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Precise Asymptotics for the Complete Moment
Convergence : The General Case

Mohamed ATLAGH *

Abstract: Let (X,Xi,i21) be a sequence of i.i,d. random variables. Let f be a differentiable function, 0< f(z)To0
and g be a one to one function, 0<g(z)Too with g~ differentiable and regularly varying at infinity with index A>0.
We achieve a general law of precise asymptotics of complete moment convergence. We give, in an adequate way, a
generalization and extension of Lin and Liu's results [13]. Under optimal moment conditions, we give, for all p>0, a

precise asymptotics of: 1/g %) Enguu f'(n) B[22 pI{ISnJZEQ‘U("}))}A
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1 Introduction:

Throughout this paper, let (X, X;,7 > 1) be a sequence of i.i.d. random variables and S, =
w1 Xi. For all increasing positive functions K and positive functions H, we associate the
functional defined for all € > 0, by

ve) =) H(n) (|Su| 2 evnK(n) , (L1)

n>1

where I is the indicator function. The complete convergence of the partial sums of r.v. studies
under certain conditions on the moments, the expectation convergence of v(z), i.e.:

Ev(e) =Y H(n) P{|S,| > evnK(n)} < cc. (1.2)

n>1

It was Hsu and Robbins [12] who introduced this notion. They proved that (1.2) occurs for
all ¢ > 0 if, and only if EX = 0 and EX? < oo when H(n) = 1 and K(n) = \/n, n > L.
Baum and Katz [1] have generalized this result for the case H(n) = n"?, K(n) = n}/?~1/2with
n>1,1<p<randr>2 They proved that (1.2) occurs for all € > 0 if, and only if EX =0
and E|X|™ < oo. Davis [6] has extended this result to the case when H is non polynomial,
H(n) = In(n)/n and K(n) = VIon, n > 1. In the last few years, many authors have given
precise asymptotics of Ev(e) when e | 0 (cf [4], [8], (9], [14]).

For all n > ng fixed, put G(n) = H(n)/\/nK(n) and define, for all € > 0 and p > 0:
L(e,p) = p[ " Ey(t)dt = Z G(n) E[|Sa]? - (evnK (n))] . (1.3)
{2 n>ng
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Chow [5] has introduced the complete moment convergence by studying L(z, 1) with /nK(n) =
n% a > 1/2 and G(n) = n®@"V=2 ¢ > 1. Lin and Liu [13] gave a precise asymptotics for
L(e,p), 0 < p < 2, when ¢ J, 0 in the case G(n) = I/n and K(n) = y/n. For p = 2, they
examined L(e,2) when ¢ | 0 in the case G(n) = In’~(n)/n%,0 < 6 < 1 (resp. G(n) = I/n
n>1and K(n) = vinn (vesp. K(n) = ), n > 1. Their results are the following:

Theorem A (Lin, Liu, [13]): Let 0 < p < 2 The moment conditions

EX=0'EX*=6""%0b (1.4)
are equivalent to
tim 2 5° L BI8, P18, > en) = 2T (L5)
AL Lt Wy o i T e S B '

Theorem B (Lin, Liu, [13]): The moment conditions

EX =0, EX? = ¢? < 00 and EX*In(|X| Ve) < o0 (1.6)
are equivalent to
=l 1 S ol
Ehjnu@;@ E|Sy|I(|Sn| > en) = 2%, (1.7)
and, for 0 <4 <1,
EX =0, EX? = ¢ and EX?*In(|X| Ve) < 0 (1.8)
are equivalent to
; n” -1 g20+2 5
= Z E|S,[*X(|S| > eVinlun) = ——EIN(U 1) 2 (1.9)
n>1

In this work, we extend and generalize theorems A and B by giving precise asymptotics, for
a large class of functions G and H of L(e, p), 0 < p < oo, when the random variable X satisfies
certain moment conditions.

During the writing of the paper, I learned about the paper written by Y. Zhang, X. Yang
and Z. Dong ([7]). The authors of that paper dealt with sufficient conditions to get the precise
asymptotics of L(e, 2) and in two particular cases of the normalizer’s term. Our results, as seen
in the sequel, generalize theirs ([7], Theorem 2.1). We note though, for p > 2, the hypothesis of
aforementioned paper [7] is never valid.

Throughout, log,(z) = z, log,(z) = log(z) = In(z V e), and for n > 2, log,,(z) = log,,_; (log(z)),
N = N(0,1) is the standard normal r.v. Let [z] denote the largest integer < z, ng> 0 a fixed
integer and C' denotes positive constants, possibly varying from place to place.

2 Main results :

In the following, f and g are two increasing positive functions defined on R*such that:

(a) lim f(z) = oo and f is differentiable.
I—00

(b) lim g(z) = oo, g is one to one function with differentiable inverse function g~'which is
T—0C

regularly varying, with index A > (0.



olfa) _ .

(c) For all a > 0, there exists C' > 0 such that: lim

T—00 T
Let h a function defined, for all n > ng, by : h(yng(f(n))) = n, extended to R by linear
interpolating. The function h is strictly increasing, bijective and satisfying h(v/n) < n < h(n) for
n large enough.
We will prove the following theorems: Let g(z) = a3, 23>0,

Theorem 1: Let A > 2 —p, 0 < p < 2. The following propositions are equivalent:

EX =0, EX? = 0% < 00 and EX2(f o )= (|X|) < 00 (2.1)

35}1 & Z fln

n>ng

IS | 2 ev/n A (n)) = MPEIN . (2.2)

Remark 2.0 For z large enough, f o h(z) = 2*/ h%(x). The condition (2.1) is equivalent to
EX =0, EX’=0® <coand E {le””/hiﬂﬂX\)}
Corollary 1: For 0 < p < 2, we have :

P
EX =0and EX?=0° < 00 &= 11%52"?’ Z f'(n) E L 1(|Sq| > evn f77 (n)) = o>
E—

n>ng

This generalizes Theorem A, which one can find by taking f(n) = n'~?/2, n > 1. If p = 0, we
obtain a result which is similar to that of Heyde [11]:

EX =0, EX’=0’ <o lime* Y f/(n) P{\Sn] geﬁf%(n)} =AEN} (A>9).

nzng

Let s > 0 such that 1/s > p > 0. In Theorem 1, for A =1/s—p > 2 and let f; a function defined,
for all n > ng, by : f(n) = 1 “P*(n), we obtain the result of [7] with the best moment conditions.
Let f and g satisfying COHdlthﬂS (a), (b), and (c). We have:

Theorem 2: Forp > 2 and A> 0, the following propositions are equivalent:

EX =0, EX? = ¢® < co and E[X|P f o h(|X]) < c0 sl
f'ln pott? M
liy g_l 8 Z m B[S, - (evigo SOIP], = VBN @2

Remark 2.1 The condition (b) above implies the existence of a slowly varying function at infinity,
L, such that: ¢~ (z) = 2*L(z)(z > 0). The condition (¢) provides the connection between f and
g and is in fact equivalent, for ¢ large enough, to f(z) < Cg~\(v@) = C2*2L(/x).
Remark 2.2 For b > 0 such that f(z)log™"(z)(z > 0) is decreasing, the moment condition
EX(foh)- 5 (|X]) < oo (resp. E|X|” foh(|X[) < co) is equivalent to EX2 -5 (|X]) <
(resp. E|X|? f(|X]) < o). ’

Remark 2.3 For = large enough, foh(z ~Yx/v/h(z)) € g7 }(z) and m—((ilc;';))((x)) <

I



Remark 2.4 One has lim._; foh(|X|/e)/g ' (1/¢) < 1,if A = 0 and the limit equals 0, if A > 0.

The following propositions will allow us to deduce the results of Lin and Liu [13] as particular
cases of ours:

case 1: Let ei(z) = €%, and for k > 2, ex(z) = ex_1(e®). We assume that for n > ng,
f(n) < Clogi(y/n). The condition (c) is then satisfied for g(n) = ex(n) and we have the
following proposition:

Proposition 1: Let p > 2. For any k > 1, the moment conditions :
EX =0, EX? = ¢? < co and E|X| f(|X]) < o0

are equivalent to

lime———r

ke 1{\57!\ > ey/nei(f(n))}} = o"EIN/". (2.3)
=0 log, (£

n>ng

Observe that if f(n) = log; \/n or log,._, v/Iogn then (2.1)" is equivalent to
EX =0, EX? = ¢? < 00 and E|X|"log;, | X| < 00, (2.4)

it follows the corollaries:

Corollary 2: For p>2, we have the following equivalencies:

P
S—:] I{|Sy| > en} = 26°E|N®, k> 1,

1 1
(24) <= lim
=0 log,, (é) 'DZR“ nHJ , log] (v/n)
[ log; ' (Viogm) |8, [P
= E[—=| I{|S,| > ey/nl =2"PE|N|’, k > 2.
o o =| HISal 2 ev/nlogn} = 20" EINT', k >

<= lim
= og s D)

n>ng

For p = 2, the first equivalence generalizes the first result of Theorem B and extends it to the
case p > 2, and the second spreads the equivalence (1.8) <= (1.9) to the case d = 0 and p > 2.
In that case, the change of the normalizing term seems to be necessary and we have, for p = 2:

1 1 2 o oy - L4 gy
Ellmu g (T )Z T Tor) E|S,[*I{|S,| = ey/nlogn} = o* if and only if, EX =0, EX? =¢
n>ng

and EX?loglog|X| < o.
Let k=1 and f; a function defined, for all n > ny, by : fi(n) = 2/{"). Proposition 1 gives, for
p = 2, the result of [7], with necessary and sufficient conditions:

Corollary 3: The moment conditions: EX =0, EX? = ¢? and EX?log|X| < 00 occur if

and only if,
Z fil
(n)

case 2: We define for n > 1, g(n) = n'/*. Condition (c) imposes that, for n > ng, f(n) < Cn2,
In this case we have the following result:

I{|S,,| >ev/nfi(n)} = 2%

EHU log %



Proposition 2: The moment conditions (2.1)" are equivalent to
lime* > f(n ‘ ‘ {IS,;|>e\f f3(n )}:U*“’EINI"*”, p>2 (25
n>ng

t us point out that Proposition 2 is a natural extension of Theorem 1 to the case p > 2:
Corollary 4: For A >0, p >0 and A+ p >2, the following propositions are equivalent:

EX =0, EX2 = 0% < 00 and E[X|"?/h2(|X]) < 00

Ehln o Z f(n

n>ng

S 1{i5u1 2 virt ) = o rmiap .

t k > 0. For A=20> 0, we put for any n > 1, f(n) = logi n. Then (2.1)" becomes

EX =0, EX? = ¢® and EX?log] |X| < . (2.6)
om this follows a generalization and an extension of the equivalence (1.8) < (1.9); the condi-
m & <1 is not necessary:

Corollary 5: The moment conditions (2.6)) are equivalent to

Sn P 026+-p 254
- I{|Sn| zexfnlogkn} = TE|N| sl )

i log®~!
lim €% ——0%"1 () E
== n>l ”H log

Proof of Theorem 1 and Theorem 2 : We only discuss the case p>0, because for p=0,

E|S,["1(ISn| > ev/ng(f(n)) = P(|Sn| > ev/ng(f(n))).
ithout loss of generality, we assume o = 1. We have:

E|S, [P1(|S, | zaﬁg(f(n)))
LY, anz ( {|S |>E\/_9 }+ /\/_ s )))P{‘Sn‘p > t}dt'
(ev/ng(f(n)))?

ren E[IS, "~ (eRg(F M), = [y e B AISa? > 8t

1t
)= 3 L8 s - oty
n2ng
f'(n
;, nt ./s\/_g( )P{‘Sn‘pﬂ}dt 80)
= YR PP {|S,| > ty/n} dt
,,;, / f(n))p Uil it

A- Direct part of Theorems 1 and 2: We have to prove that if (2.1) ( or (2.1)) oceurs,
en:

i ;)J(s) B[N, (3.1)

5%0_(;‘1(—:- :p-H\



Assume then for 0 <p <2 (resp. p>2), that (2.1) (resp. (2.1)') is satisfied. We prove equation
(3.1) in two steps. At first, we establish it for the normal case, then we extend it to the general
case. The following propositions will help us to reach the conclusion.

Proposition 3: We have:

= Y Fn) / ptP P {N| > t}dt = p S (3.2)
e=0g (f(n)

n>ﬂ

Proof of proposzfmn 3 : We have:

hmﬂ =Ty Y fn / ptP 'P{|N| > t}dt
,l>n £g(f(n))

. 1 i r it p—1
- —_— Z ’
EleO T [ f{r}/ ptP P {|N| > t}dtdz

g eg(f(x))

: 1 e =1r,.=1 % p—1

£g(f(no)) z
o0
= f ptPA TP {IN| > t}dt  (because g~ isregularly varying)
0

P +A
= ——E|N|P™\.
+ A NI
Let M > 1 and, for all £ > 0, put d() = f~Y(¢~!((M/¢))). Then lin}J d(e) =
el

Proposition 4: We have:

iy —— 3 /() / '( P {2 oA} PNz D=0, 69

n)n

The proof of this proposition will obviously follow from the following Lemmas 1 and 3:
Lemma 1: We htwe

E_,Og_ll_l Zf ] [P YIS 2 ) <N 2 D=0, @4

n=ng (f(n)
Proof of Lemma 1:
PUtiA, = supn20|P {|Sx| > ty/n} — P{|N| > t}|. Then, by taking t = (2 +¢)g(f(n)), we have:

[ e {isal 1Ay -P (N 2 )
(f(n))

- #(f(n) /U Pz + P P{IS:] > (= +e)vg(F )} = P{N| 2 (2 + £)g(f ()} d
STnl‘\’Trﬂ‘FTnli
where
1/g(f(n))AL/2P
T = (f()) / plz+ &P [P {Ial > (2 + )Vl f(m))} — (2 + ol F(n) | dz,
Ta= U0 [ PRS2 ) d
Tog = g*(f () /1 ws il p(z + )P ((2 + )g(f(n))) da.
glyin))Ay
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This gives
1/g(f(r))aY?®

To1 < ¢°(f(n)) -[0 p(z+e)P 1A, dz

P 1 4
<g (f(n))An(g(f(ﬂ)mﬂp <)
< (Arll/?p 1t MA;/P)’J.

The last inequality is due to the fact that, if n < d(¢) then eg(f(n)) < M.
For T3, by Markov’s inequality, we have:

p /“’ dz
() Jijgpmpayze (24€)
p 1/2p -2

< sy MO+
PAvli/p 1
= AP,

* A egl TR 2

TnB <

By the CLT, and for any continues function H, we have: lim H(A ) = 0. This implies

[d(=)]
]' !
—_ fe e =11
e#ﬁf Z f }E]g] g-1(M/e)) n_znof('ﬁ) (An) =0
Since g~ is regularly varymg with index A > 0, we have:
| [d(=)]
liny T Z f'(n = M lim T 2 Z fMH@A)=0.  (35)
1 , 1 r
Then :hln e 1)T L= Eh_% WTM =1
To get (3.4), it remains to prove that hm Z f/(n)Tha = 0. For this, we will use the

n=ng
following lemma due to Spataru [14):

Lemma 2: Let 1 < < 2. Suppose that E|X|" < co. For all z,y > 0, we have:

eE|X|“r]”’”

1=

P(|S,| > z) <nP(X| >y +2nrfy[
Then, we have : Tpg < Ty + Ty, where

00 2 -1
Ty < Cg”(f(-n)}] il dz < C[g(f(n))] P lg(f(n)AY*]? < CVA,,

gt (z+€)*g%(f(n))

and
00

Ty = png?(f(m) j

ali ) mp(z +e)P'P{p|X| > (2 +¢)vng(f(n))} dz.
g n 7
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According to (3.5), llm i ———T7, = 0. On the other hand,

=
oo <ma?((0)E | L2 4Rl

: 1 plX| Rttt ,
TR (I{g(f( BT < Jrg(i(n ))} St ‘“”E))

< n'P/E (p|X| + E\/T_Ig(f("v)))pl{\/H = ple?l!/zp}

<n'"PE (plX| + MyR)" T{vi < 2|X]}
<O PPE|XPI{vn < 2|X|} <EIXPI{Vn < p|X|},

<ng"(f(n)E

Using Toeplitz’ lemma [10], we obtain: hm Z f'(n)T., = 0. Lemma 1 is then proved.

?l—?lu
Lemma 3: We have:

o0

e s > s [ s /il -PAN| 2 a0 (39

eg(f(n))

Proof of Lemma 3: Let

- Y /o [ PP {15 2 v}~ P{IN| > }]d
eg(f(n))

n2[d(e)]+1

X SR [ et RSl > W)} & and

n>[d(e)]+1

o= Y felm) ] " e+ PPN 2 (24 2)glf )} de.

n>[d(e)]+1

Taking t = (z + ¢)y/ng(f(n)), we obtain: Ty <Tj + Ty
Let @ > A be fixed. Markov inequality gives:

! ! = g d
f<c ¥ bl [ e

n>[d(e)]+1

<C Z ' (n)lg(f(m))) e~

[d(e)]+1

—ﬂf f Gdt

<o ] s~ (w)dy, by putting y = g(f(t)).
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Since the function g is regularly varying at infinity with index A > 0, there exists C' > 0 such
that ([2], Theorem 1.7.2.):

y 7 () < Cy g (). (3.7)

The previous inequality becomes
o0
EP< / y g (y)dy
M/e

< Cj g )y,
M £

By the monotonous convergence theorem we have:

1M
lim limsup Ty <C lim limsup ( : )M_G

M—o o g Me™D) M—o o g7l(2)
<C lim MP=0 (A<H).

1
It remains to prove that l'm% mﬂ = (. By Lemma 2, we have for £ > (:
E—
Cn®

Rl sl e {'X > B R

Then T, < TV + 7%, with:

= ¥ aroti) [ serertp i EEGaE,

n>d(e)]+1
and

2 dz
CZf )P (f ))/[;(ZMTP-H.

n>[d(e)]+1

To prove lim Til) = (), we need the following lemma:
£—

1
0g~He™)
Lemma 4: There exist Cy, Cy > 0 such that:

k

CiR F (k)P (F(R)) € ) nf!(m)gP(f(n)) < Cok® f'(R)G (£ (R)).

n=ng

Proof of Lemma 4: Conditions (b) and (c) (see Remark 2.1 also) imply that there exists 4 > A/2+1

such that '~ f'(x)gP(f(x)) is decreasing. Then we have :
k

. nf ()g?(f(m) 2 kP f (k Z n’ 2 K0 (k)gP (£ (k)

= Cik*f'(k)g” (£(K)).

There exists 0 < v < 1/2 such that 27 f'(x)g?(f(x)) is increasing and we have:

L8
ng(8 +1)

k k

Y af ()g"(F) <K RF(FR) Y 07 < K (R)g"(F(R)K

n=ng n=ng

= Col*f'(k)g" (f(K)).



Therefore, Lemma 4 is proved.
Let aﬁ( = $2_Pf2f’( ) We have:

=7 Z Lx(2+5)p_lp {XL 2 (Z+E)\§fg(f(ﬂ))}dz

n>[d(z)

A z
n2[d(e)]+1

e[ % waeuarfis () <ol < SEL o

1
n2>[d(e)]+1 >n (d(e))

2 Z ”ff(”)gp(”””/ “od v < B o vaEitsaen < K} o

But

Z, ot gri (S5 <o

n>[d(e)]+1
!
- = (B} 3 s
12[d(e)]+1 ¥ n=l[d(e)]+1

<@L Ff’(z)gp(f(z))l{zs h(g{—)aﬂ}
1>[d(e)]+1

C(K|X|) ( (KLXI))
It follows that
KIX|/h( Kppqp K|X| K|X]
”<CE] ( ( ))I{E< }dz
£ ; = h=1(d(e))

38
bl Kﬂp{pﬂ K|X| <2
gCE/ ( ( ))I K|X|2M\/d(e)} dz
since eh~! = M/d(e). Putting y = h ; ) inequality (3.8) gives, for all & > 0:
(KIX|/e)
<CKPE3X|Pf ( )1 {K|X|>M\/ }dy
d(e)
h(K|X]/e) %)
gCKPE|X|Pf yP () {K|X|>M\/ }
d(e)

Case : p>2. According to (2.1)', the inequality (3.9) gives for all £ > (:
D cm(d( WP2EIX[ S o h(K|X|/e)T {Km > M\/d(e }

Mp 2E|X|”foh(K|X|/: {K|X|>M\/ }<oo

1
As previously (Remark 2.4), this allows us to obtain llm =y 1) Til) =i(),
e—0 g- =
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Case : p<2. In this case, for 2>0, we put g(z) = z'/*, X >2—p. By (2.1) and the definition
of the function h, the inequality (3.9) gives, for alle > 0 :

7 < CE|XP? [hl"“/z(K|X|/e) (fo h)(mxus)] I {K|X\ > M) |

e (foh)(K|X|/e)
s Ce 2E|X|2(gof . h)2—P(K|X|/s)I{K|XI 2 M‘/‘E}

< Cer2EIX[(f o h) 52 (K| X /)T {K|X| > M\/d(e}} < o0,
By Remark 2.3:

T < MBI E(f o )R (KIX /) {K|X| > My}
L E|X|"+Ph*(¥*U(K|X\/E)I{K|X| > M\/@}.

1
we deduce: lim ———
Sg(2)

On the other hand,

IP=6 1 ) wf O ) f mm?é%m

n>[d(e)]+1 !
<Cr Y ) (f(m)

n>[d(e)]+1

< Cer X f ' w)g” ™ (F(y))dy
d(e)
= C'eflf t”*EK(g'l)’(E)dt, by putting ¢ =eg(f(y))
M €

% t
< c]f 210 (D) dt, by (37).
M <

t 1
The assumption on the function g~ gives, for M large enough and for ¢ > M: g'l(g) <trg71(=).

™

1 il

Then 1/g7" (—)T‘,(Q) <OMPH=2K Taking K > (p+))/2, we obtajnM}im limsupl/g™" (—)Tf) =0,
& i ) &

and Lemma 3 follows.

Combining (3.2) and (3.3), the direct part of Theorem 2 is then proven. To get the direct part of

Theorem 1, it remains to prove :

lim & )" f'(n)f(n) P {|s |> r\/ﬁﬁ(n)} = M—HPE|N|“”.
B = Ap
But,
Jim 7Y /()5 (n) P {|Sa] > evig(f(n)}
n>ng
A N i e
=g NP V(o) P{isal 2 eva(FE @)™} a1
Ao
= ——E|N]M?
Atp IV



The last limit is deduced from ([4],Theorem 1), and we are done.

B- Proof of the inverse part of Theorems 1 and 2: We assume then (2.2) is satisfied.
Let us first prove that E[X|? < oc. Let (Y, Y;,i > 1) be a symmetrized sequence of (X, X;,i > 1)
and put S,(Y) = ¥ i, Yi. We have:

S0 [ (s> <2

n>ng

where J(e) is defined in (3.0). This implies, by (3.1):

imstp 7y 3 /B[S0 ~ eyl )Y, < 2‘”“’* BOCENP. ()

f n>ng

For M > 0, we define Z = YI{|Y| < M}, Z, = Y, I{|Y,| € M} and S,(Z) = ¥"7_; Z. By (3.1)
and the triangular inequality we have:

hmsup Zf \Sn )P — (ev/ng(f(n)))” ]

n)rm

= llm sup l Z f(n \Sn = (e\/ﬁg(f(n)))ph (3.12)

= n>n(3

A+p
< T pinpia,
p+A

By a similar way to the direct part of the proof, for |Z] < M, we have:

Aekp
hmbup = Z F'(ME[|Su(2)F - (ev/ng(f(n)))?], = E[Vz:i—z}?]

E n>ng

E|N[.

It follows that Var(Z) < 40}""’. As Y is symmetric, taking M to infinity, we get: EY2 < 40}”;
and then, EX? < cc.

. S’F'l.
Suppose X is not centred. By the strong law of large numbers, almost surely lim — = EX =
n—oo 1
P

i # 0. This implies that lim P {.57': > §} = 1. But, according to (c), for all 4 > 0, there

n—0o0
exists an integer ng such that: for all n > ng

‘Sﬂ‘ H ‘Sn‘ #\/_ ‘Sn‘ ,U(S
P{77>5} P{ﬁﬁ )7 20(f(n) }<P{Jh g }

Then, for all 0 < & < pd/2, Jim P {In] > ev/ng(f(n)) > e} = 1.

But then the series J(z) = p z f'(n j e {|Sﬁ| > t\/ﬁ} dt would be divergent which

e eq(f(m))
contradicts (2.2). Therefore, EX = (0.
In the following, let e = 1. We have:
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Lemma 5: There exists an integer ny such that for all n > ng,
nP{|X| > 4Vng(f(n))} < 4P{|Sy| > Vng(f(n))}-

Proof of Lemma 5: We'll adapt the proof of ([13], Lemma 2.3) to our case. Since B|X|* < o0,
Markov's mequal:ty gives lim,, ., nP(|X| > 4y/ng(f(n))) = 0. Then, for n large enough, using
Levy’s inequality and the fact that, for all 0 <t < In2, t < 2(1 —e~), we have:

(X2 ()} <2(1 - e L P12 tvRa(r)} )
k=1

<P {f(nﬁa(.xn |Sk| < Zﬁg(f(”))}
Von

< AP{|S,] < 2v/ng(f(n)) ~ ov2n}
< 4P{|S,| < v/ng(f(n))}

Therefore, Lemma 5 is proved.
This gives:

(1) 2 Xrisny nf (0)g?(F(n)) [ p2P~'P{|X]| 2 d2+/ng(f(n))} dz.
Let ¢ and h be as defined in the direct part. According to (2.2)' (or (2.2)), we have:

0> ¥ nfmg(i(n) ] "o P {IX] > dzyg(f(n)

n>ng

> CE Y nf () (f(0) ]x “efa<a( B b ifirw < Bl

n>ng

|X] X
>CE/ zi”lz'nf Z {l<h(%)<l+1}l{z<w}d2

n>ng >n
I

> CE/KXlz” : Z I{I < h( ) <l+ 1} Z nf'(n)g? (f(n)) dz.

[>ng n=ng

(3.13)
Using Lemma 4 and putting y = h(|X|/4z) and K = 1/4h™"(ng), (3.13) becomes

e 2P 1 2 ‘Xl
oo>CE/ Y2 { h(%)«:tﬂ}dz
>ng
{I < h(%) <[+ 1} dz (3.14)

K|X|

> CE/ 2P Z
K|X| 1op| vip h(K|X]|/4)

ZCE] 57§L¢[(fg}dcmxp/ yPR 1) dy.
1 n

1>ng
0

Case : p>2. The inequality (3.14) gives for all > 0 :
oo> BxPH(K) lqgon) (K1) - )] i <)

P o) S50) - g f o) BIXP| {KIX] <.

2 [
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Since EX? < o0, for all 1) > 0, we have: E|X|"(foh)(|X|)I{K|X| < 5} < co. Taking 7 to infinity,
we obtain E|X["(f o h)(|X]) < 0.
Case : p<2. The inequality (3.14) gives for all 5 > 0 :

%0 > E[X[" [h“ﬂ@)(;tm)(@) ~ '~ f(no) - f(nu)hl—w/2(KT)“)]

> EX2(f o )52 (@) — 6"} f(no)BIX[P — f{no)EX2.

Since EX? < oo, we get: EXQ(fc»h)l_z%(\X\) < o0.
At last, following the direct part of the proof, we find EX? = ¢2. This finishes the proof of
Theorem 1 and Theorem 2.

4 Proofs of propositions 1 and 2 We have:
E|S,[P(|Sn| > ey/ng(f(n))) = ePn g?(f(n))P {|Su| > ev/ng(f(m)}+E[|SulP—(ev/ng(f ()] , -

To get (2.3), it is sufficient to prove that, for g(n) = ex(n) with k& > 2, we have:

z 2 / Pl El, ; %
0, 7 X U0 P {1 eVt fa) =0 m
But,
: e I y
Jimy mﬂ;ﬂf (n)g"(f(n)) P {|Sal > ev/ng(f(n))}
= lim =2 X ) P (52 en()

nzng
¥

E C}Enmg;il/f)?; ()" P {Iul 2 v ()} .

2ng

By using ([4], Theorem 1), we obtain: }'m})sp Z (ei’(f))f 12 {|Sﬂ| > E\/ﬁ(ei(f))lfﬁ’} < 00. So
i n>ng

(4.1) follows.
Proposition 2 is deduced from (3.10).
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