numbers verifying (H2). Then Jn —> 0 exponentially
as n —1 oo, i.e.,

lim sup — logP(Jn > <5) < 0, Vô > 0.

Theorem 2.2. In the context of Theorem 2.1, assume (2.1) and (Hl) for K. Then
for every n > 1 and ail r > 0,

P(i Jn - EJ„ | > rf\fn) < 2exp (2.2)

Remarks: How to extend those results to random fields (Xi)i€Zd is an interesting
open question. The main point consists in extending the Rio’s inequality in Lemma
3.1.
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3 Some déviation inequalities for </>-mixing sequences
AU of this Note is based on the following Hoeffding type inequality established
recentlv by E. Rio [14] (2000).
Lerama 3.1. ([14]) Tet f : En —» R satisfy

l/(*) - S(v) ! < L (3.1)
for ail x, y € En verifying )[{i\ i=- y,;} — 1. Then VA > 0,

Kexp [A(f(Xi,,X„) — W(Xi,• ■ ■ ,*„))]
<. f A2 „ „\ (3.2)< exp ( y • nL (1 + 25^) 1 ;

and in particular Vt > 0,

■■ ■• -■y»)-if- -p(~4py|) ■ (3-3)
Indeed (3.3) is Rio [14], Corollaire 1 and (3.2) is an immédiate conséquence of

[14], Théorème 1 togeiher with the proof of his Corollaire 1.
Consider the Hamming distance on En:

dff(æ,y) := æ- ^ y,}.
Condition (3.1) is équivalent to

\f(x) ~ f(y)\ < Ldalp*tf)j Væ,y € En
i.e., the Lipchitzian coefficient of f w.r.t. the Hamming distance dn is less than L.
In such way we can translate Rio’s inequality (3.2) into the following transportation
inequality, by Bobkov-Goetze [2]:
Corollary 3.2. Let fin be the law of (X\, ■ • * , Xn). Then for any probability rneasure
v on En,

Hen

Wi{v, f^) < (1 + 25V)y T IJ'n^‘

Wi(v\fin) := inf // dH(x,y)d7r(x,y)

(3.4)

where the infimum is taken over ail probability measures tt on En x En with marginals
v and fin, is the Wasserstein distance between v and pn ; and

, f f log ~[]f-dv if v < pn,h(u, fin) HJ { JI +oo otherunse

is the relative entropy (or Kullback information) of v w.r.t. pn.
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Notice that when AA, • • • ,Xn are indépendant, S# — 0 and inequality (3.4) is a
conséquence of the Pinsky inequality (i.e., (3.4) with n — 1 and S# = 0) together
with the tensorization technique. Inequality (3.4) was proved at first. by Marton
[12] (1996) for Doeblin récurrent Markov chains, and next extended by Samson [15]
(2000) for general 0-mixing sequences. But the condition in [15] is Ylk \/<Âfc < +oo,
stronger than the condition here.

See Ledoux [9] for a systematic treatment, (and référencés) and application of
such a transportation inequality to concentration of raeasure, and H. Djellout, A.
Guillin and the second author [7] (2002) for some further extensions of Rio’s resuit
above.

4 Proofs of the main results

4.1 Proof of Theorem 2.2

Let

g{x i ,xn)
JRd

1
- zZ Kh{u - Xi)

m
- fiu) du, Vi =(*„■

Then Jn
ail j exc

= g{X i,

ept j = i, we ha^
). Fix i = 1, • • • ,

re

n. For ail x, y G En such that Xj = yj for

1 g(x ) - g{y) 1 < - f \Kh(un jftd
- X{) - Kh{i

2
t- yi)\du <

n

In other words g vérifiés II to !n. Thu s applving (3.3) to g and —g, we
get (2.2).

4.2 Proof of Theorem 2.1

For the convenience of the reader we recall two well known lemmas in Analysis:
Lemma 4.1. (L\ version of Bochner’s theorem) Let K be a nonnegative Borel func-
tion on Rd with f K(x)dx — 1. Then lim/i_+o+ f \Kh * f(x) — f(x)\dx = 0, where
Kh{x) = h~dK(x/h).

See L.Devroye [5] (Lemma 1, p.897).
Lemma 4.2. (Lebesgue density theorem)If f is a density on Rd and B is a compact
set ofRd with X(B) > 0 where X is the Lebesgue measure, then

limA~l(hB) î f(y)dy = f(x), for almost ail x.,l->0 Jx+hB

See L.Devroye [5] (Lemma 2, p.898).
We now go to the
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Proof of Theorem 2.1. . Its proof will be divided into three steps, where the first
two steps are close to that of [5].

Step 1 By Lemma 4.1, it suffices to show that f |/*(a;) — Kh * f(x)\dx —> 0
exponentially as n —> oo. Note that

/*(z) = Kh*L„ = hrd ! K(^t)dLn(y).
Given s > 0, we can find finite positive constants M, L, m, ai,-- - ,am and

disjoint finite rectangles Ai, ■ * •, Am in of form Yli~i[xi,Xi + at) such that the
fonction

771

K(s)(x) = ^2ajIA}{x)
j=l

satisfies: < M,K^ = 0 outside [—L,L]d, and J \K(x) — K^\dx < e. Define
— jAA + rJn •— HH y u

Then

I !/«(*,) - Kh * f(x)\dx < J I f*(x) - f^'*(x)\dx
+ JIfP*(x) - A'f * f(x)\dx + J iAf> * f — Kh* f(x)\dx

< f h~d j |ifs(™) - K(^)\Ln(dy)dx
+ J \fi,‘)-'(x)-Kl;>*f(x)\dx
+ J h~d J - K(~Jt)\f(y)dydx

<2e + I \fie)’*{x) - K(*] * f(x)\dx.
Noting that du = fdx, then

(4.1)

f(y)dy — h d J Ln[dy)\axJx+hAi

\fhe)'*(x) ~ Kh] * f(x)\dx < è N / \h d [
i ’J J*+hAj

m »

< Mh~d ^2 / \p(x + hAj) - Ln(x + hAj)\dx.
3=1

Consequently for Theorem 2.1, it is enough to prove that for any finite rectangle
A nSLiN) xi + ai) of

M \Ln(x + hA) — /i(x + hA)\dx -» 0 exponentially as n—ï oo.
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Step 2. Fix such a rectangle A := + ai)i and let e > 0 be arbitrary.
Consider the partition of Rd into sets B that are d-fold products of intervals of the
form f——z}b. where i is an integer, and N is a fixed integer to be chosen later.N .N
Call the partition 4L

Let N be such that min* ai > —, A* — Ilf~i[x{ 4- —, x,- + ai — — ). Define

m = x i hA - IJ B Ç X + h(A\A*).
Be<S,BÇx+hA

Clearly,

\fj,(x + hA) - Ln(x + A)\dx

< Y IMB) - Ln(B)\dx + / {t,(Cx) + Ln(C,)}dx
BeV^BCx+hA '

Using the fact that for anv set C, and any probability measure v on Mrf,

J v{x + hC)dx = \{hC),
where A is the Lebesgue measure, the last term in (4.3) is bounded from above by

<shd

once if N vérifiés

mina* > and 2A(A) J f] (l - ÀÀj j < *.
Fix such N which is independent of n.

For any finite constant R > 0, letting Sqr :== {x € Rd; Jxf < R}, we cari bound
the first. term in (4.3) from above by

Y |£»(B)-m(B)| / dx+l dx{Ln(Sc0R)-rtSC0R)+MSC0B)}-
Be<tf,BnSonïct> JBÇx+hA JBÇx+hA

Here (-)c dénotés the complément of a set. Clearly, h d fBCx+hA dx < A(,4), and
t*{Sqr} < e by sufficiently large R.
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By Lemma 3.1,

^{LniSoji) — fi{SqR) > 5} < exp
2nô2

V5 > 0.
(1+2S*)V ’

Consequently for (4.2) it remains to establish

^ |Ln(J3) - /a(J5)j -> 0, exponentially. (4.4)
B€y,Bns0Rï4>

Step 3. Our proof of the key estimate (4.4) is very different from that in [5] and
it is the main new point here. Set

= {£; Sor 7^ 0}, C I (J B
\B£ÿ J

B(¥) = a{B] B €

Regarding Ln and n as probability measures on B(^), and denoting the total vari-
ation of Ln — p on Bfâ) by \\Ln — fi\\Brq,\, we hâve

£ !Ln(B) - n{B)\ < ||Ln - aIIS(*, = 2 max \Ln(B) - a(B)|.
mm*,»** «««>

Therefore,

P £ \L„(B)-ix(B)\>e] <p( max \Ln(B) - n(B)\ > C-
< £ p(lMB)-A(B)l>|)

BeB(ÿ)

At first by Lemma 3.1, for each B G B(4/),

\L„(B) - a(B)I > I) < P (i»(B) > a(B) + |) + P (l»(B) < a(B) - |
< 2 exp

2(1+2S*)2

(2RNSecondly, the number of éléments #4> in 4/ is not greater than + 2 ) = o(n)
by (H2), B((p) has 2#^ = 2°^ éléments for n large enough. Consequently

£ |I„(B)-a(B)|>£ <2»<">2exp
Bey^nsoR^H)

ne

2(1+2

where the desired (4.4) follows. This complétés the proof of Theorem 2.1.
□
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5 Concluding remarks
From the proof of Theorem 2.1 above, we see clearîy that for proving the exponential
convergence of /* to the unknown density / in L1, it is enough to show the key
relation (4.4) together with the exponential convergence of Lu(SqR) to h(SqB).
Thus by following the proof of (4.4), we see that Theorem 2.1 will remain valid once
if we can prove the following exponential déviation inequality

P(|I„(A) - > S) < WA c B(Rd) (5.1)

for some constants Ci(ô), C2{S) depending only on 6 (independent of n,A) and for
any S > 0.

In this Note we hâve applied Rio’s inequality which is stronger than (5.1). The
reader certainly guess that (5.1) holds in a much wider situation than the uniform
mixing case treated in this paper.
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