
HAL Id: hal-03640365
https://hal.science/hal-03640365v1

Submitted on 12 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Strong PUF Enrollment with Machine Learning: A
Methodical Approach

Amir Ali Pour, David Hely, Vincent Beroulle, Giorgio Di Natale

To cite this version:
Amir Ali Pour, David Hely, Vincent Beroulle, Giorgio Di Natale. Strong PUF Enrollment with
Machine Learning: A Methodical Approach. Electronics, 2022, 11 (4), pp.653. �10.3390/electron-
ics11040653�. �hal-03640365�

https://hal.science/hal-03640365v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


����������
�������

Citation: Ali-Pour, A.; Hely, D.;

Beroulle, V.; Di Natale, G. Strong PUF

Enrollment with Machine Learning:

A Methodical Approach. Electronics

2022, 11, 653. https://doi.org/

10.3390/electronics11040653

Academic Editors: Fathi Amsaad,

Ahmed Abdelgawad and Sean

(Xiangdong) Che

Received: 27 December 2021

Accepted: 17 February 2022

Published: 19 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Strong PUF Enrollment with Machine Learning:
A Methodical Approach

Amir Ali-Pour 1,*,†, David Hely 1,*,† , Vincent Beroulle 1,*,† and Giorgio Di Natale 2,*
1 Grenoble INP, LCIS, University Grenoble Alpes, 26000 Valence, France
2 CNRS, Grenoble INP, TIMA, University Grenoble Alpes, 38000 Grenoble, France
* Correspondence: amir.ali-pour@lcis.grenoble-inp.fr (A.A.-P.); david.hely@lcis.grenoble-inp.fr (D.H.);

vincent.beroulle@lcis.grenoble-inp.fr (V.B.); giorgio.di-natale@univ-grenoble-alpes.fr (G.D.N.)
† These authors contributed equally to this work.

Abstract: Physically Unclonable Functions (PUFs) have become ubiquitous as part of the emerging
cryptographic algorithms. Strong PUFs are also predominantly addressed as the suitable variant for
lightweight device authentication and strong single-use key generation protocols. This variant of
PUF can produce a very large number of device-specific unique identifiers (CRPs). Consequently, it is
infeasible to store the entire CRP space of a strong PUF into a database. However, it is potential to use
Machine Learning to provide an estimated model of strong PUF for enrollment. An estimated model
of PUF is a compact solution for the designer’s community, which can provide access to the full CRP
space of the PUF with some probability of erroneous behavior. To use this solution for enrollment,
it is crucial on one hand to ensure that PUF is safe against a model-building attack. On the other
hand, it is important to ensure that the ML-based enrollment will be performed efficiently. In this
work, we discuss these factors, and we present a formalized procedure of ML-based modeling of PUF
for enrollment. We first define a secure sketch which allows modelability of PUF only for a trusted
party. We then highlight important parameters which constitute the cost of enrollment. We show
how an ML-based enrollment procedure should use these parameters to evaluate the enrollment
cost prior to enrolling a large group of PUF-enabled devices. We introduce several parameters as
well to control ML-based modeling in favor of PUF enrollment with minimum cost. Our proposed
ML-based enrollment procedure can be considered a starting point to develop enrollment solutions
for protocols which use an estimated model of PUF instead of a CRP database. In the end, we present
a use-case of our ML-based enrollment method to enroll 100 instances of 2-XOR Arbiter PUFs and
discuss the evaluative outcomes.

Keywords: Physically Unclonable Function (PUF); strong PUF; PUF enrollment; machine learning
(ML); artificial neural network (ANN)

1. Introduction

Security in internet-based communication, especially in IoT systems and Cyberphys-
ical systems, is facing new opportunities and challenges as concepts such as Physically
Unclonable Function (PUF)-based cryptographic methods are emerging. PUF is considered
as one of the emerging security primitives for resource–constraint ecosystems in the field of
IoT [1,2]. PUF is characterized as a hardware bound function which utilizes the unit-specific
micro-variations to generate device-specific data. The functionality of PUF is based on
mapping a bit-vector challenge (the input) to a response (output) and generating a so-called
Challenge–Response–Pair (CRP).

Two variants of PUF exist so far, the strong PUF and the weak PUF. Strong PUF is a
macro variant which aims at generating an abundance of device-specific identifiers which
are products of the PUF CRP [3,4]. The weak PUF, on the other hand, is able to generate few
CRPs (often only one, for memory-based PUFs) [5]. The former variant is mostly discussed
for authentication protocols, and the lateral variant is known for the primitive source of
encryption key generation [6–9].

Electronics 2022, 11, 653. https://doi.org/10.3390/electronics11040653 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11040653
https://doi.org/10.3390/electronics11040653
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-3249-7667
https://orcid.org/0000-0003-0617-3087
https://doi.org/10.3390/electronics11040653
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11040653?type=check_update&version=1


Electronics 2022, 11, 653 2 of 17

Strong PUF is a variant of PUF that contains a very large CRP space [1]. Commonly,
a strong PUF structure comprises a large challenge bit-vector C as the input (usually 64-bit
or 128-bit), which leads to 2sizeo f (C) combinations of different challenges in total, and, for
each challenge vector, there is also a response value as the output of the PUF, which
commonly is a binary value r ∈ {1, 0}. Collecting such number of CRPs is infeasible,
mainly due to the shortage of memory space. Even for one PUF, it takes petabytes of
storage space to contain all the CRPs.

Due to the large CRP space, strong PUF are potential sources to generate single-use
device identifiers or encryption keys. For such applications, it is commonly imagined to
employ multiple strong PUFs on a silicon chip, where the response of each individual strong
PUF is binary [1,10], while the collocation/concatenation of the PUFs’ response values is
a multi-bit output with high entropy. Such multi-PUF sketch is potential for generating
encryption keys that can be single-use. Given also that the CRP space of the constituting
PUFs is very large, the system employing such sketch for key generation practically never
runs out of single-use encryption keys. Although this is a specific use-case for strong PUF,
it shows clearly that the potential exists with harnessing the large CRP space.

To deal with the shortage of storage space to contain all the CRPs of a strong PUF, it is
potential to generate an estimation of strong PUF using Machine Learning modeling [2].
There already exists a matured research field for strong PUF modeling, which contains a
large number of different techniques that tackle the PUF modeling in different ways [11–16].
Although these methods are mainly proposed to notify the designers of existing attack
methods which aim at model-building the PUF, the benefit of ML-based modeling of
PUF, however, is not limited to that use-case. Alternatively, model-building of strong
PUF can be utilized by designers for device enrollment. This use-case has already been
discussed in several works such as the Slender PUF authentication protocol proposed
in [7], a mutual lightweight authentication method proposed in [17,18], and an encryption
protocol proposed in [19].

Modeling strong PUF, however, can in turn be seen as a heavy task, requiring a large
amount of CRP and PUF data to yield an accurate model. Depending on the level of
PUF complexity, modeling PUF in turn can lead to requiring over a million CRPs. While
capturing a large number of CRPs for one device is not an issue, practicing it for a large
group of devices can be seen as a cost issue. The lateral is the setting that designers can
face if they do not consider a cost-aware enrollment process.

In this work, our goal is to elaborate on the procedure of enrollment based on Machine
Learning in order to define a cost-aware process with adjustable control parameters that in
turn lead towards optimal enrollment with minimum cost. Here, we first draw the sketch
for a PUF-based ecosystem, which is fit for ML-based PUF computing. This ecosystem
should comprise the fundamental requirements in terms of reliability and security for
ML-based PUF computing. We then focus on ML-based PUF enrollment and identify
what constitutes the cost parameters and how the enrollment procedure can control the
training to yield cost-efficient ML solutions. This procedure comprises an initial evaluative
process that identifies the optimal specifications to carry the enrollment task on a large
number of PUFs. We demonstrate a use-case for our ML-based PUF enrollment procedure
on large number of 2-XOR Arbiter PUFs using simulated data. We show that the evaluative
process is necessary to accompany an ML-based PUF enrollment task to identify the optimal
parameter values for the learning phase in order to yield accurate models cost-efficiently.

We clarify here that our work is not competitive with the previous works, which
practice ML-based PUF modeling. Moreover, the novelty of this work does not lay with
the ML-based solution we practice. Instead, our work attempts to provide a mutual base
ground for ML-based enrollment solutions.

In Section 2, we elaborate on the general ML-based PUF computing sketch. In Section 3,
we explain some of the essential secure CRP access sketches. In Section 4, we explain the
ML based modeling of strong PUF and highlight the important parameters for enrollment.
In Section 5, we elaborate on our proposed ML-based PUF enrollment procedure and,
in Section 6, we explain the method for strong PUF enrollment using our proposed ML-



Electronics 2022, 11, 653 3 of 17

based procedure. Section 7 comprises the experimental work. In the beginning of the
section, we elaborate on our experimental setup. Later in the section, we discuss the results
of performing our ML-based enrollment procedure on a set of 100 2-XOR Arbiter PUFs.
Section 8 presents the conclusions of our work and the future steps.

2. Machine Learning and PUF-Based Computing

The general sketch of ML-based PUF utilization can be seen in Figure 1. Here, the first
priority is to build an accurate model of PUF during the enrollment (see Figure 1a). Since
the ML-based model is an estimation of the CRP characteristic of PUF, there is a probability
that the model miss-predicts the response to a given challenge. Thus, it is crucial to decrease
the miss-prediction probability as much as possible during the training process. In the
meantime, access to the CRP of the PUF is open during enrollment. Here, the assumption
is that the enrollment is done during the manufacturing phase, and the open CRP access
through physical channels is given to speedup the CRP read-out process.

In mission mode (see Figure 1b), the ML model is used to provide CRP for the trusted
party who is communicating with the PUF-enabled device. In this communication, the
Server and the PUF-enabled device exchange several CRPs. Here, it is crucial that the PUF
and the communication channel are secure. Thus, protection methods such as masking the
response should exist to prevent the CRP leak, and consequently decrease the chance of
obtaining an accurate model of the PUF for an unauthorized party who is collecting the
transmitting CRPs. In the following, we review several secure sketches for accessing CRP
of strong PUF.

Server

Response 
Masking 

BlockPUF

PUF I/O
Device I/O

C
hallenge

M
as

ke
d 

R
es

po
ns

e

R
es

po
ns

eC
hallenge

Storage

PUF

Server Storage

(a) Enrollment mode (b) Mission mode

Response

Challenge

Se
cu

re
 c

ha
nn

el

O
pe

n 
C

R
P 

Ac
ce

ss

PUF 
model

PUF 
model

Trainingcrp

Figure 1. Schematic of a communication between PUF and a verifier server, via an estimation model
of PUF.

3. Secure CRP Access for Strong PUF

In communicating with a given PUF-enabled device, there needs to be a CRP exchange.
There are two modes in which the CRP exchange happens. The primary mode is the
enrollment where an enrolling server queries the PUF with random challenge values and
obtains the responses. In this mode, the assumption is that the Server has direct access to
the PUF via a physical I/O interface to read the CRPs (see Figure 2a). We assume that such
access is given commonly during the test phase of the manufacturing process. Once the
CRP read-out is complete, the physical access to the PUF should be permanently disabled
(see Figure 2b). This means that there is no direct physical channel to communicate with the
PUF circuit from outside of the device once the device is enrolled. An example this sketch
has been discussed in Slender PUF protocol in [7]. Here, the authors propose using e-fuse
mechanism to prevent having direct access to the PUF response after the enrollment phase.
Accordingly, e-fuses are disabled once the PUF is enrolled, and thus the PUF responses are
no longer accessible through the chip I/O.



Electronics 2022, 11, 653 4 of 17

Figure 2. Secure sketches for PUF-based Computing. Here, (a) demonstrates the permanently
disabling physical access to PUF after enrollment. (b) demonstrates a sketch for securing exposed
CRP by encoding the challenge on the server side and masking the response from the PUF side.

The second mode of communicating with the PUF-enabled device is the mission mode.
In this mode, a communication channel is established between the PUF-enabled device
and a trusted party. Figure 2b shows a sketch of a secure communication between the
Server as the trusted party and the PUF-enabled device. In this mode, it is assumed that the
communication channel securely transmits the CRPs while the true values of the CRPs are
hidden. For instance, we could assume the challenges are encoded on the server side before
being transmitted to the device. An example of challenge encoding is given in [20]. In this
work, it is proposed to encode a given challenge value c before transmission, by recurrently
shifting the value for n times. At each time, the modified challenge value is fed to the
PUF for a new response value ri where i ∈ {1, 2, ..., n}. At the end, an extension of the
response values with repeating bits is then XORed with the challenge value c. This way,
the challenge value is encoded to hide its true value during the transmission.

Moreover, we assume that the response values are masked before being transmitted
from the device to the Server. We assume that only the device and the server have the
mutual data in order to decode and de-mask the challenge and response as received, respec-
tively. Consequently, access from an unknown third party will not yield directly to leaking
the CRPs. In such case, additional efforts are required to first break the masked response
and also decode correctly the corresponding challenge. Therefore, the cost of preparing
a CRP set will increase for a third party with unauthorized access to the communication
channel. An example of response masking is discussed in [21]. In this work, the authors
propose altering the value of the response bit of the strong PUF according to a trigger
value that is yielded from an independent logical composition of some arbitrarily chosen
challenge bits. Note that the selection of the challenge bits which constitute the trigger is
known on the PUF-enabled device and the Verifier Server.

Additionally, the structure of the strong PUF can play a role in securing the PUF
against model building. It is being widely discussed in the literature that model-building
of strong PUF is theoretically possible. However, practically, it depends strongly on the
level of the PUF structure’s complexity [12,13,22]. Therefore, to increase security of the
PUF, it can be suggested to employ PUF with increased design complexity. However,
for enrollment of the PUF with ML-based techniques, it is then crucial to make sure, on
the other hand, that the modelability of the PUF on the server side during the enrollment
is facilitated. For instance, it is suggested in the Slender PUF protocol design to build an
equivalent model of an XOR Arbiter PUF during the enrollment via having access to each
individual Arbiter PUF block. It can be assumed here that, for increased security, the XOR



Electronics 2022, 11, 653 5 of 17

size of the PUF is large—while, with the eased access to the individual Arbiter PUF, it is
still viable to accurately model the XOR PUF for enrollment using a compact CRP dataset.

Including such secure solutions for protocols which use ML-based modeling for PUF
enrollment is crucial. It is important to ensure that only a trusted party e.g., a verifier Server,
can have an accurate model of the PUF. Therefore, access to the CRPs of the PUF can be
open to the trusted party in a trusted zone. While outside of the trusted zone, the openly
accessible CRP is disabled and the CRP transmission is secured in a way to hide the true
value of the CRPs. In the following section, we elaborate more on what constitutes the
estimated model of a strong PUF.

4. Machine Learning Modeling of Strong PUF

The goal of strong PUF enrollment with ML-based modeling is to replace the con-
ventional CRP database with an estimated model of the PUF. Let us denote the estimated
model of PUF as hPUF. The enrollment of PUF with ML-based modeling means that the
verifier server will own hPUF, which provides access to the full CRP space of the PUF circuit
with some miss-prediction error that is tolerable (see Figure 1a). This should in turn mean
that the hPUF and the PUF circuit itself should respond similarly to any given challenge
from the CRP space. Let us consider ci as a challenge input to the PUF circuit. If we observe
the PUF circuit as a function fPUF of ci, then its estimation can be defined as a function gPUF
of ci and a set of internal values θ of the model. Thus, hPUF = {gPUF, θ}. The estimation
should then follow (1):

fPUF(ci) = ri ≈ r′i = gPUF(ci, θ) = hPUF(ci) (1)

where ri is the PUF circuit’s response to the challenge ci and r′i is the estimated model’s
prediction of ri for ci. The model then goes through an iterative training phase, where
a learning algorithm modifies the internal values with respect to the CRP set and the
function gPUF. At the beginning of the training phase, model hPUF has a significant
probability of erroneous estimation of the PUF’s CRP characteristic. Therefore, the training
runs iteratively until the probability of erroneous estimation is converged to zero or an
acceptable minimum value.

Since modeling here is done for the enrollment, we define metrics that are important
for the enrollment, and we use them to evaluate the cost of training and the performance of
the estimated models:

• Prediction Accuracy (ε): Proportion of correctly predicted responses to total number
of predictions.

• Enrollment CRP Set Size (css): Size (in bytes) of the CRP set collected to enroll a
given PUF circuit.

• Total Time of Training (T): The time of training in seconds, up to a point when an
estimated model is generated with acceptable ε.

• Estimated Model Size (ms): A measure of size (in bytes) of the internal trainable
parameters θ of an estimated model of a PUF.

5. Proposed Enrollment Procedure

The PUF enrollment procedure is done by an authorized party with open access to
the PUF circuits to collect arbitrary amount of CRPs. We refer to this authorized party as
the designer.

Before the enrollment process, we assume that the designer first has performed a CRP-
readout on a group of silicon Chips. During the CRP-readout, the designer captures an
initial set of CRPs for each strong PUF circuit. We refer to this initial set as CRPt. We assume
that the size of the CRPt is fixed for all the PUF circuits in the same group. The CRPt is then
divided into three subsets. We define a CRPtr subset to be used for training the estimated
model. CRPval is a subset to evaluate the estimated model during training, and CRPte a



Electronics 2022, 11, 653 6 of 17

subset to evaluate the estimated model after training. We assume CRPte to be considerably
larger than CRPval .

During the process of training the estimated models for the PUF circuits, we take the
following considerations as well:

1. The PUF circuit and its estimated model respond similarly to any randomly given
challenge with high probability. In this case, we say that the estimated model has a
high value for ε.

2. The number of CRPs needed to train each estimated model is enumerable and feasible
to collect.

3. The training process is finite and the training time T for obtaining an estimated model
is minimum.

4. The estimated model’s internal parameter set θ is enumerable and feasible for storage.
5. Each estimated mode characterizes only its corresponding PUF circuit, and has no

correlation with other PUF circuits in the same group of PUFs.

The procedure of ML-based enrollment can then be developed as shown in Figure 3.
This procedure will run in three phases to enroll a given PUF circuit: (1) the Initialization
phase, (2) the Optimization phase, and (3) the Evaluation phase.

Phase_1: Initialization

Model
generator

MLP model

C
R

P 
da

ta
se

t o
f

PU
F i

 c
irc

ui
t

Model
specifications

 T
ra

in
in

g 
H

yp
er

pa
ra

m
et

er
s

internal value
initializer

CRPtr

CRPval

CRPte

Loss Function

Optimizer 
Function

PUF

En
ro

llm
en

t c
on

tro
lle

r
pa

ra
m

et
er

s
user

 update rta

Phase_2: Optimization

CRPtrLoss
Function r

1# calculate loss

2# update model

Optimizer 
Function

3# evaluate accuracy

FALSE, 

     

Eval 
Function r CRPval

4# update
step

FALSE

  

FALSE

STOP

TRUE

TRUE

MLP model

c
r'

c

Phase_3: Evaluation

MLP model c

CRPte

Eval 
Function

r'

r

Redo-
enrollmentyield model yield model with

highest accuracy

TRUE

  

TRUE FALSE

 

FALSE

ML-based 
PUF 

Enrollment 
Procedure

Figure 3. Our proposed ML-based enrollment procedure.

5.1. Initialization Phase

Here, we define and initialize the necessary parameters for the optimization and the
evaluation phase. The control parameters as described in Table 1 are initialized by designer
specified values. These parameters define the target accuracy of the estimated model as
well as the maximum period of time the enrollment can take to reach the model with the
target prediction accuracy. The Training Hyper-parameters are also initialized in this stage.
These parameters are machine learning specific and necessary to be assigned according
to the context. The choice of the values for these parameters is up to the designer as well,
and the best practice is to inherit the values of the successful practices in the literature that
have done the strong PUF modeling. The training CRP set CRPt is also given at this stage,
including its three subsets as explained earlier. Finally, the estimated model is created
in this stage. The model specifications are also given by the designer. After the model
is created, it is sent to an initialization process where its internal values are randomized.
The model initialization part of the phase can be iterative. It would depend on how the
next two phases will perform, which we explain in the following.



Electronics 2022, 11, 653 7 of 17

Table 1. Control parameters in the enrollment procedure.

Parameter Description

val_εg Desired value for ε with respect to CRPval subset.

test_εg Desired value for ε with respect to CRPte subset.

δg
Desired average error of mis-prediction of the estimated model with
respect to the CRPtr subset.

csstr Size (in bytes) of the CRPtr subset.

epochmax
The total number of iterations performed during training an estimated
model.

rtamax Number of times the training can refresh on modeling a given PUF circuit.

5.2. Optimization Phase

The training of the estimated model is done in this phase. It comprises multiple
functions for training and evaluation of the estimated model. At the beginning of the phase,
the estimated model is given a set of challenges from the CRPtr dataset. The model then
predicts the corresponding responses. The loss function will take the predicted responses
and the actual responses from the CRPtr and compute the prediction loss δ. Then, the loss
value δ is given to the optimizer function which propagates adjustments to the internal
parameters θ of the estimated model. Then, the Eval function computes the prediction
accuracy ε of the updated estimated model, using the CRPval dataset. This entire process
is called an epoch, which is counted as epoch in the procedure. The procedure undergoes
several epochs of training until the desired value of loss δg or prediction accuracy val_εg is
observed or epoch reaches max value epochmax.

5.3. Evaluation Phase

The evaluation phase performs the final prediction accuracy assessment of the updated
estimated model over the CRPte dataset. Here, the same eval function measures the
prediction accuracy of the model over CRPte. This evaluation in turn tries to emulate the
scenario where the estimated model is invoked during mission mode to communicate with
the PUF circuit. In such case, it is justified to have the CRPte set size be considerably larger
than that of CRPval .

The control sequence in this phase compares the prediction accuracy ε of the model
with the test_εg. If greater, then the the enrollment yields the model as an estimated
model with desired accuracy for enrollment. If the prediction value is less than test_εg,
however, the control sequence sets to redo the training from the initialization phase where
the model’s internal parameters are initialized. The number of re-training times is also
counted in the procedure with rta counter. If rta reaches rtamax as defined by the designer,
then the control sequence yields the enrollment with the model with maximum accuracy
εmax from the previous training attempts, where εmax < test_εg.

6. The Methodology

Recall that we assume in this work that enrollment is done for a very large number of
PUF circuits. Primarily, the user has to initialize the control parameters before to conduct
the enrollment procedure. We know already that the ML-based enrollment procedure is
empirical, meaning that there is no deterministic parameter initialization known beforehand
to initiate the ML-based enrollment with and yield the desired results. Instead, the optimal
values to start with are empirically drawn from a test case. Accordingly, for enrollment
of PUF using ML-based modeling, we suggest that the user performs the enrollment in
two parts:

• Part 1: Set arbitrary values for the hyper parameters, and desired values for the
control parameters val_εg, test_εg and δg, and maximum tolerable values for epochmax
and rtamax. In addition, define a range of different css values. Then, perform the



Electronics 2022, 11, 653 8 of 17

enrollment procedure over each css separately and evaluate at which css the desired ε
is reachable with acceptable T.

• Part 2: Update the control parameters with implications of the optimal values for ε,
T and css, obtained from part 1, and resume the enrollment on the rest of the PUF
circuits with the updated control parameters.

Our focus here is mainly on part 1. Thus, our goal is to show how the observations
obtained in Part1 can help the user to define the optimal values for the control parameters.
Speculatively, to be cost-efficient for the enrollment of a given large group of PUF, the user is
able to find a minimum value for css given the implications he receives from the evaluation
on the primary subset in part 1. Therefore, he will be able to avoid larger css and save
time during the CRP-readout for the remaining large number of PUF circuits pending
for enrollment.

Since it is an empirical method, we should first define the hard bounds for either one
of the control parameters. We suggest to do this for the most critical parameter such as csstr.
After exploring the values within the hard bounds, then find the optimal points for the cost
values. For instance, looking at where css or T is minimum, the ε is maximum and css is
minimum. Accordingly then, update the values of the control parameters (see Figure 4).

PUF-enabled device set 
ready for enrollment

Evaluation  
set

P2

P1

P3
EP

P2

P1

P3
EP

update control 
 parameters

M set

Evaluation set
enrolled M set enrolled*

Part (1) Part (2)

Figure 4. Our proposed enrollment method. Here, EP refers to our proposed enrollment procedure.
M set also refers to the main set of PUF devices to be enrolled with adapted control parameters.

Additionally, an exploration of ms can be done. ms, however, is mostly relying on
the parameters which constitute the structure of the probabilistic model, such as number
of neurons and weighted connections for each neuron if the model is an Artificial Neural
Network (ANN). ms parameters are quite numerous. Therefore, the exploration over ms
should be selective, such as exploring different model structures that have already been
proposed in the literature. The method of grid searching the hyper-parameters for training
also exists, such as the learning-rate value, the optimization function, etc. This can be done
on the side of the enrollment method as we define here.

Once the enrollment on the evaluation set is complete after exploring different values
for the control Parameters, there will be two products: one which is the enrollment of the
devices in the evaluation set, and second is the optimized control parameters which then
can be used in the enrollment of the M set (see Figure 4). This will constitute the second
part of the method. Contrary to the first part, in the second part, no bound for control
parameters are set. Instead, final values for these parameters are given, which are coming
from the first part. The outcome of the second part of the method is to accept an hPUF model
which meets the qualifications according to ε parameters, or discard the model which does
not have the desired quality. In case of discarding the models, their corresponding PUF
will be queried again for more CRP-readout. Nonetheless, we speculate that, with the



Electronics 2022, 11, 653 9 of 17

optimized control parameters exported from part one, the population of discarded models
in the second part should be minimized considerably.

7. Evaluation Work

In this section, we show in an experiment how we analyze css, T and ε over a small
batch of 100 2-XOR Arbiter PUFs.

7.1. Specifications

We considered using XOR Arbiter PUF as our target PUF model family in our evalua-
tion code. We conduct our experiments on data generated from a Python based Arbiter PUF
and XOR Arbiter PUF simulation. We elaborate on XOR Arbiter PUF and its simulation in
Python in the following.

XOR Arbiter PUF is considered as a variant of the Arbiter PUF family. Arbiter PUF
was first introduced in 2002 by Gassend et al. in [23]. The idea of Arbiter PUF is based
on the delay difference between two racing paths that are structurally similar, but, due to
minor process variations, they differ in time of passing a signal given to them at the same
time. The structure of XOR Arbiter PUF is based on multiple Arbiter PUFs whose input
(challenge) is of the same size, and triggered by a global input. The output of the XOR
Arbiter PUF is also the XOR of the output of each Arbiter PUF it comprises. Figure 5 shows
the structure of an n-stage k-XOR Arbiter PUF.

. . .

. . .

Arb

stage1 stage2 stage nstage n-1

. . .

. . .

Arb

cn-1
. . . cnc2c1

. .
 . r

APUF_1

APUF_k

. .
 .

Figure 5. Illustration showing the structure of n-Stage k-XOR Arbiter PUF.

We reused the XOR Arbiter PUF simulator developed by Ruhrmair as described in [24].
The source code of this simulator can also be found in [25]. In this simulator, the two racing
signals’ propagation delay is modeled as the sum of the delays in each stage. The delay
parameter values in the Python-based implementation of APUF and XOR Arbiter PUF
simulator are generated randomly according to a standard normal distribution, with mean
0 and standard deviation 1.

For our experiment, we generated 100 instances of 128-stage 2-XOR Arbiter PUF. We
then randomly generated 35,000 challenges for each instance, and recorded their corre-
sponding response. Thus, we stored 100 CRP datasets with 35,000 CRPs in each set. Note
that the datasets generated from the simulated PUF instances do not simulate the instability
that is inevitably present in real PUFs. We intentionally chose the instability-free condition,
since the presence of instability is a new fold of complexity that can affect the modeling
results, and thus it needs to be discussed thoroughly in a separate set of experimental work.

To assure the reliability of the simulated instances and the generated CRPs, we mea-
sured the randomness, uniqueness, and diffuseness, using the formulations proposed



Electronics 2022, 11, 653 10 of 17

in [26,27]. A collective use-case of Hori’s Uniqueness and Maiti’s Uniqueness, as well as
the randomness and the diffuseness, can be found in [14]. Our measurements of unique-
ness, randomness, and diffuseness over 100 instances of 128-bit 2-XOR Arbiter PUF are
brought in Table 2. Note that each CRP set considered for these measurements comprises
10,000 CRPs.

Table 2. Measurements on 100 PUF instances CRP sets.

Average
Randomness Maiti’s Uniqueness Hori’s Uniqueness Average

Diffuseness

0.9419 0.4999 0.9899 0.9972

We chose our estimated model to be Multi-Layer Perceptron (MLP), which is a variant
of Artificial Neural Network (ANN) models. Mursi et al. in [15] has proposed a structural
definition of MLP model for modeling XOR Arbiter PUFs that has the potential to converge
faster with a considerably lower number of CRPs for training compared to other modeling
structures such as ones discussed in [24,28], which are based on Logistic Regression (LR),
and Ref. [29], which is based on Artificial Neural Networks (ANN). A schematic of Mursi’s
proposed MLP structure is given in Figure 6. Here, k is with the number of XORs in an
n-stage k-XOR Arbiter PUF. The mentioned feature vector in the figure is solely a function
of the applied n-bit challenge c. As also described by Ruhrmair in [24], the feature vector
as ~Φ can be defined as ~Φ(c) = ∏k

i=1(1− 2bi), where bi is the ith bit of the challenge c.
Accordingly, for a 128-stage 2-XOR Arbiter PUF, the MLP model we use in this work

has an input layer with 129 neurons, first hidden layer with two neurons, second hidden
layer with four, and a third layer with two neurons. The output would also have one
classifier neuron. For the training hyper-parameters and the enrollment control parameters,
we considered the values given in Table 3. Here, the parameters marked with ∗ are the
control parameters of the enrollment.

c1

c2

cn

cn+1

r

No. N: 2(k-1) No. N: 2(k) No. N: 2(k-1) No. N: 1

Activation Function: Tanh Activation Function: Sigmoid

Fe
at

ur
e 

Ve
ct

or

Predicted  
Response

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

No . N: + 1

Figure 6. Illustrating the MLP structure proposed by Mursi et al. in [15].

Table 3. Hyper-parameters set for the initialization phase.

Parameter Optimizer
Function

Loss
Function

Learning
Rate

Weight
Initializer

Bias Ini-
tializer * epochm ax * test_εg * rtam ax * val_εg δg

CRP_{te}
Set Size

Value Adam BCELoss 0.001 Taiming
Uniform Uniform 400 10 90% 99% 0.01 20,000

7.2. Experimental Observations

We did an exploration to find the ideal values for csstr and T. The choice of the lower
bound of csstr and the upper bound was also arbitrary. We inferred from the previous
studies that the lowest value for csstr for a 2-XOR 128-it XOR Arbiter PUF is a value of



Electronics 2022, 11, 653 11 of 17

about 3000 CRPs. Therefore, we choose that as the lower bound. For the upper bound, we
chose 10,000 CRPs. We speculated that the characteristic we observe around this number of
CRPs can be interpolated for larger sizes of csstr as well.

We used Pytorch in Python 3.7 to build and train our ANNs. We conducted our
experiments on a PC running windows 10 with an Intel core i7 8th Gen CPU and 16 GB of
memory. We developed our experimental Python codes using Spyder 4.0.1 on Anaconda
Navigator 1.9.12.

The results on the performance of training with various training set sizes are reflected
in Figure 7. Looking at the results, we can identify at what csstr value the probability of
reaching the desired ε is very low, which is between 3000 to 4000. Note that the model
accuracy at these csstr values is εmax as we indicated in the procedure. In addition, looking
at the range between 4500 CRPs to 10,000 CRPs for csstr, it infers that, with increasing
the set size, the probability of reaching the desired ε tends to stabilize at a value above
the target test_εg as we defined in the test phase. There exist some outliers that are cases
where the desired ε could not be reached; therefore, the model with εmax is yielded. This
can characterize the possibility of having discarded HPUF models during Part 2 of the
enrollment method as we explained earlier.

Moreover, the training time T tends to decrease as well at the beginning with increasing
the set size up to 7500. We imply that this reduction in time of training is due to a significant
decrease in re-training attempts until desired model is yielded.

Figure 7. Illustrating the distribution of prediction accuracy ε and the distribution of total training
time T over various csstr.

Plots shown in Figure 8 also show the minimum, maximum, and average values of
T and ε. Looking at Figure 8a, we can observe what are safe values of csstr in terms of
delivering the target prediction accuracy ε with maximum probability. In this scenario,
look for ε > 0.90, that is, the values between 7000 to 8000 CRPs. Looking at values of ε and
T shown in Figure 8c, one can infer at what csstr values there is a chance of obtaining the
target ε. Here, at 3000 for instance, 3000 CRPs could yield a model with ε > 0.90. This,
however, means that a designer needs to improve other factors to increase the chance of



Electronics 2022, 11, 653 12 of 17

obtaining model with target ε. For instance, by using a better initialization technique or
modifying the model structure, which could in turn affect the model size ms consequently.
By also looking at Figure 8b, we can infer at what csstr values we have an increased chance
of obtaining the target ε. For instance, for csstr > 5000, it is possible to obtain prediction
accuracy ε > 0.90. However, for this csstr, there is a considerable chance that models with
ε < 0.90 are yielded (see Figure 7). Choosing this option depends on the cost of re-querying
the corresponding PUFs for the outlier predictive models with low prediction accuracy.
If the cost of re-querying is amenable by choosing the low csstr for the majority of the
PUF devices for the first query, then it could be considered a potential choice in terms of
lowering the overall cost of enrollment.

30
00

35
00

40
00

45
00

50
00

55
00

60
00

65
00

70
00

75
00

80
00

85
00

90
00

10
,0

00

Training csstr

0.5

0.6

0.7

0.8

0.9

1.0

m
in

im
um

 p
re

di
ct

io
n 

ac
cu

ra
cy

 

0

100

200

300

400

500

m
ax

im
um

 tr
ai

ni
ng

 ti
m

e 
T

(a)

30
00

35
00

40
00

45
00

50
00

55
00

60
00

65
00

70
00

75
00

80
00

85
00

90
00

10
,0

00

Training csstr

0.5

0.6

0.7

0.8

0.9

1.0

av
er

ag
e 

pr
ed

ict
io

n 
ac

cu
ra

cy
 

0

100

200

300

400

500

av
er

ag
e 

tra
in

in
g 

tim
e 

T
(b)

30
00

35
00

40
00

45
00

50
00

55
00

60
00

65
00

70
00

75
00

80
00

85
00

90
00

10
,0

00

Training csstr

0.5

0.6

0.7

0.8

0.9

1.0

m
ax

im
um

 p
re

di
ct

io
n 

ac
cu

ra
cy

 

0

100

200

300

400

500

m
in

im
um

 tr
ai

ni
ng

 ti
m

e 
T

(c)

Figure 8. Illustration showing the minimum, average, and maximum training time T and prediction
accuracy ε for various cctr. (a) Max T and Min ε; (b) average T and ε; (c) Min T and Max ε.

We could have two approaches here: (1) To choose the minimum css that has a chance
to yield some hPUF model with sub-optimal ε; (2) To choose css which yields maximum ε
and has a negligible chance of yielding hPUF with sub-optimal ε.

Choosing the first option can yield in overall reducing the CRP read-out cost since
we chose the minimum csstr. However, since there is also the chance of yielding hPUF
with sub-optimal ε, then there may be some additive cost of re-querying the PUFs with
discarded hPUF for re-enrollment. If the cost of re-querying is tolerable, then the first option
could potentially be the cost-efficient choice. Choosing the second option, however, could
yield the overall increased CRP read-out cost. We also saw that training time T can also
be minimized if the prediction accuracy ε is maximized with increasing css. However,
the chance of yielding hPUF with sub-optimal ε is negligible on the other hand. This option
could be a potential choice for cost-efficiency if the cost of re-querying the PUF is high.

We also measured the size of the trained estimated models. The MLP used in this
study comprises 282 trainable parameters in total. Each parameter is 32-bit floating point,
yielding in total a model size of 1128 bytes. Note that we do not need to save any metadata
regarding the internal connectivity of the MLP, since all layers in the MLP model are
Fully-Connected. While we cannot make a thorough comparison at this level of evaluating
the method, we can at least draw a primary conclusion that storing an estimated model
of a strong PUF circuit potentially takes much less space, compared to that of a CRP set.
For instance, the training CRP set used here to obtain the most accurate model includes
10,000 CRPs, equal to 161 KB of storage size, whereas the estimated model size is roughly
above 1 KB.

The uniqueness of the trained estimated models is also an important characteristic,
which means that no estimated model should respond similarly to two different PUFs.
Although this is not a metric related to the cost of enrollment, it is, however, essential to
ensure that models correspond only to their equivalent PUF circuit. This should satisfy the
fifth consideration we discussed in Section 5. We refer to it as measuring the uniqueness
of the estimated models. Uniqueness here is observed as the prediction accuracy of each
trained estimated model over a given CRP dataset coming from each PUF circuit. Since we
have 100 PUF circuits and their corresponding 100 estimated models, we therefore mea-



Electronics 2022, 11, 653 13 of 17

sured 10,000 cases for the uniqueness. We considered two cases, one which is training the
models with csstr = 3000, and one with csstr = 8000 CRPs. The results of this measurement
are brought in Figure 9. We expect for csstr = 3000 that the models have low similarity
to their corresponding PUF. Looking at Figure 9a, we see that only a selective number of
cases have ε above 0.70. Nonetheless, for all cases, it is apparent that no similarity with ε
higher than 0.6 is achieved. We also observe on Figure 9b that estimated models trained
with csstr = 8000 show similarity uniquely only to their corresponding PUF circuit with
high accuracy. We cannot infer directly from these observations that, for any trained model
on a PUF circuit in general, the model shows CRP similarity only to the corresponding
PUF. Since we suspect that there might exist some PUF designs that intentionally have
CRP similarities scattered between various PUF devices, we can nonetheless infer that, for
a set of PUF devices for which their PUF characteristic shows good random and unique
behavior (see Table 2), predictive models trained using enough CRPs from a PUF represent
uniquely that PUF only, while having no similarity to other PUF instances.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 10
0

Trained ANN models

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100

Si
m

ul
at

ed
 P

UF
 in

st
an

ce
s

0.50

0.60

0.70

0.75

0.80

0.85

0.90

Pr
ed

ict
io

n 
ac

cu
ra

cy

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 10
0

Trained ANN models

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100

Si
m

ul
at

ed
 P

UF
 in

st
an

ce
s

0.50

0.60

0.70

0.75

0.80

0.85

0.90

0.95

Pr
ed

ict
io

n 
ac

cu
ra

cy

(b)
Figure 9. Similarity matrices showing the similarity between 100 trained models and 100 instances of
a 128-stage 2-XOR Arbiter PUF. (a) csstr = 3000 ; (b) csstr = 8000.

8. Applicability in the Related Works

The methodology we developed here is applicable to recent trending use-cases of
PUF modeling, which are device authentication and encryption key generation. Below, we
discuss several PUF based protocols that utilize an equivalent software program of the
model of the PUF.

The Slender PUF protocol proposed by Majzoobi et al. in [7] is an authentication
protocol that uses strong PUF. In this protocol, the authors propose a substring matching
mechanism, wherein the substring in the protocol is a sliced vector from a vector of
generated responses both on the PUF device and the verifier server. Authors in this work
assume that the verifier server has access to a compact model of the PUF, which is able to
generate a response for any given challenge vector, similar to that in the original PUF circuit.
The sliced vector of responses is sent from the PUF device to the verifier, and convoluted
over the entire response vector that has been generated on the verifier server, using the
compact model of the PUF. The authentication is successful once the sliced vector shows
maximum correlation to a subpart of the verifier’s response vector. Since, in this protocol,
the sliced response vector is exchanged on a public channel, it is obliged that, once the
vector is used, it is discarded and never used again to prevent replay attacks. This in turn
requires that the verifier server has access to a very large amount of the CRP space of
the PUF, which is in turn guaranteed by using the model of the PUF. Thus, the model of
the PUF should correspond as accurately as possible to the PUF circuit in order to suffice
the requirement.

Another novel mutual authentication protocol has been proposed by Idriss et al.
in [17,18], which is based on a challenge–challenge communication mechanism between



Electronics 2022, 11, 653 14 of 17

the PUF-enabled device and the verifier server. It is also assumed in this work that the
verifier server acquires an accurate model of the PUF for enrollment. During the mutual
authentication, after exchanging the device IDs, the PUF-enabled device generates several
random CRPs. To authenticate the server, the challenge vectors of the generated CRPs are
sent from the device to the verifier server. On the server side, for each received challenge
vector ci, two new random challenge vectors cj and ck are generated, such that the XOR
of the response values corresponding to each of the two newly generated challenge is
equal to the response of the received challenge vector. In other words, the A(cj)

⊕
A(ck) =

r′ == r = A(ci) should hold true, where A is the model of the PUF circuit. Once the
cj and ck are generated for every ci received on the verifier server, they are sent to the
PUF-enabled device. On the PUF-enabled device, it is then checked to see if the equation
PUF(cj)

⊕
PUF(ck) = r′ == r = PUF(ci) is true for the majority of the received challenge

vector pairs. Once the device authenticates the server, it sends a new challenge vector pair
set (the same as the verifier did) to the verifier server for authenticating the device. Since
this mutual authentication method is based on random generation of the challenge values
for every authentication request, it is assumed that the verifier server has access to a large
CRP space where, for every randomly generated challenge vector, a response value can be
provided. This of course is guaranteed by using the equivalent model of the PUF, which is
highly accurately trained.

A PUF based key generation protocol has been proposed by Quadir et al. in [19],
which uses a machine learning generated predictive model of the PUF on the TTP server for
mutual key generation. Here, the authors propose mutual key generation by exchanging
only a serial number, which in turn is the challenge to the PUF device and the predictive
model, respectively. It is expected of course that both the model and the PUF device
generate the same response value. The response value of course is prone to variations due
to device instability and model miss-prediction, which is why the authors also propose
using helper data and error correction codes to recover the original key generated on the
TTP server for the PUF device. Similar to the idea of PUF authenticating in [18], here only
the challenge values are exchanged and no responses, in order to avoid model-building
attacks. The protocol proposed here also refreshes the key after a certain period. This
feature of course needs both the device and server to have access to a large CRP space,
which is again for the verifier server, provided using the model of the PUF. This way,
the users will be able to refresh keys frequently and each time guarantee that a new value
is generated.

The advent of such protocols for device authentication and key generation enables
a secure implementation of One-Time-Password (OTP) methods to be more feasible and
reliable than before. Since the CRP space of strong PUF is considerably large, it can be
easily guaranteed that every newly generated password is unique. On the other hand,
the reliability of the key is of importance, which is partially assured by providing a highly
accurate model of the PUF. Additionally, once these protocols emerge into a large spectrum
of embedded systems and connected devices, it is expected that the enrollment process
now relying on machine learning-based modeling can be practiced for a very large volume
of devices. Therefore, the cost of enrollment, as we defined its constituent terms in this
work, finds their importance and needs to be managed properly.

9. Conclusions

In this paper, we presented a formalized ML-based enrollment procedure for strong
PUFs and a two-part methodology to evaluate the cost and performance of training with
respect to several metrics. We showed that the evaluation, which happens during the
first part of the enrollment method, assesses the cost of enrollment for some given control
parameters by the designer. This evaluation then highlights the optimal values for several
training parameters such as the training CRP set size, time of training, and model prediction
accuracy. We then discussed that the second part of the method uses the optimal training
parameter values found in part one, in order to enroll the large group of PUF circuits.



Electronics 2022, 11, 653 15 of 17

10. Future Work

Here, we only evaluated the time of training T and prediction accuracy ε with respect
to csstr and model size ms. In fact, since no rival ML-based methods have been studied
here, we could not compare different values of ems with respect to csstr. One of the future
extensions of this work therefore is to include exploration on various modeling techniques
and investigate optimal suggestions considering also the value of ems. An exploration
on other MLP model structures can provide that variety for ems. However, we cannot
solely compare the results with previous works. Such assessments require reproducing the
existing estimated modeling techniques and observing their performance on a reproduc-
tion quality. Assessment of the machine learning-based strong PUF enrollment with the
presence of PUF instability is also another extension to this work in the future. This aspect
advances through a new complexity fold regarding the viability of modeling of strong PUF.
Additionally, methods aiming at better initializing the estimated model before training are
potential extensions to this work. For instance, investigating Transfer learning [30] seems
to be a promising approach as it shows merits in the field of machine learning, and can be
exploited as well for strong PUF modeling.

Access to the full CRP space using a predictive model of PUF can potentially emerge
into new protocols that exploit the abundance of the CRPs. As we discussed, several
methods exist that already proposed a use-case of a model of the PUF to perform mutual
authentication between a TTP verifier server and a PUF-enabled device [7,17–19]. Given
that we assume commonly that the entropy of the PUF output is low, (e.g., ri ∈ {0, 1} for
a PUF with binary response output), it would be possible to incorporate novel correction
codes that are capable of locally regenerating a mutual value using the PUF responses. In a
future extension of this work, we elaborate on a novel centralized key generation technique
that exploits the abundance of accessible CRPs on a TTP verifier to build robust mutual
secret key values. We explain there that the robustness is guaranteed on the TTP server
thanks to the existence of a predictive model of a strong PUF that is accurately trained,
using the same principles we explained here.

Author Contributions: Conceptualization, A.A.-P., D.H., V.B., and G.D.N.; methodology, A.A.-P.,
D.H., V.B. and G.D.N.; software, A.A.-P.; validation, A.A.-P., D.H., V.B. and G.D.N.; formal analysis,
D.H., V.B. and G.D.N.; investigation, A.A.-P., D.H.; resources, A.A.-P., D.H. and V.B.; data curation,
A.A.-P.; writing—original draft preparation, A.A.-P.; writing—review and editing, A.A.-P., D.H.,
V.B. and G.D.N.; visualization, A.A.-P.; supervision, D.H., V.B. and G.D.N.; project administration,
D.H.; funding acquisition, D.H. All authors have read and agreed to the published version of
the manuscript.

Funding: This material is based upon the work supported by the French National Research Agency
in the framework of the “Investissements d’avenir” program (ANR-15-IDEX-02).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Herder, C.; Yu, M.D.; Koushanfar, F.; Devadas, S. Physical Unclonable Functions and Applications: A Tutorial. Proc. IEEE 2014,

102, 1126–1141. https://doi.org/10.1109/JPROC.2014.2320516.
2. Alipour, A.; Beroulle, V.; Cambou, B.; Danger, J.; Natale, G.D.; Hely, D.; Guilley, S.; Karimi, N. PUF Enrollment and Life Cycle

Management: Solutions and Perspectives for the Test Community. In Proceedings of the 2020 IEEE European Test Symposium
(ETS), Tallinn, Estonia, 25–29 May 2020; pp. 1–10. https://doi.org/10.1109/ETS48528.2020.9131578.

3. Majzoobi, M.; Koushanfar, F.; Devadas, S. FPGA PUF using programmable delay lines. In Proceedings of the 2010 IEEE
International Workshop on Information Forensics and Security, Seattle, WA, USA, 12–15 December 2010; pp. 1–6.

4. Devadas, S.; Kharaya, A.; Koushanfar, F.; Majzoobi, M. Automated Design, Implementation, and Evaluation of Arbiter-Based PUF on
FPGA Using Programmable Delay Lines. Technical Report; Rice University: Houston, TX, USA, 2014.

5. Shamsoshoara, A.; Korenda, A.; Afghah, F.; Zeadally, S. A survey on physical unclonable function (PUF)-based security solutions
for Internet of Things. Comput. Netw. 2020, 183, 107593.

6. Delvaux, J.; Peeters, R.; Gu, D.; Verbauwhede, I. A Survey on Lightweight Entity Authentication with Strong PUFs. ACM Comput.
Surv. 2015, 48, 26. https://doi.org/10.1145/2818186.

https://doi.org/10.1109/ETS48528.2020.9131578


Electronics 2022, 11, 653 16 of 17

7. Majzoobi, M.; Rostami, M.; Koushanfar, F.; Wallach, D.S.; Devadas, S. Slender PUF Protocol: A Lightweight, Robust, and
Secure Authentication by Substring Matching. In Proceedings of the 2012 IEEE Symposium on Security and Privacy Workshops,
San Francisco, CA, USA, 24–25 May 2012; pp. 33–44. https://doi.org/10.1109/SPW.2012.30.

8. Cambou, B.; Orlowski, M. PUF designed with Resistive RAM and Ternary States. In Proceedings of the 11th Annual Cyber and
Information Security Research Conference, Oak Ridge, TN, USA, 5–7 April 2016; pp. 1–8.

9. Korenda, A.R.; Afghah, F.; Cambou, B. A secret key generation scheme for internet of things using ternary-states ReRAM-based
physical unclonable functions. In Proceedings of the 2018 14th International Wireless Communications & Mobile Computing
Conference (IWCMC), Limassol, Cyprus, 25–29 June 2018; pp. 1261–1266.

10. Majzoobi, M.; Koushanfar, F.; Potkonjak, M. Lightweight secure PUFs. In Proceedings of the 2008 IEEE/ACM International Conference
on Computer-Aided Design, San Jose, CA, USA, 10–13 November 2008; pp. 670–673. https://doi.org/10.1109/ICCAD.2008.4681648.

11. Alipour, A.; Hely, D.; Beroulle, V.; Di Natale, G. Power of Prediction: Advantages of Deep Learning Modeling as Replacement for
Traditional PUF CRP Enrollment. In DATE: TrueDevice2020; HAL: Grenoble, France, 2020.

12. Khalafalla, M.; Gebotys, C. PUFs Deep Attacks: Enhanced modeling attacks using deep learning techniques to break the security
of double arbiter PUFs. In Proceedings of the 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE),
Florence, Italy, 25–29 March 2019; pp. 204–209. https://doi.org/10.23919/DATE.2019.8714862.

13. Huang, J.Q.; Zhu, M.; Liu, B.; Ge, W. Deep Learning Modeling Attack Analysis for Multiple FPGA-based APUF Protection
Structures. In Proceedings of the 2018 14th IEEE International Conference on Solid-State and Integrated Circuit Technology
(ICSICT), Qingdao, China, 31 October–3 November 2018; pp. 1–3. https://doi.org/10.1109/ICSICT.2018.8565728.

14. Mursi, K.T.; Zhuang, Y.; Alkatheiri, M.S.; Aseeri, A.O. Extensive Examination of XOR Arbiter PUFs as Security Primitives for
Resource-Constrained IoT Devices. In Proceedings of the 2019 17th International Conference on Privacy, Security and Trust (PST),
Fredericton, NB, Canada, 26–28 August 2019; pp. 1–9. https://doi.org/10.1109/PST47121.2019.8949070.

15. Mursi, K.T.; Thapaliya, B.; Zhuang, Y.; Aseeri, A.O.; Alkatheiri, M.S. A Fast Deep Learning Method for Security Vulnerability
Study of XOR PUFs. Electronics 2020, 9, 1715. https://doi.org/10.3390/electronics9101715.

16. Wisiol, N.; Mursi, K.T.; Seifert, J.P.; Zhuang, Y. Neural-Network-Based Modeling Attacks on XOR Arbiter PUFs Revisited. Cryptol.
ePrint Arch 2021, 2021, 555.

17. Idriss, T.; Bayoumi, M. Lightweight highly secure PUF protocol for mutual authentication and secret message exchange. In
Proceedings of the 2017 IEEE International Conference on RFID Technology & Application (RFID-TA), Warsaw, Poland, 20–22
September 2017; pp. 214–219.

18. Idriss, T.A.; Idriss, H.A.; Bayoumi, M.A. A Lightweight PUF-Based Authentication Protocol Using Secret Pattern Recognition for
Constrained IoT Devices. IEEE Access 2021, 9, 80546–80558.

19. Quadir, M.S.E.; Chandy, J.A. Embedded Systems Authentication and Encryption Using Strong PUF Modeling. In Proceedings
of the 2020 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 4–6 January 2020; pp. 1–6.
https://doi.org/10.1109/ICCE46568.2020.9043104.

20. Pratihar, K.; Chatterjee, U.; Alam, M.; Mukhopadhyay, D.; Chakraborty, R.S. A Tale of Twin Primitives: Single-chip Solution for
PUFs and TRNGs. Cryptol. ePrint Arch. 2021 , 2021, 1067.

21. Wang, S.J.; Chen, Y.S.; Li, K.S.M. Adversarial attack against modeling attack on pufs. In Proceedings of the 2019 56th ACM/IEEE
Design Automation Conference (DAC), Las Vegas, NV, USA, 2–6 June 2019; pp. 1–6.

22. Alkatheiri, M.S.; Zhuang, Y.; Korobkov, M.; Sangi, A.R. An experimental study of the state-of-the-art PUFs implemented on
FPGAs. In Proceedings of the 2017 IEEE Conference on Dependable and Secure Computing, Taipei, Taiwan, 7–10 August 2017;
pp. 174–180. https://doi.org/10.1109/DESEC.2017.8073844.

23. Gassend, B.; Clarke, D.; van Dijk, M.; Devadas, S. Silicon physical random functions. In Proceedings of the 9th ACM conference
on Computer and communications security, Association for Computing Machinery, CCS ’02, Washington, DC, USA, 18–22
November 2002; pp. 148–160. https://doi.org/10.1145/586110.586132.

24. Ruhrmair, U.; Sehnke, F.; S olter, J.; Dror, G.; Devadas, S.; Schmidhuber, J.u. Modeling attacks on physical unclonable functions.
In Proceedings of the 17th ACM conference on Computer and communications security-CCS ’10, Chicago, IL, USA, 4–8 October
2010; ACM Press: New York, NY, USA, 2010; p. 237. https://doi.org/10.1145/1866307.1866335.

25. Available online: http://www.pcp.in.tum.de/code/lr.zip (accessed on 16 February 2022).
26. Maiti, A.; Gunreddy, V.; Schaumont, P. A Systematic Method to Evaluate and Compare the Performance of Physical Unclonable

Functions. In Embedded Systems Design with FPGAs; Athanas, P., Pnevmatikatos, D., Sklavos, N., Eds.; Springer: New York, NY,
USA, 2013; pp. 245–267. https://doi.org/10.1007/978-1-4614-1362-2_11.

27. Hori, Y.; Yoshida, T.; Katashita, T.; Satoh, A. Quantitative and Statistical Performance Evaluation of Arbiter Physical Unclonable
Functions on FPGAs. In Proceedings of the 2010 International Conference on Reconfigurable Computing and FPGAs, Cancun,
Mexico, 13–15 December 2010; pp. 298–303. https://doi.org/10.1109/ReConFigure2010.24.

28. Tobisch, J.; Becker, G.T. On the Scaling of Machine Learning Attacks on PUFs with Application to Noise Bifurcation. In Radio
Frequency Identification; Mangard, S., Schaumont, P., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 17–31.

https://doi.org/10.3390/electronics9101715
http://www.pcp.in.tum.de/code/lr.zip


Electronics 2022, 11, 653 17 of 17

29. Aseeri, A.O.; Zhuang, Y.; Alkatheiri, M.S. A Machine Learning-Based Security Vulnerability Study on XOR PUFs for Resource-
Constraint Internet of Things. In Proceedings of the 2018 IEEE International Congress on Internet of Things (ICIOT), San
Francisco, CA, USA, 2–7 July 2018; pp. 49–56. https://doi.org/10.1109/ICIOT.2018.00014.

30. Wang, Q.; Aramoon, O.; Qiu, P.; Qu, G. Efficient Transfer Learning on Modeling Physical Unclonable Functions. In Proceedings of
the 2020 21st International Symposium on Quality Electronic Design (ISQED), Santa Clara, CA, USA, 25–26 March 2020; pp. 1–6.
https://doi.org/10.1109/ISQED48828.2020.9137057.


	Introduction
	Machine Learning and PUF-Based Computing
	Secure CRP Access for Strong PUF
	Machine Learning Modeling of Strong PUF
	Proposed Enrollment Procedure
	Initialization Phase
	Optimization Phase
	Evaluation Phase

	The Methodology
	Evaluation Work
	Specifications
	Experimental Observations

	Applicability in the Related Works
	Conclusions
	Future Work
	References

