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Technical Communication

Perceived discomfort for typical
helicopter vertical sine vibrations
for seated participants

Laurianne Delcor1,2 , Etienne Parizet1,

Julie Ganivet-Ouzeneau2 and Julien Caillet2

Abstract

Vibrations contribute to helicopter’s ride comfort. This study aimed to determine the relationship between main rotor

vertical excitations and discomfort. Fifty-three participants, seated on a helicopter seat fixed to a vibration test bench,

evaluated the discomfort of vertical sinusoidal vibrations using a magnitude estimation procedure. Stimuli had a fre-

quency between 15 and 30Hz and a level between 0.32 and 3.16m/s2. The average discomfort was shown related to

vibration velocity using Steven’s power law, without any frequency dependence. The exponent depended on velocity and

was 1.18 for higher velocities (approx. above 0.008m/s) and 0.65 for velocities below that limit.

Keywords

Perception, vibrations, helicopters

Introduction

In a helicopter, noise and vibration levels are very high compared to other vehicles (planes, trains or cars). This

contributes significantly to the overall discomfort of passengers. As a result, manufacturers are making constant

efforts to reduce these levels in order to provide comfortable equipment to their customers.
In addition, helicopters have a specific vibration signature since the main excitation comes from periodic

aerodynamic loading on the main rotor blades. These forces are transferred into the cabin and create vibrations.

The helicopter’s structure is such that some frequencies are filtered and the most important excitation occurs at

the blade passing frequency (BPF). The BPF is defined as:

BPF ¼ B� rev (1)

where B is the number of blades and rev is the rotation speed of the main motor (expressed in Hz).
Depending on the helicopter model, BPF varies between 15 and 30Hz. This induces vibrations, mainly in the

vertical direction. The amplitude of vibrations varies between 0.3 and 5m/s2.
In literature, only a few studies have addressed the discomfort caused by helicopter vibrations1–3. But the

signals used by these studies do not allow their results to be applied to the evaluation of BPF vibrations.

Currently, there is no helicopter-specific method for assessing the discomfort caused by vibration measurements,

and ISO 2631-14 is used. However, this standard is generic for all modes of transport and may be inaccurate for
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helicopter applications. This is why Airbus is developing research in the field in order to improve models for

predicting vibration discomfort in its helicopters.
Subjective intensity of vibrations can be related to their amplitudes using Steven’s power law5:

w ¼ a� ub (2)

where w denotes the perceived intensity of the stimulus and u its physical intensity. The exponent b depends on the

considered sensory modality and a varies according to the experiment.
Previous studies addressed the relationship between vibration levels and comfort or subjective intensity for

seated persons. Leatherwood and Dempsey6 showed that Steven’s law exponents are similar whether comfort or

subjective intensity is considered, which makes it possible to consider the whole set of studies.
A review of these studies is provided in Griffin7 and shows a great discrepancy between them: in the frequency

range corresponding to blade passing (15–31.5Hz), proposed exponents vary between 0.46 and 1.47 (mean: 1.0

and standard deviation: 0.22). These studies were realized either in real conditions (in hovercraft, helicopter or

train) or in laboratory, using aircraft seat or aluminium table with or without a cushion. In a more recent study,

Morioka and Griffin8 proposed values between 0.7 and 0.8 in that frequency range, participants being seated on a

rigid wooden seat. In 2012, Basri and Griffin9 replicated the experiment with subjects seated on a seat with a

backrest that could be reclined at different angles. In the 15–25Hz frequency range, they suggested exponents

varying from 0.63 to 0.79 (for a vertical backrest) and from 0.71 to 0.79 (for a 30� inclination). Finally, in 2019,

Huang and Zhang10 proposed exponent values from 0.38 to 0.64 between frequencies ranging from 15 to 31.5Hz

for a rigid seat without backrest.
Given the variability of the published results, the aim of this study was to determine the relationship between

vibration amplitude and perceived discomfort in the specific case of blade-passing helicopter excitations.

As the seat could be one of the reasons for the variability of published results, it was also decided to use a real

helicopter seat.

Experiment

Participants

Fifty-three persons were participated in this experiment: 51 students of INSA Lyon et 2 Airbus engineers

(21 women and 32 men). Their average age was 21.3 years old (min: 19 years old and max: 39 years old). Their

average weight was 65.4 kg (min: 49 kg and max: 95 kg), height was 1.74m (min: 1.59m and max: 1.92m) and the

average BMI was 21.3 kg/m2 (min: 17.8 kg/m2, max: 28.4 kg/m2). Only six subjects had ever flown in a helicopter

before (or used a helicopter flight simulator).

Setup

A bench previously developed in the laboratory was used. The simulator was a two-part metallic structure. The

upper part of the simulator was connected to the lower part through four springs which supported the weight of

the upper part of the simulator. A shaker (V 550, LDS, Bruel & Kjaer, Naerum, Danemark) was placed under-

neath and could move the upper part vertically. A standard helicopter seat (H160, Fischer Seats, Landshut,

Germany) was fixed to the upper part. Figure 1 shows a picture of that bench.
The simulator was controlled via Matlab. Signals were generated by a sound card (ROGA D, Viaxys,

Ferri�eres-en-Gâtinais, France) and went through a band pass filter whose cut-off frequencies were 10 and

40Hz before being sent to the shaker amplifier (PA 1000, LDS, Bruel & Kjaer, Naerum, Danemark).
Before presenting stimuli to each participant, the transfer function of the bench was measured. This transfer

function was defined between the output of the sound card and the vertical vibration of the upper part of

the platform, measured at one of the seat attachment points. The level of each stimulus was then modified to

take into account this transfer function and to make sure that the vibration level of the upper part was equal to the

target value.
As the simulator was noisy under some conditions, a masking noise was added using two speakers (Tapco S8,

Loud Audio, Woodinville, USA) facing the participant in a stereophonic configuration. A lowpass-filtered white

noise was used (cut-off frequency¼ 500Hz, overall level 85 dB SPL).
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Procedure

The simulated vibrations intended to represent the amplitudes and frequencies of the commonly measured BPF,

which means sinusoidal vibrations from 15 to 30Hz with accelerations from 0.3 to 5m/s2. Four frequencies were

selected: 15, 20, 25 and 30Hz. However, preliminary experiences have shown that the highest levels were really too

uncomfortable to be presented to the participants. This was especially true for the lowest frequency. As a result,

the maximum level was reduced to 1.58m/s2 for the 15Hz frequency and to 3.16m/s2 for the other frequencies. In

all cases, lowest levels were set to 0.32m/s2.
Reducing the maximum level to 1.58m/s2 for 15Hz stimuli was accepted because the majority of helicopters

have more than three blades. Hence, such a low blade-passing frequency is not often encountered. Moreover,

levels higher than 2m/s2 are very rarely noted in such helicopters.
Table 1 gives a detail of the levels of the 41 stimuli used in the experiment.

Table 1. Amplitudes values of the vibratory stimuli.

Amplitudes for each stimulus (m/s2)

15Hz 0.32 0.40 0.50 0.63 0.79 1.00 1.26 1.58

20, 25 and 30Hz 0.32 0.40 0.50 0.63 0.79 1.00 1.26 1.58 2.00 2.51 3.16

Figure 1. Picture of the bench and the helicopter seat used for this experiment.
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For each frequency, 4-s long stimuli were synthesized using a 2 dB step between the minimum and maximum

levels, giving a number of eight samples for 15Hz and 11 for the other frequencies. This 2 dB step is a little bit

higher to the usually accepted discrimination level for vertical whole body vibrations (around 1.5 dB7).
Each stimulus was presented three times to each participant in a pseudo-random order. This order has been

arranged so that two successive stimuli do not have an acceleration difference greater than 6 dB. The motivation is

to prevent participants to successively rate two very different stimuli, which would create an evaluation bias11.
For each subject, four subsets of experiments were used (one for each frequency). The order of these subsets

was randomly selected for each participant. The assessment of discomfort was made by a magnitude estimation

without reference. After the presentation of each stimulus, participants were asked to give a number proportional

to their discomfort. They could score from 0, which means ‘no vibration at all’, to values as high as they wanted,

so as not to limit their rating scale. They were allowed to use decimals.
Before each set of stimuli, a few examples were presented to give participants an indication of the range of

stimuli they would have to evaluate. The examples were set for all participants and contained medium, then high

and then low acceleration stimuli.
The total duration of the experiment was around 40min, including explanations and installation of the par-

ticipant on the seat. Throughout the experiment, participants were instructed to remain seated normally with their

legs uncrossed and their backs resting normally against the seat back. A seat belt was fastened at their waist for

the duration of the experiment. The procedure has been approved by the ethical committee of INSA-Lyon.

Results

Subjective data processing

The raw discomfort ratings show that the participants use very different scales. The majority of participants felt

that discomfort increased with the level of vibration.
The minimum ratings given by participants ranged from 0.05 to 30 and the maximum ratings from 6 to 210.

Ratios between maximum and minimum individual data varied between 7 and more than 100. This shows that

participants used very different scales to assess discomfort.
Therefore, an average of the three rehearsal ratings followed by a normalization had to be done. This was

achieved using the average deviation procedure described by Han et al.12.
Let Xijk be the raw discomfort assessment given by the subject i for the presentation k of the stimulus j. The

normalized value of the ith participant for the jth stimulus SVij is defined as follows:

SVij ¼ Mij �MDi (3)

where Mij is the average of the logarithm of the three ratings for the ith participant and the jth stimulus:

Mij ¼
X3

k¼1
log10ðXijkÞ
3

(4)

and MDi is the difference between the average of the participants’ ith odds and the general average GM:

MDi ¼ Mi � GM (5)

whereMi is the average of the score of the ith participant (computed over the 41 stimuli) and GM is the average of

all scores of the 53 participants:

Mi ¼
X41

j¼1
Mij

41
(6)

GM ¼
X53

i¼1
Mi

53
(7)

4 Journal of Low Frequency Noise, Vibration and Active Control 0(0)



Subjective discomfort

Figure 2 shows the averages of the normalized values of each stimulus with their 95% confidence intervals13. For

low accelerations, the lowest frequency stimuli are evaluated with the highest discomfort values, which is in

accordance with the ISO 2631-1 frequency-weighting curve Wk for Z axis. These evaluation differences tend to

decrease at the highest levels.
Steven’s law constants were calculated for each of the four vibration series of 15, 20, 25 and 30Hz from the

average of the normalized values of all participants. According to the logarithm of the equation (2), a simple linear

regression gives the power constants of Steven’s a and b of accelerations x (m/s2) and the discomfort ratings

w¼SVij:

w ¼ a� ub ! log wð Þ ¼ log að Þ þ b� log uð Þ (8)

Hence, there is a linear relationship between excitation levels expressed in dB and the logarithm of sensation.
The results give the constants of Stevens a¼ 1.09 and b¼ 0.89 (R2¼ 0.98) for 15Hz, a¼ 0.94 and b¼ 0.92

(R2¼ 0.98) for 20Hz, a¼ 0.87 and b¼ 0.98 (R2¼ 0.98) for 25Hz and a¼ 0.80 and b¼ 1.03 (R2¼ 0.99) for 30Hz.

The higher the frequency, the higher the exponent of Steven’s law. There is a difference of 0.14 between the b

values for 15 and 30Hz vibrations.
Historically, helicopter crews used to talk about uncomfortable vibrations using the inch per second unit of

measurement. This means that they express the amplitude of vibrations as velocities rather than accelerations as is

often the case in the literature.
The discomfort ratings normalized as a function of vibration velocity are shown in Figure 3. The figure shows a

good overlap of data. This means that the discomfort depended only on vibrational velocity.
In addition, a closer look at the Figure 3 shows that Steven’s power law could be calculated separately for low

and high velocities. For levels below approximately 0.008m/s (138 dB reference 10�9 m/s), the measured data

could be represented by the relationship U¼ 3352� v1.18 (R2¼ 0.99). Above this limit, a similar relationship was

found but with a lower exponent: U¼ 245� v0.65 (R2¼ 0.97).

Discussion

The values of the exponent obtained in this study are within the range of variation of those given by the literature,

not far from the average exponent mentioned earlier (mean¼ 1.0 and std¼ 0.22). They are close to values related

by Leatherwood and Dempsey6 but significantly greater than the exponents proposed by Morioka and Griffin8 or

Basri and Griffin13,14 in some of the last papers related to that topic. There are some differences in the experi-

mental procedures used in these studies (shorter stimuli duration, larger level range, use of a reference, different

backrest inclinations). But it is unlikely that such differences can explain the differences between exponents

obtained in both studies. On the other hand, 12 people only participated in the experiment described in
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Figure 2. Mean normalized discomfort ratings SVij for each frequency and their confidence intervals (15Hz in circles, 20Hz in
crosses, 25Hz in squares and 30Hz in triangles) as a function of accelerations in dB reference 10–6 m/s2.
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Morioka and Griffin8, Basri and Griffin9,14 and no normalization was applied. As the interindividual variability is
great (as mentioned above), the small size of the sample may have led to inaccurate results.

When comparing signals with different frequencies, our results show that the vibration velocity is a better
descriptor than acceleration. This has already been mentioned by Miwa15. By measuring equal sensation contours
for vertical vibrations, Miwa15 showed that the velocity was an adequate descriptor between 5 and 40Hz. This is
also in agreement with the weighting curve used in the ISO 2631-1 standard. In the case of whole body vertical
vibration, the slope of this weighting curve (Wk) is inversely proportional to the frequency between 15 and 30Hz.

Finally, the different exponents obtained for low and high levels (as shown in Figure 3) had also been noted by
Miwa15. The cut-off level was 0.01m/s, which is close to the 0.08m/s proposed in the current study. However, the
two exponents proposed by Miwa15 were also smaller than the ones appearing in Figure 3 (in the low level range:
0.6 instead of 1.18; in the high level range: 0.46 instead of 0.65).

The helicopter seat used in that study was very rigid. Its transfer function in the vertical direction (between the
seat attachment points and the seat-person interface) was close to 1 in the considered frequency range. Thus, it can
be considered that participants were submitted to the vibration levels shown in Table 1. This would not be true if a
softer seat had been used, as the ones used in cars.

Conclusions

For vertical single-frequency vibrations between 15 and 30Hz, discomfort seems to be related to the vibration
velocity. The associated psychophysical relationship can be represented by Steven’s law, with two different
exponents (1.18 at levels below 0.008m/s and 0.65 above this value). Nevertheless, it can be noted that the
discomfort ratings were obtained in the laboratory. These ratings may be different in real flight conditions,
where passengers are submitted not only to vertical vibratory stimuli but also to horizontal vibrations, sound
and visual stimuli from the cabin.

From an industrial point of view, the results of this experiment give the variation of discomfort according to
the vibrations BPF, but cannot give a discomfort value that can be related to a semantic label (for example, saying
that a rate of 1 is the equivalent of ‘very uncomfortable’). In addition, to assess the complete vibratory discomfort
in the helicopter cabin, further experiments must be performed. They must include multiaxial vibrations and
aerodynamic excitations.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this

article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this

article: This work was supported by the French National Agency for Technological Research (ANRT) and by the labex CeLyA

(Lyon Acoustics Center) of Universit�e de Lyon (ANR-10-LBX-60/ANR-11-IDEX-007).

128 132 136 140 144 148 152
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

velocity (dB ref 10-9)

VS gnitar .csid dezila
mro n

ij

 

Figure 3. Vibratory discomfort Stevens’ law represented for normalized mean discomfort scores as a function of vibrations velocity
for all frequencies (15Hz in circles, 20Hz in crosses, 25Hz in squares and 30Hz in triangles).
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