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ABSTRACT Key exchange protocols are a crucial part of the internet-based communication between
connected devices in IoT. In this regard, Physically Unclonable Function (PUF) has been an enabler to
provide intrinsic highly randomized source for key generation without requiring extra storage components.
PUF however, is an unstable source. In that sense, Fuzzy Extractor (FE) methods with Error Correction Code
(ECC) are used to ensure reliability of the key value. FE methods incorporate publicly available helper data
to recreate an originally enrolled encryption key from the PUF in mission mode. It is crucial to ensure
that the publicly available helper data leaks no valuable information from the source key value to allow
untrusted parties to recreate the key. Here the adversary’s work is to modify the helper data to decrease the
entropy of the recovered codes by the ECC, and push the communicating parties in generating the key that
is known to the adversary as well. In this work, we propose to protect helper data via a PUF-based masking
mechanism with variable positioning. Masking with variable positioning adds a new fold of complexity for
the adversary which is capable to considerably increase the guessing entropy. Our experimental results show
that for 256-bit helper data, a 16-bit mask value can increase the guessing entropy by 5 folds against a Reed
Muller majority logic vote decoder. Moreover, we show that an increased number of masking such as 4
times a 16-bit masking, can increase the guessing entropy against the same Reed Muller decoding function
by 20 folds.

INDEX TERMS Fuzzy Extractor, Helper Data Manipulation Attack, Majority Logic Vote Decoder,
Physically Unclonable Function, SRAM PUF.

I. INTRODUCTION
hysically Unclonable Functions (PUF) are known ubiq-
Puitously as ideal security primitive for light-weight and
low-cost encryption key generation and device authentication
[1]-[3]. PUF is mostly seen as a hardware function which
incorporates the process variations (e.g., threshold voltage,
critical dimensions) of a manufactured chip into a digital
"fingerprint" that is unique to the hosting device [4], [5].
Memory-based PUF such as SRAM PUF had gained
significant attention for key generation schemes. Memory-
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based PUF incorporates the micro physical features of a
manufactured device memory, such as the initial value of
the SRAM memory cells on device power-up state [5]. A
good PUF is extracted from physical components’ process
variation and is consequently prone to erratic responses due
to variations in temperature, voltage, etc. Therefore, PUF
response should be used with error correction codes to build
robust encryption keys [4], [6]-[9]. To utilize SRAM PUF in
key generation schemes, a mechanism which enables perfect
correction of the unstable output of SRAM cells with zero
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errors is required such as in [8], [10], [11].

Early encryption key generation methods based on
memory-based PUF such as in [10] and [12], suggest us-
ing fuzzy extractor (FE) to generate an originally enrolled
secret key from a noisy PUF response. In these methods
a registration phase exists where an original secret key is
generated with a helper data. Once the key and the helper
data are generated, the key is stored and the helper data
is shared publicly to be re-queried by the enrolled device
for mutual key generation. Since helper data is assumed
publicly available, it is prone to risks of being queried and
manipulated by adversarial parties as well [13]-[16]. Various
Helper Data Manipulation (HDM) Attacks exist which aim
either at regenerating the original secret key by modifying the
helper data and redirecting it to the PUF-enabled device [17],
or derive the PUF-enabled device to regenerate a key value
that is known to the adversary [18]. The second type of HDM
Attack in fact aims to reduce the entropy of the recovered
codes by FE while it uses the modified helper data for code
recovery. The lowered entropy is also known to the adversary
if he knows what ECC is used on the device. Therefore, with
an enumerable number of guesses for the recovered code, the
adversary can generate a mutual key same as it is generated
on the target device.

Several countermeasures have been already proposed to
protect PUF-based key generation against specific helper
data manipulation attacks [19]-[21].However, these methods
are designed either for a specific protocol implementation,
or only provide manipulation detection of the helper data.
Therefore, the overall security of the helper data remains an
open problem since powerful HDM Attacks as we discussed
above are able to considerably reduce the entropy of the
recovered codewords and bias the key generation on the PUF-
equipped devices.

In this work, we propose helper data masking to increase
the guessing entropy for HDM Attacks. We propose using
the embedded SRAM PUF as the source of mask value
generation. This requires to use again the FE and ECC to
build robust mask values which can be regenerated in the
mission mode. By using PUF as the source of mask values,
we assure first that the randomness of mask values is as high
as for the generated secret keys. Moreover, we assure that
there is no reliance on non-volatile memories to store the
mask value.

Here we elaborate on a masking protocol with variable po-
sitioning to randomize the helper data. Variable positioning
of the mask value in turn adds a new fold of complexity
into the guessing structure of the HDM Attacks. Thus the
adversaries should take into account every possible position
that the mask is applied on the helper data. Depending on
how large the helper data is, variable positioning can infer
large possibilities of where the mask is applied on the helper
data. This in turn can decrease the success-rate of the HDM
Attacks by orders of magnitude. We support our work with
experimental assessments of a simulated HDM Attack on
a Key generation method based a Reed Muller code with

2

Majority logic vote decoding mechanism that is protected
with our proposed masking mechanism. We show how mask-
ing with variable positioning on helper data can drastically
decrease the success-rate of HDM Attacks. The contributions
delivered in this work are in the following:

1) Introducing a robust SRAM-PUF-based randomized
mask value generation scheme.

2) Introducing helper data masking with variable posi-
tioning as a countermeasure against a higher-order
HDM Attack where the knowledge of the masking with
variable positioning is known.

3) Experimental assessment of helper data masking with
variable positioning by reproducing the key generation
and HDM Attack proposed in [18] in MATLAB.

The rest of the paper is organized as follows. In section
II the preliminary information of PUF based key generation
using FE and ECC, as well as HDM Attack are discussed.
In section III, we elaborate on our helper data masking with
the proposed variable positioning technique. Here we also
elaborate on the adaptation of HDM Attack which is aware
of the masking mechanism in the key generation technique.
We also discuss the characteristic of weak mask values in this
section. In section IV, we discuss our theoretical analysis of
HDM Attack guessing entropy against our proposed masking
mechanism. In section V we discuss our experimental setup
and in section VI we discuss the experimental results of a
case study HDM Attack against a candidate FE-based helper
data masking. Section VII is the conclusion of our work and
our future perspectives.

Il. PRELIMINARIES

A. FUZZY EXTRACTOR-BASED ENCRYPTION KEY
GENERATION USING MEMORY-BASED PUF AND
HELPER DATA

The primary part of encryption key generation is to read
the power-up binary values of memory cells. During the
enrollment phase, the power-up binary values of memory
cells are captured and stored on the server. These values
are in turn the source to create encryption key values. An
original key value is the base value which is hashed to create
the encryption key on the server side. Meanwhile, an offset
code from the original key value is also created as the helper
data to send to PUF-enabled device. The PUF-equipped
device uses the helper data in a fuzzy extractor to mutually
generate the original key value known by the server as well.
In this section, we will explain the Robust Fuzzy Extractor-
like (RFE-like) construction as discussed in [18]. RFE is
commonly used in key generation schemes to re-generate
an original secret value from a noisy source (e.g., PUF) by
using a publicly available helper data. To ensure a secure
value recovery in an RFE construction, a 2 step verification is
performed. First, a hash value generated from the recovered
secret value is compared with a hash value given as part
of the helper data. These two values should be the same to
succeed in the first step. Secondly, the Hamming Distance
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FIGURE 1: Illustration showing the RFE-like construction (a) the registration phase, (b) the recovery phase, and (c) the recovery
phase with presence of HDMA, of the SRAM-PUF based encryption key generation.

(HD) between the recovered value and the regenerated value
is checked with a pre-defined threshold. The HD value lesser
than the threshold implies success in the second step. If any
of the verification steps fail, the key generation is considered
a failure.

RFE-like construction is also a derivative of RFE con-
struction with the difference that the security of the RFE-
like is provided with only the verification procedure through
a comparison of an original and a regenerated hash value.
A detailed description of an RFE-like construction is in the
following.

FIGURE. 1.(a) shows the enrollment phase of an RFE-like
construction where a verification hash value h is created by
hashing an SRAM-PUF response w with H1 hash function.
Helper data s is also created by XORing the SRAM-PUF
response w with a generated random codeword x. Noting
that a True Random Number Generator (TRNG) is used here
to generate a random message which is encoded to yield a
random codeword x. The SRAM-PUF response is hashed
with H?2 to extract the encryption key r which is stored on the
server to be used during the encryption key recovery phase.

FIGURE. 1.(b) shows the recovery phase of an RFE-like
construction where helper data s and verification hash value
h are requested from the server by the PUF-enabled device.
As the device receives the queried data s and h, s is then used
to recover the generated codeword x from the noisy SRAM-
PUF response w’, and then the original SRAM-PUF response
w is recovered by XORing the = with s. The recovered w
is then hashed with H1 and the regenerated hash value is
compared with A that was received from the server, to verify
the originality of w. If equal, w and helper data s are hashed
with H2 to regenerate the encryption key r for final output
r'. If not original, the extractor returns failed on 7.

B. HELPER DATA MANIPULATION ATTACK

HDM Attack refers to an attack against soft decision ECCs
[16], wherein the attempt is to reconstruct the original PUF
response in a divide and conquer fashion, by passing many
attempts of sending modified helper data to the PUF-enabled
device. During each failure in response reconstruction, the
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adversary learns information about the original response,
leading to the reconstruction of the response. While proved
in theory, in practice, it will take many attempts until the
adversary obtains full knowledge of the original response.
In contrast to the primary HDMA, another HDMA was also
introduced in [18] where the attempt is not the reconstruction
of the original PUF response but instead to try to set the re-
constructed PUF response to a value known by the adversary.

In practice, often single long codes are not used as code-
words, but instead, it actually consists of smaller concate-
nated codewords [22]-[25]. This approach is considered for
the RFE-like construction we use in our evaluations. In this
case, the first assumption is that the adversary knows the size
of target codeword, and will apply helper data modifications
repetitively on each sub-division of the helper data. FIGURE.
1.c shows the schematic of HDMA during the recovery
phase. During the attack, we assume that the adversary is
eavesdropping on the public data query and responds to the
query from the server. Using helper data s and hash value
h from the server, the adversary targets a subsection of the
helper data s, by applying an error vector to each sub-part to
manipulate the helper data and create adversary’s helper data,
Sq. The adversary also has a reduced set of codewords C,
which is a subset of the larger codeword set C' that is used on
the server during the enrollment phase to create helper data.
This reduced set C, is in fact extracted relative to the error
vector the adversary is using. By choosing a codeword X,
from C,, the adversary attempts the re-generating of a PUF
response w,, which in turn is used to create a candidate ad-
versary verification hash value h, and adversary encryption
key rq.

The adversary’s’ helper data s, and adversary’s’ verifica-
tion hash value h, are then sent to PUF-enabled device, as
a response to the public data query the PUF-enabled device
has passed initially. While on the PUF-enabled device, the
same steps of the recovery phase are taken, the way for the
adversary to know if the re-generation of adversary’s key
value r, is successful, is to receive the positive response of
the comparison check of the adversary verification hash h,
with the one locally generated on PUF-enabled device.
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Usually with the presence of HDMA, the failure rate of
key generation will rise as expected. Therefore, the recovery
process will be to repeat, until either the number of attempts
for re-generation per query passes a pre-defined threshold, or
the regeneration of a mutual key between the adversary and
the PUF-device becomes successful, leading to the result of
having r’ being equal to 7.

As the RFE-like construction is explained, one can see
that the reason why HDMA can be successful is that there
is no check on the authenticity of the received helper data
s during the recovery phase. In other words, during the
recovery phase, any helper data 5 can be used to recover a
codeword  and following that, produce a random PUF image
w and a verification hash value h. And as long as h is equal
to a received verification hash value h, the regenerated key r’
is valid. And since the adversary can also decide on the value
of h, producing h,, he can enforce a match between a h and
h, after multiple trial and errors.

In the following section it is shown how these notions
were used in the baseline implementation of the experimental
setup of this work.

lll. HELPER DATA MASKING WITH VARIABLE
POSITIONING

In this section, we elaborate on PUF-based helper data mask-
ing mechanism with variable positioning. First, we discuss
how we employ PUF as the source of mask value generation.
Then, we elaborate on the variable positioning mechanism.
Later on, we discuss the threat model which is a derivative
of HDM Attack that has knowledge of masked helper data
with variable positioning. We then statistically show how
the new threat model still has a large guessing field to
explore breaking the key, compared to the conventional case
of attacking helper data without masking as discussed in [18].

A. MASK VECTOR GENERATION

Commonly on a secured PUF-enabled device, using a non-
volatile memory (NVM) on the PUF-enabled device to store
secret values (e.g., mask values) is not suggested. That is due
to its cost and the security issues with this type of memory.
Moreover, for generating mask values on a PUF-enabled
device, the values should be highly randomized to avoid
any exploitable leaks that allow adversarial third parties to
recreate the mask. Here we propose using SRAM-PUF itself
as a source of mask generation. In our proposed scheme, the
SRAM-PUF will be the source of both the key generation,
and mask vector generation. This in turn eliminates the
need for any storage component on the board to store the
mask values. Therefore the method will be cost-efficient and
physically secure. Moreover the PUF, assuming it has a good
characteristic, is an ideal source of randomized value gener-
ation. That is a key criterion for key generation which makes
at first place the PUF a good candidate for encryption key
generation. For the same reason, it can be a good candidate
for generating mask values with high randomness as well.
Here we define the mask vector generation as a process
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to read the power-up binary values of several consecutive
memory cells from an SRAM device.

Using PUF as the mask value source, one should guarantee
that the generated mask vector is highly reliable since the
source is inherently noisy. This means that the recovery of
the mask value on the PUF side should yield exactly the same
value used on the server side. To assure the reliability of mask
vectors, one can consider using a fuzzy extractor that can
suitably address the noisiness of the PUF source. The helper
data based RFE-like construction in this case can also be used
to assure reliability, equally to that in Key generation.

To elaborate on helper data masking, let us define the
process of masking to be the XORing of a candidate mask
vector on some sub-parts of the helper data bit stream. We
assume the mask vector itself is a bit stream as well. The
masking process is issued on the server side after the helper
data is reloaded and just before answering the query from
the PUF-enabled device. To answer the query, the server
sends the masked helper data with an extended helper data
for the recreation of the mask value along side with the rest
of the public data to the PUF-enabled device for mutual key
generation. On the PUF enabled device, the masked helper
data is demasked using a mask vector that is recovered from
the on-board PUF and the extended helper data.

For an adversary in the middle, we assume that there is no
access to the source of the mask value. Thus the adversary
has to undergo a guess-based procedure to discover the mask
vector value in order to demask the helper data. Recalling
that the adversary initially needs the original helper data in
order to recreate the PUF response. Therefore, one can say
that masking of helper data potentially increases complexity
of the HDM Attack. This in turn can distance the adversary
from the point of success in generating a mutual encryption
key.

The general sketch of our proposed key generation pro-
tected with helper data masking is shown in FIGURE. 2.
Here, the key generation process is the same as explained in
Section II.A. The additional part is the masking of the helper
data before answering a query from a device. Here also the
helper data based RFE-like construction is used for mask vec-
tor generation during the recovery phase on the PUF-Enabled
device. Following FIGURE. 2, during the registration phase,
aside to enrolling PUF response w; for key generation, the
PUF response wy as mask vector generation is also enrolled.
Correspondingly, helper data s of the enrolled mask vector
is also created and also wy as the original mask vector, is
XORed with s; to mask the primary helper data and produce
M s as masked primary helper data. All of the generated
information in this phase are then stored on the server.

During the recovery phase, the public information sent to
PUF-Enabled device includes 2-parts helper data, where the
initiative part is the masked primary helper data M s used for
key generation. The latter part is the secondary helper data
so used for mask vector recovery. During the recovery phase,
the primary attempt is to recover the original mask vector.
Thus secondary helper data s is XORed with captured PUF
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Author et al.: Preparation of Papers for EEE TRANSACTIONS and JOURNALS

IEEE Access

response w4 from SRAM-PUF 2, and the output is decoded
to generate a recovered codeword zo. The output is then
XOREd with s, to recover wq as the original mask vector.
wo is then XORed with the masked primary helper data M s
to demask the helper data and produce s.

Using this construction, one can assure that reliability is
equally provided for the recovered mask vector as well as
in PUF response for key generation, in addition to primarily
securing primary helper data. However, the secondary helper
data is now exposed and HDM Attack can exploit that to
break the masking. However, with the extension of adding
variable positioning mechanism to the masking scheme, one
can assure that even with the exposure of the mask value
helper data, the adversary has to undergo an exploration in
a large guess-field in order to guess the position of the mask
and correctly demask the helper data.

B. MASKING WITH VARIABLE POSITIONING

To mask the helper data with variable positioning, we pro-
pose applying a mask vector which is a bit vector smaller than
the helper data bit string. Additionally, we propose to variate
the mask vector’s application point with respect to the value
of the mask. Therefore, the address of the target region on
the helper data string is defined by an address vector that is
defined within the mask vector itself. FIGURE. 3 shows how
this positioning mechanism works. Wherein the first n bits of
a k-bit mask vector, wo is used to define the address of the
mask vector (e.g., the ith block of the primary helper data s;
as shown in FIGURE. 3). Given that the helper data and the
mask vector are bit strings, the address checker block shown
in the figure can in turn be a shift register which outputs
the bit string with the same size of the helper data. In the
string, the mask vector is shifted n times from the beginning
of the string to be placed in the required address for masking.
The output string then can be XORed with the helper data to
produce masked helper data.

Following this construction, the address of the target block
depends on the true value of the mask vector. In specific,
it is depended on the part of the mask vector which the
address is extracted from. Moreover, to break the key from
a key generation procedure protected with masking with
variable positioning, the HDM Attack model needs to adapt
as well. In the following we explain the HDM Attack that has
knowledge of masking with variable positioning.

C. VULNERABILITY OF MASKING AGAINST HDM
ATTACK

With the application of masking over helper data, the HDM
Attack as proposed by [18] will not be applicable anymore
to break the key. However realistically, we can assume that
at some point the adversary will obtain knowledge that the
helper data is masked. We assume here the worst case in
which the mechanism of helper data masking with variable
positioning is known to the adversary. Thus, the adversary
will try at the same time to find a combination of guessable
values for the codeword with reduced entropy for mask value
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FIGURE 3: Illustration showing how masking with variable
positioning is applied on helper data.

regeneration, the position where the mask is applied on the
masked helper data, and the codewords with reduced entropy
for the regeneration of the encryption key. The key point here
is that with reducing the entropy of guessable codeword to
break the mask value, the adversary is still faced with the
same entropy of guessing the position of the masked region
on the helper data. In other words, since the position of the
masked region is dependent on the true value of the mask, its
entropy will stay the same even after modifying the helper
data by the adversary. In the following, we explain in details
the threat model against masked helper data.

The new threat model of HDM Attack which is a derivative
of Becker’s HDM Attack proposed in [18] is shown in
FIGURE. 4. The primary phase of the new HDM Attack is to
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modify the mask value. At this phase the adversary first elects
an error vector e¢; and accordingly a X, ; form a reduced
set of codewords with k£ possible codewords, accordingly
{Xa1s-, Xa i} The helper data s, for the mask value is
then XORed with the elected e; and X a;. At this stage the ad-
versary’s modified mask value was is generated.was is then
passed into a mask stream generator function which takes
in addition an elected Addr; which is a number indicating
the position of the mask on the stream. The mask stream is
then XORed with the received masked helper data M s. The
product of the last XOR is an elected demasked helper data
dmsa which goes into a phase two of modification which is
similar to that as discussed in section IL.B.

As can be seen, in this model, two guessing fields in phase
1 are similar to that of phase 2. Specifically, the guessing
field for electing an error vector and a codeword. However,
an additional guessing field is also needed to elect the address
of the mask. Noting that the guessing field for the address of
the mask cannot be reduced similar to the guess field for the
reduced codewords to elect a Xa;. This is due to the fact
that the address of the masked region depends on the original
value of the mask. Recalling that we proposed to define the
address space within the mask value itself (e.g., the first n
bits of the mask value). Therefore at any case, the adversary
needs to brute-force the guessing of the address value. This
means that if a user initially defines a large address space for
masking the helper data, the guessing field for the address
value on the adversary’s side would consequently be large
proportionally.

We recall that the intention of masking the helper data is
for further randomization of the helper data stream. However,
at some point, the mask value could result in a neutralized
product which could make the masking ineffective. Such a
case can appear if the product of the mask vector on the spec-
ified region of the helper data would yield a product where
the affected codeword(s) of that region are new codewords.
This in turn means that the baseline HDM model can break
the key without going through phase 1 as shown in FIGURE.
4. In the following, we elaborate on a process to detect such
mask values as we refer to as weak mask vectors, in order to
build a more robust masking scheme.

D. DETECTION OF WEAK MASK VECTOR

In a noise-free setting for the SRAM PUF source for mask
vector generation, the first milestone is the selection of mask
vectors. In the specific case against HDMA, not any arbitrary
value for a mask vector is secure. Potentially against HDMA,
certain values of mask vectors would still allow HDMA the
equal chance of success as in the case of no masking, if they
fit in the equation brought in (1). We refer to these mask
vectors as weak mask vectors.

C,CC
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wherein ¢; and ¢ are codeword elements of the main code-
word set C' and C, is a subset of C that is used by an
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adversary.

Against such mask vectors, the adversary can yield success
without attempting to demask the helper data. Accordingly,
he first queries the server, receiving a masked helper data M s
and a verification hash value h. Then, XORs error vector e
with the masked helper data to create M sa. Noting that the
adversary has no knowledge of helper data being masked.
In XORing a candidate codeword Xa; with M sa, the ad-
versary then creates a predictable PUF response w, which
then is passed to Hash function H1 to produce adversary’s
verification hash value h,.

On the PUF-enabled device, the pair of M s, and h, are
given. Primarily, the helper data is demasked by XORing the
locally regenerated mask vector m, and adversary’s helper
data s, is resulted. Then, the helper data is XORed with
captured PUF response w’ and noisy code z’ is produced
which is then passed to the decoder function to produce
recovered codeword x. At this point, the mask vector will be
called weak, if the recovered codeword x, assuming to be one
of the guessable codewords by the adversary, is itself a com-
bination of the mask vector and a codeword guessable by the
adversary. In this case, after the final XORing of helper data
S, and the codeword to generate recovered PUF response,
it will result in the same w, computed on adversary’s side,
which will lead to producing the same verification h, as sent
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by the adversary to the PUF-enabled device. Therefore at the
end, a mutual key will be generated between the adversary
and PUF-enabled device, despite using helper data masking
to prevent it. There in helper data masking, it would be
necessary to avoid considering a potential weak mask vector.

Going back to (1) to identify the weak mask vectors, the
equation in fact simply suggests that if a candidate mask
vector in XORing with a predicable codeword from C,, lead
to another predictable codeword from the same set, then the
mask application on Helper Data is not effective against first
order HDM Attack. In this case, we address the Becker’s
baseline HDM Attack as the first order HDM Attack.

However, in order to utilize equation (1) to identify weak
mask vectors, one would require prior knowledge of pre-
dictable codewords, which itself requires knowing the error
vectors that are the most effective on the decoder function
on-board according to Becker’s suggestion in [18]. Alterna-
tively, a relaxed version of this equation can coexist which
is brought in (2). This alternative version suggests that if
a candidate mask vector in XORing with a valid codeword
from set C' is equal to another valid codeword from the same
set, then the mask vector is not effective against first order
HDMA.

Ve, € C,2am=md ¢ =c; ¢, €C )

wherein ¢; and ¢ are codeword elements of the main code-
word set C. Using this alternative equation however, may
come with the cost of reducing the chance of graduating a
mask vector.

To experimentally assess the rate of mask vector rejection
in our case, and to see how many candidate mask vectors are
rejected according to (1), we took an statistical analyis over
each of our SRAM-PUF dataset, considering each one at a
time being a source of mask vector generation. Results of this
statistical check are brought in Table 1. In comparison, we
also brought the statistical analysis of mask vector rejection
according to the relaxed equation (2), in Table 2.

TABLE 1: Number of rejected mask vectors out of 1600
candidates per SRAM according to (1).

SRAM1 | SRAM2 | SRAM3 | SRAM4 | SRAMS
18 19 15 19 19
SRAM6 | SRAM7 | SRAMS | SRAMY | SRAMI10
14 20 11 22 6

TABLE 2: Number of rejected mask vectors out of 1600
candidates per SRAM according to (2).

SRAM1 | SRAM2 | SRAM3 | SRAM4 | SRAMS
608 608 480 608 608
SRAM6 | SRAM7 | SRAMS | SRAMY | SRAM10
448 640 384 704 192
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IV. THEORETICAL ANALYSIS OF MASKING WITH
VARIABLE POSITIONING

In theory, one can measure the min-entropy of the PUF
responses w; and ws used for secret key generation and
mask vector generation, respectively. Let us first discuss the
measurement of uncertainty for an adversary w.r.t to correctly
guessing the address of a given masked block within the
masked primary helper data. We note that our formulation
of the min-entropy is considered in a noise-free case.

Let us first denote the probability of masking a sub-
division of a given helper data s as P(s) with a given mask
vector wy. We can then define the entropy of the address to
a masked sub-division for a given mask vector, H(Addr), as
shown in (3).

- 1
H(Addr) = ;P(s), x (log2 5 (S)i) 3)
where z is the number of sub-divisions in the given helper
data s that can be addressed for masking. Noting that in
this formulation, we assume that the starting point of the
address in the given mask vector ws is already known by the
adversary.

Now we can consider a specification for P(s), by defining
the total number of sub-divisions in a given helper data s as
T = é where k is the size of a given mask vector and [ is
the size of the helper data vector. If we consider that P(s) is
equally distributed for all sub-divisions, we can then define
the entropy of the address to a masked sub-division for a
given mask vector as in (4).

H(Addr) = —log, ? )

we can also develop (4) for cases in which two or more
mask vectors are considered. Let us denote in masking with
variable positioning, using m mask vectors, the length of the
ith mask vector by k;, and the length of the helper data vector
by [. Noting that in this setting, we consider each mask vector
out of the m blocks, having a variable size, thus denoting the
length of the ith mask vector as k; and not £. We would then
have the entropy of masking address as in (5):

H(Addr) = —log, [ | kT )
i=1

we can now use (5) in defining the min-entropy of the mask
vector wsy and the masking address. We would define it as
H . (wq, Addr) and refer to it as the min-entropy of masking.

H(we, Addr) = —(log,y H Max(P,_B;) + log, H 7)
i=1 i=1
(6)

where Max(P,_f;) is the maximum probability of recover-
ing one of the predictable codewords for the 7th vector of the
m mask vectors during the recovery phase.

Using equation (6) we can now compute the min-entropy
of masking for the experimental cases we discussed in the

7



IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

previous section. Accordingly, the min-entropy for which we
used 1 mask vector to mask a 256-bit helper data would
increase by 5. This comprises the min-entropy of mask vector
which is 1. Recalling that the maximum probability after
error vector is applied to a [16,5,8] Reed Muller code (w.r.t
the notation [n, k, t], where n is the size of the codeword, k
is the size of the binary random number and ¢ is the order of
the code) with majority logic vote decoder is %, and the min-
entropy of the masking address is 4. Likewise for 2 mask
vectors and 4 mask vectors to mask a 256-bit primary helper
data, the min-entropy is increased by 10 and 20, respectively.

We can also define the total min-entropy, which com-
prises the sum of the min-entropy of PUF response w;
and min-entropy of masking. We would define it as
Hoo (w1, we, Addr):

Hoo (w1, we, Addr) = —(log,y H Max(P,_a;)+
. i=1 . . (7)
log,, }:[1 Max(P,_B;) + log, Zl:[l Tl)
where M ax(P,_a;) is the maximum probability of recover-
ing one of the predictable codewords for the i** block of the n
blocks of the primary SRAM-PUF response (i.e., the source
of encryption key generation), during the recovery phase.
Noting that this specification of min-entropy is not bound
to the limits of the primary specifications of our helper data
masking with variable positioning scheme. One for instance
can expand the address space of adaptive masking, but should
however mind that it will then require more bits of the mask
vector to define the address. In a noise-free setting, for S
number of available maskable regions on primary helper data,
the min-entropy of the HDMA against the key generation
scheme would be:

H (wy,ws, Addr) = —(log, H Max(Pr_c;)+
” = . ®)

logy H Max(Pr_p;) + log, (g)m)

i=1

To theoretically analyze the efficiency of our helper data
masking, we compare 3 approaches in strengthening the
security of an FE based key generation scheme. At one
approach, the w; string is extended without considering to
mask the helper data. At another approach, the ws string
which is the mask value, is extended and the positioning step
is defined to be bit-wise. Therefore, the number of possible
positions of the mask over the helper data string for w; is
n — m + 1, where n is the size of w; and and m is the
size of ws. The other approach here is to consider for each
added extension block for ws, the positioning step to be
the size of the added block. Therefore, the total number of

possible positions of the mask over helper data s would be
size of (w1 )

size of (ws) "
Given equation (8), we can demonstrate the increase in

the min entropy of beckers HDM Attack against a [16, 5, 8]

8

Reed Muller code and a majority logic vote (MLV) decoder.
Initially when encoding, the number of possible codewords
are 32 given the specification above. However, as discussed
in [18], HDM Attack can reduce it to 2 possible codewords
after modifying the helepr data.

—8— baseline FE
FE + masked HD, step size = 16 bits
—®— FE + masked HD, step size = 1 bits

N w N %4 o
o o o o =]

Min entropy of the HDM Attack guess field

-
o

128 144 160 176 192 208 224 240 256
Extended Helper data string size (in bits)

(a) Min entropy of guessing in Becker’s HDM Attack against
[16,5,8] Reed Muller Code and Majority Logic Vote decoder.

0.00200 —e— baseline FE

FE + masked HD, step size = 16 bits

0.00175 —&— FE + masked HD, step size = 1 bits

0.00150

=3
=3
=3
=1
N
o

0.00100

0.00075

0.00050

Probability of success in HDM Attack

0.00025

0.00000 S

128 144 160 176 192 208 224 240 256
Extended Helper data string size (in bits)

(b) Probability of success of Becker’s HDM Attack against [16,5,8]
Reed Muller Code and Majority Logic Vote decoder.

FIGURE 5: Tllustrations showing the min-entropy and prob-
ability of HDM Attack success against increasing size of
helper data.

We consider the initial size of the key to be 128 bits.
FIGURE. 5a shows the increase in the min entropy for the
three approaches with respect to extending the helper data
string. It is apparent that the * FE + masked Helper Data’ with
1 bit positioning step size has the lead compared to the other
two. The * FE + masked Helper data’ with 16-bits positioning
step also has a significant lead compared to the baseline FEs.
Recalling that in baseline FE we just increase the size of
the w; sting which is the source value for generating the
encryption key.

We can also assess the probability of success of HDM
Attack. The probability of success can also be defined as in
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(5b).

n
Pr(wy,wq, Addr) = H Maz(Pr_cy;)x
. i=1 . . (9)
Max(Pr_B;) x || =
E (Pr_p;) 1211 l
where Max(P,_a;) is the maximum probability of recov-
ering one of the predictable codewords for the ith block
of the n blocks of the primary SRAM-PUF response. And
Mazx(P,_3;) is the maximum probability of recovering one
of the predictable codewords for the 7th vector of the m mask
vectors during the recovery phase. In FIGURE. 5b, we can
observe the decreasing probability of success for the HDM
Attack with respect to extending the helper data string. It can
be seen that overall the * FE + masked Helper Data’ with
1 bit positioning step size is the strongest countermeasure.
Nonetheless, > FE + masked Helper Data’ with 16 bits po-
sitioning step size has a similar characteristic. Nonetheless,
both masking approaches seem to be considerably stronger
compared to the baseline FE. This suggests ultimately that
masking helper data using PUF data seem to be a reliable
and strong countermeasure. Thus at the end that considering
to use a part of w; to construct a we mask value and mask the
helper data, can lead to a stronger FE based key generation
scheme. In the following, we demonstrate our evaluation of
HDM Attack against some real SRAM PUF data we collected
from an in-house developed SRAM device.

A. EVALUATION ON VARIOUS CODING AND DECODING
METHODS

Reed Muller (RM) codes have been used in abundance for
error correction codes in several applications where bio-
metric data is used to generate secret values. Some of the
use cases of RM codes are mentioned in [26]-[30]. An
evaluation of HDM Attack against RM codes is presented
by Becker in [18] where the the codes are used to recover
original secret values generated from PUF source. This work
shows how the new HDM Attack can decrease the min-
entropy of the recovering codeword by injecting an error
vector e into the decoding process. We restate his analysis
of HDM Attack over various codes and decoding methods
in TABLE.3 and demonstrate as well the effect of using our
masking countermeasure on the entropy of the recovering
codeword. Here the results show that using our helper data
masking masking mechanism overall increases the entropy
of the codeword. One can observe here that the entropy of
codeword after using HDM Attack on decoders such as on
SDML soft-decision, where the reliability is not 100%, is
considerably high. Therefore the use-case of our masking
mechanism, although it adds to the overall entropy, may not
be justified for such cases.

On the other hand, the increase in entropy is relatively high
using our helper data masking mechanism for cases such as
Soft Decision Hackett at 100% reliability, Majority Decoding
at both 100% and 85% reliability and GMC decoder at 100%
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reliability. We can assume here that masking helper data can
in turn be accounted as an effective countermeasure against
HDM Attack where the overall entropy of the codes are low.
Given that so far we only considered maximum 2 block of
the entire bits to be the mask values. In turn, if the overall
overhead of computing large number of masking is justified
(i.e., considering half of the bits as the stem value for key
generation, and the other half for masking), we can count on
the linear addition they provide on the overall entropy of the
codewords against HDM Attacks.

V. EXPERIMENTAL SETUP

A. DESCRIPTION OF SRAM PUF DEVICE

The SRAM-PUF device we developed is an in-house device
with a software package allowing us to interact with and
control the device. FIGURE. 6 shows the device housing the
micro-controller with our SRAM-PUF. Some of the functions
implemented as part of our SRAM-PUF include a function
for reading the real time PUF response after refreshing the
SRAM every 2 seconds, and a function for enrolling the
PUF, where it performs 100 read-out from the PUF source
in the SRAM device and stores the responses. Our SRAM-
PUF follows the addressable PUF generator (APG) tech-
nique, which is described in [31]. This allows us to extract
unique responses from the PUF-device. The APG mechanism
randomly selects memory cells to feed the PUF. For each
memory address queried to the PUF device, there will be
several response values coming from the memory cells. After
an arbitrary amount of acquisition, the memory addresses and
the captured responses are stored into a PUF dataset.

POWERL

QOOOOE00 GAIRERS CEEEEA®

&=

FIGURE 6: Our in-house developed SRAM device.

B. PUF DATA DESCRIPTION

We employed 10 SRAM-PUF devices for evaluation. For a
given SRAM-PUF device, at the same memory address, we
read the responses from each memory address 100 times.
Noting that each memory address yields a 256-bit binary vec-
tor as the response. Ideally, the captured 100 response vectors
should be exactly the same since they belong to the same
address. However, due to the process variation between each
response acquisition, there will be a chance that each cell’s
binary value would flip. Therefore, the PUF response vectors
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TABLE 3: Min entropy of various codes and decoding methods. The two different codes mentioned here are Hard-in Soft-out.

. . Min-entropy Min-entropy Min-entropy
Min-entropy Min-entropy X . .
Code Decoder Reliability | (per codeword) | (per 175 bits) l(l;)ell‘ alil blts])( l(pi;r a]il blts:( Z(p;er ?(“ blts)k
No Masking No Masking ,0C¢ mas b‘oc mas b 0cks mas
5-bit step size | 1-bit step size | 1-bit step size
SDML 100% 1 35 40.09 42.38 49.66
Soft-decision [26] | 95% 4 138.8 143.89 146.18 153.46
SDML 100% I 35 40.09 42.38 49.66
(7.1.7] hard—decisi.on [26] | 95% 1.5 51.8 56.89 59.18 66.46
Repeti t’io’n Code Without Attack 5 175 180.09 182.38 189.66
[16:58] GMC 274138 |57 0 5709 538 56 66
Reed-Muller Code - 2 : - . .
Without Attack 5 175 180.09 182.38 189.66
Majority logic [18] | 100% 0.2 6.8 11.89 14.18 21.46
85% 0.2 11 16.09 18.38 25.66
Without Attack 5 175 180.09 182.38 189.66
[8,1,8] . 100% 0 0 3.32 6.77 13.2
Repetition Code | S°ft Decision [29] 7 n} 449 4822 51.67 8.1
[24,12,8] Golay Code Without Attack 12 132 135.32 138.77 145.2

in-between different acquisitions have dissimilarities in some
cell values. This implies the inherent physical characteristic
of a real PUF.

Here we assess {16, 32, ..., 128, and 256 }-bit of PUF re-
sponses. Noting a PUF response smaller than 256-bit, is a sub
part of the 256-bit PUF response we captured initially from
SRAM-PUF instances. For instance, a 16-bit PUF response
is the first block of the captured 256-bit PUF response.
Similarly, a 32-bit PUF response is the first two blocks of
the captured 256-bit PUF response and so on.

In addition, we also measured the frequency of bit-flipping
within each subset, to identify the unstable cells correspond-
ing to each PUF images. Following Table.4 at the end of the
paper, it shows the percentage of cells with bit flipping per
block of 16-bits within the entire 256-bits of a PUF image
for a given memory address, per SRAM. Nothing that this
statistical analysis is performed on the 100 captured PUF
images from each SRAM for a given memroy address.

C. IMPLEMENTATION OF BECKER HDM ATTACK

For our experiments, we used MATLAB to build an emula-
tion of Helper Data based RFE-like construction for PUF-
based key generation, and Becker’s HDM Attack as the
adversary. For the encoding function in registration phase,
we used Reed Muller encoding algorithm. For encoding, we
use the specification of [16, 5, 8] (w.r.t the notation [n,k,t],
where n is the size of the codeword, k is the size of the binary
random number and ¢ is the order of the code). Consequently,
the encoded codewords are 16-bits sized. Noting that in this
scheme, we use concatenated codes. Thus in an iterative
fashion, to construct a helper data s, we XOR a 16-bit
codeword x, where x is the encoded codeword of a randomly
generated binary number rnd, over the entire PUF response
w wherein the size of w should be greater than or equal
to 16 bits. During the registration phase, we also generate
a verification hash value h and an encryption key r using
the two hash functions H1 and H?2, respectively. To create
the hash values, we used an existing MATLAB library to
generate MD5 128-bits hash values. All the generated data
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will then be saved for a given SRAM device, for a given
memory address. In implementing the recovery phase, we
used Reed Muller Majority Logic Vote. We acknowledge that
MDS5 is the most secure hashing algorithm, and we used the
algorithm only due to the ease of availability to carry out our
evaluation. However, for a sophisticated implementation of
the key generation for real applications, we suggest using
more secure hashing algorithms such as SHA-2.

Our MATLAB-based implementation of Becker’s HDM
Attack is the following. The adversary first intervenes in
the query of PUF-enabled device, by receiving the query
from the device and passing it to the server, and in return,
awaits the response from the server, instead of the device
(i.e adversary as a man in the middle). After receiving the
public data, using the error vector e = [0 1 101010
1100000 0], the adversary builds first his helper data
s, by XORing the error vector e with all the sub blocks
of the helper data s which the adversary has received from
the server. With respect to the reduced list of codewords
known to the adversary, the adversary will create a pool
of predictable responses w,_pool and accordingly, a pool
of predictable verification hash values h,_pool. These lists
comprise the items that the adversary will use after each
failed attempt. Recalling that a failed attempt is an attempt in
which the key generation is not decided as valid on the PUF-
enabled device during recovery mode. In respond to the query
from the PUF-enabled device, the adversary answers returns
a tuple comprising an address value Addr the same as the
one received from the server. Also the modified helper data
s, and an elected hashed value. The adversary then awaits the
response from the PUF-enabled device w.r.t whether the key
generation is valid. If it is valid, it means that the adversary
has successfully re-generated the encryption key as r,. If the
adversary receives a key generation invalid response, then the
adversary will send another tuple with a different hash value.

We repeat our experiment independently for each PUF
response size, which leads to 5 iterations of performing HDM
Attack per SRAM-PUF device. Finally, noting that per pair
of SRAM dataset and PUF response size, our experiment is
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TABLE 4: Percentage of unstable cells, per block of 16-bits, in a PUF response size of 256 bits per SRAM

SRAMI1 | SRAM2 | SRAM3 | SRAM4 | SRAM5 | SRAM6 | SRAM7 | SRAM8 | SRAMY9 | SRAMI0
Block1 18.75% | 12.50% | 18.75% | 12.50% | 18.75% | 12.50% 6.25% 12.50% | 12.50% 12.50%
Block2 18.75% 6.25% 18.75% | 25.00% | 18.75% | 12.50% | 25.00% 6.25% 18.75% 18.75%
Block3 12.50% | 18.75% 6.25% 6.25% 12.50% | 12.50% | 37.50% | 37.50% 6.25% 6.25%
Block4 18.75% | 12.50% | 18.75% | 18.75% | 25.00% | 18.75% | 31.25% 6.25% 18.75% 18.75%
Block5 12.50% | 25.00% | 12.50% | 18.75% | 12.50% 0% 31.25% | 25.00% 6.25% 6.25%
Block6 0% 18.75% 6.25% 6.25% 31.25% | 12.50% 0% 0% 6.25% 6.25%
Block?7 12.50% | 18.75% | 25.00% | 12.50% | 18.75% | 25.00% 6.25% 25.00% | 25.00% 25.00%
Block8 18.75% | 18.75% 6.25% 18.75% | 25.00% 6.25% 18.75% | 37.50% 6.25% 6.25%
Block9 | 25.00% 6.25% 18.75% | 25.00% | 25.00% | 18.75% | 31.25% | 25.00% 6.25% 6.25%
Block10 0% 12.50% | 12.50% | 18.75% | 18.75% 0% 6.25% 12.50% | 12.50% 12.50%
Blockll | 25.00% | 12.50% | 31.25% | 37.50% | 18.75% | 25.00% | 12.50% 6.25% 12.50% 12.50%
Blockl12 | 12.50% | 25.00% | 12.50% | 18.75% | 12.50% | 18.75% | 12.50% | 12.50% 0% 0%
Block13 0% 12.50% | 18.75% | 18.75% | 18.75% 6.25% 18.75% | 25.00% 0% 0%
Block14 | 31.25% | 25.00% | 18.75% 6.25% 6.25% 12.50% | 12.50% | 12.50% 6.25% 6.25%
Blockl5 | 25.00% | 18.75% 6.25% 18.75% | 18.75% | 18.75% | 18.75% | 31.25% | 12.50% 12.50%
Blockl6 | 18.75% | 18.75% | 18.715% | 18.75% | 18.75% | 37.50% | 12.50% | 25.00% 0% 0%

iterated 32 times w.r.t to our attempt to exhaustively enlarge
our experimental space by iterating the experiment each time
using one of the possible codewords during PUF registration
and recovery. Noting the 32 times iteration is w.r.t the total
number of possible values for a 5-bit binary value. Recalling
that this binary value is the value which is encoded during the
registration phase to produce a codeword x.

Noting also that the assessment in our experimental results
is based on a metric we define as the success-rate. Here, the
success-rate is defined as number of successful HDM Attack
attempts over the total number of attempts. We also define
the best-case success-rate as the least number of successful
attempts out of total number of attempts. The worst case
success-rate is the highest number of successful attacks out
of total number of attempts. Finally, the average success-
rate is the average of the success-rate of all the cases of key
generation w.r.t all possible different codewords for a given
SRAM-PUF device dataset, and a given PUF response size.

VI. EXPERIMENTAL RESULTS
In this section, the results of performing HDMA against our
SRAM-PUF instances datasets will be discussed. FIGURE. 7
shows the best case, the worst case and the average success-
rate of HDMA, respectively. We clarify first that the differ-
ence in the attack success-rate between the best case and the
worst case in plots (a) and (b) in FIGURE. 7 is due to the
difference in the value of the codeword used per SRAM-PUF
dataset per given PUF response. Recalling that the possible
number of codewords are 32, due to using a 5-bit binary
random number for encoding. We can see that HDM Attack
against the employed Reed Muller code and the majority
logic vote decoder has some significant chance of success
if the PUF response is small. Although we can see that at
128-bits size, there still is a chance of success, even in the
best case scenario. At 256-bits obviously due to the doubled
entropy of the guess field, no success was observed in the
HDM Attack at 100 attempts per device.

We now observe the success-rate of HDM Attack against
FE-based key encryption with helper data masking with vari-
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able positioning. To define one source for key value and one
for mask value generation, we define here 5 virtual devices
wherein each device employs 2 SRAMs. Thus, each virtual
device is defined to comprise 2 SRAM datasets according
to Table 5. Accordingly, there is a primary SRAM dataset
that is the source of key generation and the secondary SRAM
dataset for mask vector generation. We note also that we
employed the variable positioning step size of 16-bits which
is equal to the size of a codeword in this work.

This experiment is performed in three settings wherein
each setting, different sizes of mask vector is considered.
FIGURE. 8 shows the results of this experiment in settings
of using 1-block mask vector, 2-block mask vector, and 4-
block mask vector. The plots shown in the figure represent
the decreasing success-rate of second order HDM Attack
against 5 virtual devices as the size of PUF response for key
generation increases. Noting that for the assessment using
1-block mask vector, the datasets of PUF responses for key
generation are augmented from 100 responses per dataset to
10000 responses. This augmentation is performed by sim-
ply repeating each response 100 times. For the assessment
using 2-block mask vector and 4-block mask vector also,
the datasets are augmented to 100000 responses per dataset
using the same augmentation method. Recalling also that
the responses per dataset correspond to one address of the
SRAM-PUF and the differentiation between them is due to
the instability of the SRAM-PUF.

First, we point out to the case where the success-rate of
the attack against a PUF response size of 16 bits is still
high regardless of the masking. We expect it since for a 16

TABLE 5: Definition of virtual devices.

. . SRAM for SRAM for mask
Virtual device . .
key Generation | vector generation

Vdevicel SRAMI1 SRAM?2

Vdevice2 SRAM3 SRAM4

Vdevice3 SRAMS SRAM6

Vdevice4 SRAM7 SRAMS

Vdevice5 SRAM9 SRAM10
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bits of helper data, there is only one addressable block to
mask. Therefore, there is no entropy in the guessing field
for the address space on the adversary’s side. Other than
that, we can see that using masking with variable positioning
significantly decreases the success-rate of second order HDM
Attack while the PUF response is larger than the mask block.
Unlike the key generation without masking, the success-rate
drops drastically at even smaller w; sizes such as 32-bits and
64-bits while we employ more than 1 mask vector. This is
similar to the demonstration of probability of success as we
discussed in Section IV. Noting in the case of the settings
using 2-block and 4-block mask vector, the success-rate has
been measured from 100000 attempts of second order and
fourth order HDMA, of which the results are shown in
FIGURE. 8(b) and FIGURE. 8(c), respectively.

VIl. RELATED WORKS AND COMPARISON

Our proposed helper data masking is not the first work
to provide a countermeasure against HDM attacks. Several
countermeasures have already been proposed in [19]—-[21].
Here we discuss some of the existing countermeasures and
compare them qualitatively with our method.

The work of Delvaux et al. in [20] explains four schemes
that secure a Helper Data Algorithm (HDA)-based key gener-
ation process. The primary HDM attack detection method is
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originally proposed in [32]. The method suggests to provide
a hash value using collectively the helper data and the key
value on the server side, and publicize it for devices to query
during key generation. During key generation, the device
queries the server for the hash value and compares it with a
locally generated version of the hash. If equal, the generated
key is considered valid and the key can be used for encryption
and decryption of the exchanged message. We have shown
a similar key generation structure as shown in FIGURE. 1
which is similar to the RFE-like process discussed in [18].
The problem with this scheme is that an HDM attacker can
impersonate the server and provide the hash value itself,
which is based on the manipulated helper data and the
guessed key value. Therefore the proposed countermeasure
can be easily compromised. Considering our countermeasure
however, we showed that the demasking process cannot be
compromised by any modification since the position of the
mask over the helper data vector is based on the true value of
the mask.

Similar to [32], another HDM detection scheme has been
proposed [33], in which only the key value is used to generate
the hash. However, the same security issue as we explained
above can be discussed here. The HDM detection can be
biased just by the attacker impersonating the server and
providing its own hash value for key validity check on the
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PUF-enabled device.

Another solution has been discussed in [20] where it is
suggested to program the public key and the helper data all
into a one-time programmable NVM memory (EEPROM)
during the enrollment phase of the PUF-enabled device [34].
During the key regeneration then, the IC housing or working
with a PUF component for key generation, queries the NVM
memory to retrieve the helper data for key generation. This
solution ultimately negates possibility of HDM attack as
we discussed in this work, since there is no out of device
communication with a server system to query for helper
data. One can assume however that device can undergo some
physical attacks using side channel analysis methods to read
the information on the NVM device, and also using fault
injection attacks to change some bits in order to impose
helper data manipulation. These attacks however need pre-
cise tools to perform such modifications from outside of the
device. This means that the attackers are enforced to employ
some expensive methods. Nonetheless, the countermeasure
itself is an expensive implementation, since it requires an
external device to store the public key and the helper data.
Moreover, using a memory component accompanying a PUF
is fundamentally questioning the employment of PUF itself.
Since the existence of PUF is set to replace conventional
methods which save the secret values on device memories
in order to provide protection against physical attacks.

A countermeasure against HDM attack is proposed by
Hiller et al. in [35]and discussed also in [20]. The problem
discussed in their work is the practice of HDM attacks that
focus on single codeword modification by observing several
key generation operation outputs. The authors then propose a
scheme where a hash value of the helper data is XORed with
the recovered PUF response to generate the key. This way, the
authors ensure that at list 50% of the key values are changed
and not a single one, which in turn disturbs the entire attack
mechanism. The issue with this countermeasure is that it is
targeted for attack methods which aim to recover the original
key. While there exists other HDM attacks such as the one
discussed by Becker in [18], for which this countermeasure
is equally vulnerable to that of the RFE-like method we
discussed in this work.

As we explained earlier, the mechanism of robust fuzzy
extractors (RFE) can also provide some level of security.
This has been discussed already in [18] and [32]. In that
mechanism, despite the equality check between a localy
generated and a publicly received hash value on the PUF
device, the hamming distance between the recovered PUF
response and the raw extracted PUF response is measured
as well. If the the distance is larger than a threshold, then
the key generation fails. This suggests that only recovered
codes with certain Hamming distance from the original ones
are valid when recovered. However, such mechanism can
also discard regenerated keys which have not been affected
by an HDM attack. Simply due to PUF instability, there
could be more noisy bits than what the RFE’s Hamming
distance threshold allows for a valid recovered codeword.

VOLUME 4, 2016

Therefore, this method, although providing security against
HDM attacks, also imposes extensive sensitivity to PUF
instability.

Gao et al. in [19] proposes a PUF-based key genera-
tion technique and assures its security using BCH codes
and syndrome decoding. Using BCH codes and syndrome
decoding has good level of security against HDM Attacks
as discussed in [18]. However, it is also discussed that for
[n,k,2t + 1] BCH codes with small k, it is not as efficient to
use syndrome decoding compared to other simpler decoders
such as maximum likelihood decoding.

Merli et al. in [21] proposes a codeword masking scheme
against helper data manipulation attacks based differential
power analysis (DPA). The DPA HDM attack in their work
aims to read the processed output of an inner decoder which
decodes the noisy codeword that is the product of the XOR
of the noisy PUF response and the received helper data. The
codeword masking countermeasure in turn is implemented in
a way to obfuscate the output of the inner code, so that DPA
is not capable of reading the raw output of the first stage
decoder. In order to mask the inner code, a random locally
generated mask value is first encoded and the encoded mask
value is XORed with the helper data, which is then XORed
with the noisy PUF response. The output is then decoded
and then demasked using the raw mask value to yield the
secret key value. The countermeasure proposed here is the
closest to our work. The similarity is that by masking the
inner code using a random value, the DPA cannot find the
correlation between the captured power traces. Theoretically,
when masking is applied to secure an implementation, the
DPA will require considerably more traces in order to bypass
the masking and find the correlation to extract the target
value. This is similar to increasing the guessing entropy of
the HDM attack as we discussed in this work. The increased
entropy in turn requires more observations on the data trans-
mitting channel to discover the correct guess for the location
of the mask on the helper data.

Most of the countermeasures discussed here were method-
ical and aimed at preventing the HDM attack using hardware
or algorithmic solutions. Few, such as [21] suggested meth-
ods focus on the theoretical aspect of HDM attack and pro-
vide solutions that make the attacks more difficult to succeed.
Our method also sits in this class of countermeasures. Since
we also try in general to increase the guess entropy of the
attacker using the proposed helper data masking method.

VIIl. CONCLUSION AND FUTURE PERSPECTIVE

In this work, we discussed a new masking mechanism to
protect publicly available helper data in FE-based key gener-
ation protocols. Here we proposed masking helper data with
variable positioning. We also proposed PUF as the source of
mask value generation. Our theoretical analysis showed that
helper data masking with variable positioning is a potential
mechanism to drastically decrease the probability of success
in attacks whose aim is to modify helper data for mutual key
generation on a target device. We also performed experimen-
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tal evaluations to prove the efficiency of our method over real
data. Here we used real-time SRAM PUF data captured from
PUF-enabled devices developed in-house. Our experimental
results show that masking with variable positioning can prac-
tically decrease the probability of success of HDM Attack
even in a large number of attempts. Our 32-bit mask value
in turn could reduce drastically the success-rate of HDM
Attack 20% to less than 5%. With a 64-bit mask vector also,
we showed that we can render HDM Attacks unsuccessful
even in a extensive number of attempts, where the attack
against key generation per given response has been attempted
100000 times.

In terms of the the threat model, this work focused on the
vulnerability of the FE-based key generation against HDM
Attacks. However, other metrics are also important to evalu-
ate the practicality of our masking countermeasure. For that
we foresee assessing the performance of SRAM-PUF based
key generation in the presence of masking with variable
positioning. This measurement is required in fact to evaluate
the overhead of the extra computation due to the positioning
procedure. In this evaluation, we could assess whether the
performance overhead due to the extra computation for posi-
tioning the mask is significant or tolerable. Comparison cases
can also be made. For instance, for variable sizes of PUF
responses for encryption key generation, we can analyze the
trade-off between the performance overhead and the security
against HDM Attack in different cases where a block of a
PUF response is chosen for key generation or chosen for
mask vector generation.
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