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Abstract

In this paper we establish the exponential convergence of the nonparamet-
ric kernel density estimator f to the unknown density f in LYR?, dx) for a
R4 -valued ¢-mixing process verifying Sk < +oo and yield an exponential
inequality of Hoeffding’s type.

Keywords : kernel density estimator, ¢-mixingness, Hoeffding type’s in-
equality, exponential convergence.

AMS Mathematical Subject Classification : 62G07, 60G10, 60F17.

1 Introduction

Let {X;;i > 1} be a sample taken from a ¢-mixing process with values in R, defined
on probability space (2, F,P) with marginal distribution measure dp = [(x)dz,
where the density f € L'(R?) is unknown.

The empirical measure is L, = —3_"  dx,. Let A be a measurable function
n = G
such that

(H1) K >0, [, Kde=1,

Tl
1\(5

. 1
and set Kj(z) =

— P ). The kernel density estimator of f is defined as usually
2
as:
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fa@) = Ki, *dLa(z Z% ( -‘ff)) By i

where {h,,n > 1} is a sequence of positive numbers (width of bands) satisfying
(H2) h, =0, nh - +4+c0 as n— oo

A natural measure of closeness of f; to the unknown f is its L; distance below,

ho= [ 1) - @), (1.2)

In the independent and identically distributed (i.i.d in short) case, L. Devrove,
in a fundamental paper [5], proved

Theorem 1.1. Let (X;) be i.i.d. and K a nonne gative Borel measurable function
on R with fk(z)dz =1 (i.e., (H1)), then the following conditions are equivalent:

(i) J,, = 0 in probability as n — oo (weak consistency);
(it) .J,, — 0 almost surely as n — oo (strong consistency);

(iit) J — 0 exponentially as n — oo, i.e., for any 6 > 0,

1
limsup — log P(J,, > §) < 0; {1:3)

n—oo I
(w) lim, hy, = 0 and lim, nhe = oo (i.c., (H2)).

Recently Lounani [11] (2000) prove the existence of limit in (1.3) and identifies
that limit —/(d) (i.e., a large deviation principle). And we (together with B. Xie)
[10] establish a weak large deviation principle of f* in L' (and it is known that
the good large deviation principle fails). Gao 8] {90()7) establishes the large and
moderate deviation principle for £* in L% under mild condition on HO f and [ hp)t

The study of kernel density estimators in the dependent cases were realized by
many people from different points of view : see Peligrad [13] (1992), T.M. Adams and
A.B. Nobel [1] (1998), Bosq, Merlevede and Peligrad [3] (1999) and the references
therein. For instance Peligrad [13] established the uniform consistency of falie i
L= instead of L') under weaker condition on the - dependence coefficient (@) than
that used in this Note (nevertheless his conditions on K, f, {hy) are much stronger).
In T.M. Adams and A.B. Nobel [1] (1998), a general pm(wluu' to construct ergodic
processes for which the kernel density estimator fails to be weakly consistent under
(H1) and (H2) is exhibited.

Note however that in the ¢-mixing case, how to extend those results of large and
moderate deviations in [11], [8], [10] in the i.i.d. case is an interesting open question.
This question is quite delicate because even for stationary Doeblin recurrent Markov
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chains (for which ¢, decays exponentially to zero), the large deviation principle
about partial sums fails in general (see Brye and Dembo [4]).

In this Note we will carry out a first step towards the large deviations of f,
i.e., to establish the exponential convergence of f: to f in L'(R?,dz) for ¢-mixing
sequences verifving 3, ¢x < +oo, under (H1) and (H2). Moreover we will yield
an exponential inequality of Hoeffding type. Our main tool is the Hoeffding type
inequality established recently by Rio [14](2000).

2 Main results

We briefly recall what is meant by the terminology of ¢-mixing process. Given a
sequence of random variables (X;);>; with values in R? defined on (2, F,P). For
two sub-g-algebras A, B in F. define

¢(A, B) = sup {}IP(V) - IP(_;(—Q)‘) s Ue APU)#£0,V € B} .
Define for every integer k.

(«‘{‘k = sup {(}5(0(.};1, i fx‘m)sa(-x'm+l':'i = k))} .

m=>1

Theorem 2.1. Let (X,)icn be a stationary sequence of R -valued r.v. with marginal
law p(dz) = f{x)dr. Assume that

Se =Y _ ¢ < +00. (2.1)

k=1
Let K be a nonnegative measurable function on RY with [ K(z)dz =1 (ie. (H1))

and (h,) a sequence of positive numbers verifying (H2). Then J, — 0 exponentially
as n — oo, t.e.,

1
lim sup — log P(J,, > §) < 0, Yé > 0.
n—oco 1

Theorem 2.2. In the context of Theorem 2.1, assume (2.1) and (H1) for . Then
Jor everyn > 1 and all v > 0,

o
(S
S

P(|.Jn — EJn| > 7//R) < 2exp (—W) : @

Remarks: How to extend those results to random fields (Xi)ieza 1s an interesting

open question. The main point consists in extending the Rio’s inequality in Lemma
3.1.
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3 Some deviation inequalities for ¢-mixing sequences

All of this Note is based on the following Hoeffding type inequality established
recently by E. Rio [14] (2000).

Lemma 3.1. ([14]) Let f : E™ — R satisfy

If(@) - fy)l <L (3.1)
for all x,y € E™ verifying #{i; z; # ‘y;} =1 henNh=b

}EOX!) [/\ (.f(-x—h Ny A\'Ji) r Ef(:\'l 45T 5-\,11))]
2
< exp (% -nL*(1+ 2.5},,}2) ;

and in particular Yt > 0,

e . - t 2t*
P(f(X, - Xn) —Ef(X,--+,X,) > 1) <exp (ﬁm_nll(l PR )2) : {3.3)
g @

Indeed (3.3) is Rio [14], Corollaire 1 and (3. 2) is an immediate consequence of
[14], Théoreme 1 together with the proof of his Corollaire 1.
Consider the Hamming distance on E™:

dp(x,y) = #{6; xi # yi}.
Condition (3.1) is equivalent to
|f(x) — f(y)| £ Ldy(=x,y), Vz,y € E”

1.e., the Lipchitzian coefficient of f w.r.t. the Hamming distance dy is less than L.
In such way we can translate Rio’s inequality (3.2) into the following transportation
inequality, by Bobkov-Goetze [2]:

Corollary 3.2. Let yu, be the law of (X1, -+, X,). Then for any probability measure

v on BT,

Wiy, pn) < (1 +28,) h(v; ). (3.4)

Wi (v; ptn) := inf //rf” T, y)dm(z,y)

where the infimum is taken over all probability measures m on E™ x E™ with marginals
v and (i,, is the Wasserstein distance between v and fin; and

l\.Jl"

Here

]}) dv (ii'/ il < o
h\’l/.}.‘”) == {[ 08 diiy f !

+o0 otherwise

s the relative entropy (or Kullback information) of v w.r.t. p,.
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Notice that when X, ..., X, are independent, S; = 0 and inequality (3.4) is a
consequence of the Pinsky inequality (i.e., (3.4) with n = 1 and S, = 0) together
with the tensorization technique. Inequality (3.4) was proved at first by Marton
[12] (1996) for Doeblin recurrent Markov chains, and next extended by Samson [15]
(2000) for general ¢-mixing sequences. But the condition in [15] is Yok VA < +oo,
stronger than the condition here.

See Ledoux [9] for a systematic treatment (and references) and application of
such a transportation inequality to concentration of measure, and H. Djellout, A.
Guillin and the second author [7] (2002) for some further extensions of Rio’s result
above.

4 Proofs of the main results

4.1 Proof of Theorem 2.2

Let

gl ) = /
Sy

Then J, = g(Xy,--- ,X,). Fixi=1,--- ,n. For all z,y € E" such that s — 1) o1
all j except j =i, we have

du, Yo = (21, , 3} € E".

i Z Kip(u— x;) — f(u)
n 4
7=l

1 2
lg(x) =g < = | |Kn(u—z;) — Kp(u — y)| du < =
N Jmd n

In other words ¢ verifies (3.1) with L = 2/n. Thus applying (3.3) to ¢ and —g. we
get (2.2).

4.2  Proof of Theorem 2.1
For the convenience of the reader we recall two well known lemmas in Analysis:

Lemma 4.1. (L, version of Bochner’s theorem) Let K be a nonnegative Borel func-
tion on R? with [ K(zr)dz = 1. Then limy_o; [ |Ky * f(z) — f(z)|dz = 0, where
Ky(z) = h=?K(x/h).

See L.Devroye [5] (Lemma 1, p.897).

Lemma 4.2. (Lebesgue density theorem)If f is a density on R? and B is a compact
set of R? with A\(B) > 0 where ) is the Lebesgue measure, then

lim A~Y(hB) / fly)dy = f(z), for almost all .
Jr+hB

h-—0

See L.Devroye [5] (Lemma 2, p.898).
We now go to the



Proof of Theorem 2.1. . Its proof will be divided into three steps, where the first
two steps are close to that of [5].

Step 1 By Lemma 4.1, it suffices to show that S falz) = Ky * f(z)|dz — 0
exponentially as n — co. Note that

F(o) iy ey =ho [ ;@ o

Given ¢ > 0, we can find finite positive constants M, L, m, a;,--- ,a,, and
disjoint finite rectangles 4,, ---, A, in B? of form nf: @i 2 + @) such that the
function

K9(z) =" a;l4(z)
i=1
satisfies: K < M, K) = 0 outside [-L, L]%, and JIK(z) — K©)|dz < ¢. Define

fiﬂ*:::]ffj* Lu-
Then

/f_f;(:r) — Kb * f(z)ldz < / |fa(z) = fl* (z)|dz
/mf** ) — K& & (;;.—)|¢z.f.:+/;1{’,ﬁ x f— Ky * f(2)|dz
/h"‘ /[Kf(‘r; ) — K(Z—Y)|L,.(dy)dz
/|f,g) (a h,” * f(a2)|dr
+ [0t [1KOETY - K EY) fg)ayds
<2z + / | fE* () — K\« f(x)|dz.

(4.1)
Noting that dy = fdz, then

m

/lff,} x) — K\« f(2)|de <Z|(,?; / W'rf

x-+hA;j

fly)dy — h™ / L, (dy)|dx
r+hA;

m

3 ”h_,fz/m (2 + hA;) — La(z + ha;)|dz.

Consequently for Theorem 2.1, it is enough to prove that for any finite rectangle

A =TT [z, 2: + a;) of RY,

h~¢ /Ji,,,(.r + hA) — p(z + hA)|dr — 0 exponentially as n — co. (4.2)
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Step 2. Fix such a rectangle A := Hle[;z:,. a; + a;), and let £ > 0 be arbitrary.
Consicler the partition of R? into sets B that are d-fold products of intervals of the
1)h ih :
form [ ) , ~ ), where i is an integer, and N is a fixed integer to be chosen later.

1
Call the I)(U.t-ltloﬂ W,

1 :
Let N be such that min; a; > %, A* =T [z + = ’V’ T+ a; — ﬁ) Define
Co=x+hA- |J BCz+hA\A)
BeWw BCax+hA
Clearly,

/[u(m +hA) — Lp(x + A)|dx

/‘ Z [11(B) — L( dl-ﬁ-[{p ) + Ln(C,) }dx

BeWw BCax+hA

(4.3)

Using the fact that for any set €', and any probability measure v on R?,

/u(:r + hC)dz = A(hC),

where A is the Lebesgue measure, the last term in (4.3) is bounded from above by

AB(A\A%)) = 20A(4\A°) = 287 (H H (= T))
d 9
__opd . s
= 2h9\(A) (1 I_Il (1 ‘\,”l))

=ch

once if N verifies

5 d 9
mmf > N and 2A(A) (1 - H (1 3 ,-\:u-l) 2

g1

m

Fix such N which is independent of .
For any finite constant R > 0, letting Sop := {2 € R?; |x| < R}, we can bound
the first term in (4.3) from ahave by

3 |Lu(B)-u(B)| du+ j dr{ La(Shr)— (S5 2) +21(S5 )}
J BCax+hA BCx+hA

BEW.BNSop#t

Here ()¢ denotes the complement of a set. Clearly, h~¢ .['HQ_H pa 8z < A(A), and
1(56r) < £ by sufficiently large R. i
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By Lemma 3.1,

; A ng?
P{L,(S6r) — 11(S5r) > 0} < exp (—m) Sl = 0
Consequently for (4.2) it remains to establish
Z |Ln(B) — p(B)| — 0, exponentially. (4.4)

BeW¥,BNSor#d

Step 3. Our proof of the key estimate (4.4) is very different from that in [5] and
it is the main new point here. Set
V={B;BeV,BNSor#0}, C:=| | B
Bed
B(V) = o{B; B € ¥}.

Regarding L, and p as probability measures on B(T), and denoting the total vari-
ation of L,, — p on B(¥) by || L, — 1)l @y, We have

> |Lu(B) - u(B)l < ILn — ullggy =2 max |La(B) — u(B)|.

BEW,BNSop#0 BeB(W)

Therefore.,

P nB - uB) > | <P (s La(B) ~ (B > )

3 ‘- 2
BeW,BNSo R#D BeB()

IA

3" P(ILa(B) - u(B)I > 5)

BeB()
At first by Lemma 3.1, for each B € B(),

B (ILu(B) ~ u(B)| > 5) < P (La(B) > u(B) +

) +IF’(L,,(B) < u(B) -

)

| M

, S 2RN 4
Secondly, the number of elements #W in W is not greater than (T + 2) = o(n)
)

by (H2), B(¢) has 2#¥ = 2°(") elements for n large enough. Consequently

ne

2
7 L i £ < 2«':(?1,]2 ' o e LN
P > |Lu(B) - u(B)| > | < (\p( 513 +25¢)2)

BeW¥,BNSg R#0

where the desired (4.4) follows. This completes the proof of Theorem 2.1.
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5 Concluding remarks

From the proof of Theorem 2.1 above, we see clearly that for proving the exponential
convergence of f* to the unknown density f in L' it is enough to show the key
relation (4.4) together with the exponential convergence of L,(S&,) to u(S&y).
Thus by following the proof of (4.4), we see that Theorem 2.1 will remain valid once
if we can prove the following exponential deviation inequality

P(|L.(A) - p(A)| > 6) < C1(8)e ", VA C B(R') (5.1)

for some constants Cy(6), C»(d) depending only on ¢ (independent of n, A) and for
any o > 0.

In this Note we have applied Rio’s inequality which is stronger than (5.1). The
reader certainly guess that (5.1) holds in a much wider situation than the uniform
mixing case treated in this paper.
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