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Abstract

MODal ENergy Analysis (MODENA) was previously developed in the same
framework as Statistical Energy Analysis (SEA) and Statistical modal En-
ergy distribution Analysis (SmEdA) methods. It deals with energy exchanges
between weakly coupled subsystems in vibro-acoustics. However, unlike SEA,
MODENA is not a statistical method as it is based on deterministic struc-
tures and solved at pure tone. Compared to SmEdA, MODENA takes in-
trinsically into account couplings between non resonant modes and keeps
information about resonance peaks. Consequently, it handles matrices of
bigger size than SmEdA with the consequence of higher computation cost.
MODENA was first based on the assumption of uncorrelated forces applied
to two coupled oscillators. This assumption was fulfilled by considering a
random phase between forces applied to oscillators. In the present article,
this assumption is further investigated by considering the phase angle as a
random variable with uniform distribution. The expressions for expectation
and variance are then derived in this context. They allow estimating confi-
dence intervals of energies predicted by MODENA method. Therefore, even
if the assumption of random phase is not fulfilled, the solution should be
included in the confidence interval.
It is shown that confidence intervals of energies are rather null in case of two
weakly coupled oscillators both excited by forces of equivalent level. The
confidence intervals increase at some frequencies when the coupling strength
is higher than the critical coupling or when the excitation level difference
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increases.
In case of mutimodal coupling, two numerical test cases are investigated: a
plate/cavity case and a cavity/plate/cavity case. In both cases, expectations
and variances are computed using MODENA theory and are compared to
deterministic responses of the subsystems computed using a finite element
software.

Keywords: MODal ENergy Analysis; confidence intervals; energy
exchanges

1. Introduction

To tackle the vibro-acoustics challenges of NVH (Noise Vibration Harsh-
ness) engineers, different numerical methods are available depending on the
frequency range under study. At low to medium frequency, the discretiza-
tion methods like finite [1] or infinite element methods [2] are well suited.
These methods are mainly deterministic and solved in time or frequency. A
wide range of applications can be addressed: linear or non-linear systems,
multilayered or patterned panels, systems with complex shapes, couplings
like joints, bolts, welded points and so on. However, three main issues limit
the use of such methods. The first one is due to the size of elements which
depends on frequency. The higher the frequency, the smaller the elements.
This implies an increase of the number of degrees of freedom and so of the
computation time. Second, at medium to high frequency, the variability of
system behaviors increases and makes deterministic models unreliable [3].
Third, increasing the number of degrees of freedom makes the analyses dif-
ficult and some averaging (by subsystems, by frequency ranges) are often
necessary.
At high frequency, alternatives are wave methods [4, 5], radiosity and ray
methods [6] and energy methods. Statistical Energy Analysis [7, 8] is the
most widely used method to deal with a frequency problem. However, it
relies on restrictive assumptions like weak coupling [9] and diffuse field [10].
The results are averaged in space (by subsystems) and often in frequency
(by frequency ranges) leading to a highly condensed information. Statistical
modal Energy distribution Analysis (SmEdA) [11] is an alternative to SEA
when the equipartition of modal energies of subsystems is not reached. This
happens when subsystems have neither a naturally diffuse field (light damp-
ing) nor forced diffuse field (rain-on-the-roof excitation). SmEdA is frequency
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averaged and only resonant modes in a frequency band are not considered in
the computation. As a consequence, non resonant transmission is not taken
into account even if it can be represented by indirect coupling in some spe-
cific configurations [12]. However, SmEdA provides really useful results and
modal energy paths can be evaluated [13].
MODal ENergy Analysis (MODENA) [14] follows the same philosophy as
SmEdA but at pure tone. A power balance is set for each mode of a sub-
system at each frequency. A modal input power can either be dissipated or
exchanged with modes of other coupled subsystems. As in SmEdA, the net
exchanged power between to coupled modes is a function of modal energies
of both modes. The main difference comes from the fact that MODENA
is not frequency averaged. As a result, the coupling coefficients depend on
frequency and non resonant transmission is taken into account. In addition,
resonance peaks are still visible in the energy frequency responses provided by
MODENA. In counterpoint, even if MODENA is based on modes of uncou-
pled subsystems, the computation time is higher due to the bigger matrix to
solve (that takes into account all the modes in the frequency range). MOD-
ENA tries to find a trade-off between computation time and relevance of
obtained results.
MODENA is derived in the framework of two coupled oscillators. The two
main assumptions are weak coupling and uncorrelated forces applied to the
oscillators. Zhang et al. [15] demonstrated that the MODENA reliability
depends on the type of excitations used, the best results being obtained with
purely random pressure fields while the worst results are obtained with per-
fectly correlated pressure fields.
In [14], the assumption of uncorrelated forces was considered achieved in case
of forces linked by a random phase. In the present article, it is demonstrated
that the expectation of modal energies in case of a random phase is indeed
equal to the modal energy considering uncorrelated forces. In addition, an
analytical expression of the variance of modal energies is also derived leading
to a confidence interval as a function of frequency. It is shown that the vari-
ance depends on modal energies of the two coupled oscillators. Expectations
and variances are first analyzed in the simple case of two coupled oscillators.
Then, multi-modal coupling is investigated through two test cases: a plate
coupled to a cavity (the plate being excited by a point force) and a cavity
coupled to a plate backed by another cavity (the first cavity being excited
by a point source). In both cases, the results are compared to deterministic
solutions provided by the ACTRAN commercial software [16].
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However, it is worth mentioning here that MODENA method is not a sta-
tistical method as SEA is. Indeed, MODENA assumptions are not based on
a population of similar structures. Structures in MODENA are considered
deterministic so the variability issue appearing at high frequency can not
be tackled by MODENA. The study of confidence interval addressed in the
present article should not be compared to expectation and variance analyses
treated since decades by many authors [17, 18, 19]. Although the mean en-
ergy values of MODENA systems are the same as in SEA-related methods,
the underlying statistical model (and indeed the variance) is substantially
different, as the only source of randomness is the phase angle between the
forces.
MODENA is an approximate solution for weakly coupled vibro-acoustic sub-
systems where the modal behavior of the uncoupled subsystems is accounted
for. In addition, the interaction forces between subsystems are assumed to
be uncorrelated. The contribution of the present article is then that it offers
a way to estimate errors made in assuming uncorrelated coupling forces in
between subsystems.

2. Basics of MODal ENergy Analysis

Consider two oscillators coupled through a gyroscopic coupling as shown
in Fig. 1. Each oscillator i (i = 1, 2) consists of a mass Mi, a spring ki
and a damper λi characterized by a damping bandwidth ∆i = λi/Mi. The
coupling is of gyroscopic type characterized by G =

√
M1M2γ where γ is the

gyroscopic coupling coefficient. Each oscillator i is excited by an external
force Fi(ω), ω being the angular frequency. In [14], forces Fi(ω) are consid-
ered as uncorrelated forces so that cross-spectra Sij(ω) = Fi(ω)F ∗j (ω) = 0
(•∗ being the complex conjugate). In the following the ω-dependency will be
omitted for sake of clarity. According to [14], the total energy Ei of oscillator
i coupled to oscillator j is given by

Ei =
Mi

4
(ω2 + ω2

i )
[
|Hii|2Sii + |Hij|2Sjj

]
, (1)

and the net exchanged power Πij between oscillator i and oscillator j (j 6= i)
is given by

Πij = −1

2
Gω2<

(
H∗jiHiiSii +H∗jjHijSjj

)
, (2)
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Figure 1: Sketch of two oscillators coupled by a gyroscopic coupling

where Sii = FiF
∗
i (F ∗i being the complex conjugate of Fi) are the force auto-

spectra, ωi are the eigen-frequencies of oscillator i and < stands for the real
part of a complex number. The terms Hij (| • |2 = ••∗) are transfer functions
given by

Hii =
1

Mi

ω2
j − ω2 + iω∆j

Σij

, (3)

Hij = (−1)j iω
γ√
MiMj

1

Σij

, (4)

where
Σij =

(
ω2
i − ω2 + iω∆i

) (
ω2
j − ω2 + iω∆j

)
− ω2γ2. (5)

It has been demonstrated in [14] that S11 and S22 can be expressed as a
function of E1 and E2 writing Eq. (1) in a matrix form

[
|H11|2 |H12|2
|H21|2 |H22|2

]{
S11

S22

}
=





4E1

M1(ω2+ω2
1)

4E2

M2(ω2+ω2
2)



 (6)

Expressions for S11 and S22 can be found solving the system of equations Eq.
(6). This leads to

Sii =
1

|Hii|2|Hjj|2 − |Hij|2|Hji|2
[

4Ei|Hjj|2
Mi(ω2 + ω2

i )
− 4Ej|Hij|2
Mj(ω2 + ω2

j )

]
. (7)

The net exchanged power Πij, Eq. (2), can be expressed as a function Ei
and Ej as

Πij = αijEi − αjiEj, (8)
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where αij (ω-dependency omitted) is a coupling coefficient whose expression
is

αij = − 2Gω2

Mi (ω2 + ω2
i )

<
(
H∗jiHii

)
|Hjj|2 −<

(
H∗jjHij

)
|Hji|2

|Hii|2|Hjj|2 − |Hij|2|Hji|2
(9)

or, by introducing Eqs. (3) and (4) in Eq. (9)

αij =
2γ2(

1 +
ω2
i

ω2

) ∆jω
2 ((ω2

i − ω2)2 + ω2∆2
i ) + ω4γ2∆i

((ω2
i − ω2)2 + ω2∆2

i )
(
(ω2

j − ω2)2 + ω2∆2
j

)
− ω4γ4

. (10)

Eq. (8) is based on the assumption of uncorrelated forces. This means that,
in case of correlated or partially correlated forces, Eq. (8) is an approxima-
tion. In the following section, an expression for the introduced variance of
this equation in case of correlated forces is derived.

3. Expectations and variances

Consider now that forces Fi and Fj are not uncorrelated anymore but
linked with a phase relation represented by a phase angle θ between Fi and
Fj. Thus, terms Sij = FiF

∗
j in Eq. (1) are

Sij = FiF
∗
j =

√
SiiSjje

− iθ =
√
SiiSjj (cos θ − i sin θ) . (11)

Taking into account the correlation between forces Fi and Fj, the total energy
of oscillator i is

Ei =
Mi

4
(ω2 + ω2

i )
[
|Hii|2Sii + |Hij|2Sjj + 2<

(
HiiH

∗
ijFiF

∗
j

)]
(12)

or, introducing Eq. (11) in Eq. (12),

Ei =
Mi

4
(ω2 + ω2

i )
[
|Hii|2Sii + |Hij|2Sjj + 2

√
SiiSjj<

(
HiiH

∗
ije

(−1)i iθ
)]
.

(13)
Expectation µ(Ei) and variance σ2(Ei) of total energy of oscillator i are

µ(Ei) =
1

2π

∫ 2π

0

Eip(θ) dθ (14)

and

σ2(Ei) =
1

2π

∫ 2π

0

(Ei)
2 p(θ) dθ − µ(Ei)

2. (15)
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where p(θ) is the probability density function of θ. Considering that no
a priori information can be defined for the probability density function, θ
can be chosen as a uniformly distributed random variable so that p(θ) = 1
between 0 and 2π. Assuming this probability density function, µ(Ei) and
σ2(Ei) write

µ(Ei) =
Mi

4
(ω2 + ω2

i )
[
|Hii|2Sii + |Hij|2Sjj

]
(16)

and

σ2(Ei) =
M2

i

8
SiiSjj(ω

2 + ω2
i )

2|HiiH
∗
ij|2 (17)

As can be seen, Eq. (16) equals Eq. (1). This means that the expectation
of Ei when considering a random phase relation between forces Fi is exactly
equal to the response of the system under uncorrelated excitations.
Solving the system of equations (6) and introducing expressions of Sii and
Sjj in Eq. (17), the variance σ2(Ei) of total energy of oscillator i coupled to
oscillator j (i 6= j) can be written

σ2(Ei) = Aij
(
Biµ(Ei)

2 +Bjµ(Ej)
2 + Cijµ(Ei)µ(Ej)

)
(18)

where

Aij =
2ω2γ2 (ω2 + ω2

i )
2 (

(ω2
j − ω2)2 + ω2∆2

j

)
(
((ω2

i − ω2)2 + ω2∆2
i )
(
(ω2

j − ω2)2 + ω2∆2
j

)
− ω4γ4

)2 , (19)

Bi = −ω2γ2
((ω2

i − ω2)2 + ω2∆2
i )

(ω2 + ω2
i )

2
, (20)

and

Cij =
((ω2

i − ω2)2 + ω2∆2
i )
(
(ω2

j − ω2)2 + ω2∆2
j

)
+ ω4γ4

(ω2 + ω2
i )(ω

2 + ω2
j )

. (21)

It is worth noting that variance σ2(Ei) not only depends on the expectation
of total energy of oscillator i but also on the expectation of total energy of
oscillator j to which it is coupled.

4. Example of two coupled oscillators

Consider two oscillators coupled through a gyroscopic coupling as sketched
in Fig. 1. The characteristics of each oscillator are listed in Tab. 1. Consider
three different scenarios:
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oscillator 1 oscillator 2
mass Mi [kg] 0.01 0.03

stiffness Ki [Nm−1] 6.3165× 104 4.2637× 105

damping ratio ηi [-] 0.01 0.01
Eigen-frequency fi [Hz] 400 600

Force amplitude |Fi| [N] case 1 1 1
case 2 1 0.01
case 3 1 1

coupling coefficient γ [s−1] case 1 1
case 2 1
case 3 500

Table 1: Characteristics of the two coupled oscillators. Three different cases of force
amplitudes and coupling coefficients are considered.

• Case 1: weakly coupled oscillators (according to the critical coupling
Eq. (22)). Identical force amplitudes |F1| = |F2|. This case corresponds
to, for instance, a mode of a plate coupled to a mode of a cavity,
considering that both subsystems are directly excited.

• Case 2: weakly coupled oscillators (according to the critical coupling
Eq. (22)). Force amplitude applied on oscillator 1 much higher than the
one applied to oscillator 2: |F1| = 100|F2|. This case corresponds to, for
instance, a mode of a plate coupled to a mode of a cavity, considering
that only the plate is directly excited. In that example, the ”mode of
the cavity” is indirectly excited by another mode of the plate, the level
of excitation being much lower due to the weak coupling.

• Case 3: strongly coupled oscillators (according to the critical coupling
Eq. (22)). Identical force amplitudes |F1| = |F2|. This case corresponds
to an ”anti-thermodynamic” behaviour as described in [14].

The critical coupling delimiting a ”thermodynamic” and an ”anti-thermodynamic”
behaviour is defined as

γcrit = 4

√(
(ω2

1 − ω2)2

ω2
+ ∆2

1

)(
(ω2

2 − ω2)2

ω2
+ ∆2

2

)
(22)

The critical coefficient is plotted in Fig. 2 and compared to the coupling
coefficients of cases 1 to 3. The coupling coefficients of cases 1 and 2 are much
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lower than the critical coefficient on the whole frequency band ([0;1000]Hz).
In case 3, the coupling coefficient is higher than the critical coefficient in two
frequency bands around the two eigen-frequencies of the oscillators.

0 200 400 600 800 1000

Frequency [Hz]

100
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103
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G
yr

os
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pi
c 
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up

lin
g 

[s
-1

]

critical coupling
coupling for cases 1 and 2
coupling for case 3

Figure 2: Critical gyroscopic coupling γcrit between oscillators described in Tab. 1 com-
pared to coupling coefficients of cases 1 to 3.

4.1. Weakly coupled oscillators

Both cases 1 and 2 described in Tab. 1 involve weakly coupled oscillators
(γ = 1 << γcrit). The only difference between these two cases lays in the
force amplitude |F2|. In case 1, |F2| = |F1|. In case 2, |F2| is a hundred times
lower than |F1|.
In case 1, Fig. 3 plots the total energies of oscillators 1 and 2. In these
figures, 100 random draws for the phase angle between forces F1 and F2

have been simulated. The energy expectation computed using Eq. (16) is
compared to the average of the random draws (population average) and to
each individual random draw. Three confidence intervals obtained from Eq.
(18) are also plotted for three different levels (+/-σ, +/-2σ, +/-3σ, where
σ =

√
σ2(Ei) is the standard deviation). In case 1, each of the 100 random

draws are superimposed either for oscillator 1 or oscillator 2. In this scenario,
each oscillator is mainly driven by the external forces Fi and the influence
of the other oscillator on its frequency response is negligible. It’s a favorable
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Figure 3: Total energy of oscillators in case of two weakly coupled oscillators excited by
forces |F1| = |F2|. Top figures: oscillator 1; bottom figures: oscillator 2. Left: total energy
averaged on 100 random draws of the phase angle, MODENA expectation and confidence
intervals. Right: total energies of all the draws and confidence intervals.

case where MODENA expectation is equal to the response of any of the 100
random draws and the energy variance is almost null (not visible in Fig. 3).
One can only notice a slight variation of the response of the 100 responses of
oscillator 2 at the Eigen-frequency of oscillator 1.
This phenomenon is amplified in case 2 for which |F2| is much lower than
|F1|. As can be seen in Fig. 4, for oscillator 2, a peak appears at the Eigen-
frequency of oscillator 1. In this frequency band around 400 Hz, the 100
random draws exhibit a high variation well described by the confidence in-
tervals. The total energy of oscillator 1 is not affected by the presence of
oscillator 2 and this leads to an almost null variance.

As predicted, the energy expectation is equal to the average on the 100
random draws. The latter would be equal to the response of the two oscilla-
tors excited by uncorrelated forces. In case of perfectly correlated forces, the
total energies of both oscillators lie in the confidence interval. This means
that, for oscillator 2, the exact value of the total energy is not known in the
frequency band around 400 Hz. Nevertheless, the confidence interval is only
important for low levels that are highly sensitive to the coupling and is thin
on the peaks. This particularity will be advantageous when dealing with a
set of modes coupled to another set of modes as presented in section 6.

4.2. Strongly coupled oscillators

Case 3 concerns two strongly coupled oscillators. It is equivalent to case
1 (|F1| = |F2|) but the coupling coefficient is 500 times higher so that it
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Figure 4: Total energy of oscillators in case of two weakly coupled oscillators excited by
forces |F1| = 100|F2|. Top figures: oscillator 1; bottom figures: oscillator 2. Left: total
energy averaged on 100 random draws of the phase angle, MODENA expectation and
confidence intervals. Right: total energies of all the draws and confidence intervals.

sometimes exceeds the critical coefficient as shown in Fig. 2. The effect of
the strong coupling is clearly visible in Fig. 5: the total energy of oscillator 1
is modified by the presence of oscillator 2. The Eigen-frequency of oscillator
2 generates a peak on the total energy of oscillator 1. Conversely, the total
energy of oscillator 2 is modified by the presence of oscillator 1. The variance
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Figure 5: Total energy of oscillators in case of two strongly coupled oscillators excited by
forces |F1| = |F2|. Top figures: oscillator 1; bottom figures: oscillator 2. Left: total energy
averaged on 100 random draws of the phase angle, MODENA expectation and confidence
intervals. Right: total energies of all the draws and confidence intervals.

of total energy of oscillator 1 is not negligible anymore in the frequency band
around the Eigen-frequency of oscillator 2 especially for low levels of energy.
The strong interaction between the two oscillators generates a high variability
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in this region. Oscillator 2 is much more subjected to variability due to a
higher mass.

5. Extension to multi-modal coupling

5.1. Power balance and modal energies

According to [14], the basic principle governing the energy exchanged
between two oscillators can be extended to multi-modal systems. Consider
two sets of modes Np and Nq representing two coupled continuous subsystems
as presented in Fig. 6.

In case of a weak coupling between sets of modes (individual couplings

Figure 6: Coupling between two sets of modes

between couple of modes lower that the critical gyroscopic coupling [14]), it
has been demonstrated that the power balance for an isolated mode p of the
set of modes Np can be expressed as

µ(Πinj
p ) = µ(Πdiss

p ) +
∑

q

αpqµ(Ep)−
∑

q

αqpµ(Eq). (23)

The modal injected power Πinj
p is either dissipated by the modal damping loss

factor or exchanged with the set of modes Nq. Coefficients αpq are modal
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coupling loss factors at pure tone. Knowing modal injected powers and ex-
pressing modal dissipated powers as a function of modal energies, one can
compute the total modal energy of all modes of both sets of modes.
As presented in previous section, the variance can be deduced from modal
energies and information like eigen-frequencies, modal damping and gyro-
scopic coefficients. Consider, as presented in Fig. 6, the coupling between
one mode p of the set of modes Np and one mode q of the set of modes
Nq. Mode p as well as all modes of set of modes Nq are excited by modal
forces. Every couple of modes p and q are excited by modal forces Fp and
Fq having a random phase θpq. According to section 3, one can define the
variance σ2

q (Ep) due to the coupling between mode p and a particular mode
q of the set of modes Nq. The expression of this variance is given by Eq. (18)
replacing i by p and j by q.
Assuming that all the phase angles θpq are independent random variables,
the variance σ2(Ep) due to the coupling between one mode p and a set of
modes Nq writes

σ2(Ep) =

Nq∑

q=1

σ2
q (Ep) (24)

This assumption is done because there is no coupling between modes of the
same subsystem and because coupling between modes of two subsystems is
weak. Finally, the expectation and variance of the global energy of the set
of modes Np are

µ(ENp) =

Np∑

p=1

µ(Ep) (25)

σ2(ENp) =

Np∑

p=1

σ2(Ep,Nq) =

Np∑

p=1

Nq∑

q=1

σ2
q (Ep) (26)

5.2. Dissipated power

The expectation of power dissipated by a mode p is given by

µ(Πdiss
p ) = Cη,pµ(Ep) (27)

where

Cη,p =
2η viscωp

1 +
ω2
p

ω2

, (28)
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for a viscous damping η visc and

Cη,p = 2η strucω
1

1 + ω2

ω2
p

, (29)

for a structural damping η struc. The variance of power dissipated by a mode
p is then given by

σ2(Πdiss
p ) = C2

η,pσ
2(Ep) (30)

Finally, the expectation and variance of power dissipated by a set of modes
p (power dissipated by the subsystem) are

µ(Πdiss
Np

) =

Np∑

p=1

Cη,pµ(Ep), (31)

and

σ2(Πdiss
Np

) =

Np∑

p=1

C2
η,pσ

2(Ep) (32)

5.3. Net exchanged power

The expectation of net exchanged power between a mode p and a mode
q is

µ(Πp↔q) = αpqµ(Ep)− αqpµ(Eq), (33)

and the variance is

σ2(Πp↔q) = α2
pqσ

2(Ep) + α2
qpσ

2(Eq). (34)

Finally, the expectation and variance of net exchanged power between a set
of modes p and a set of modes q are

µ(ΠNp↔Nq) =

Np∑

p=1

Nq∑

q=1

µ(Πp↔q), (35)

and

σ2(ΠNp↔Nq) =

Np∑

p=1

Nq∑

q=1

σ2(Πp↔q). (36)
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6. Numerical validations for multi-modal coupling

Consider two different examples of multi-modal coupling. These two ex-
amples consist in weakly coupled subsystems, i.e. cavities filled with air
coupled to structures. In the first example, a plate is coupled to a cavity
filled with air. As illustrated in Fig. 7(a), the plate is excited by a unit point
force. In the second example, a cavity is coupled to a plate coupled itself to
another cavity. As shown in Fig. 7(b), one of the cavities is excited by a unit
monopole source. The characteristics of the plate and the cavities are listed
in Tab. 2.

(a) (b)

Figure 7: (a) Sketch of Plate/Cavity 1 coupling test case. The plate is excited by a point
force at (xF , yF ). (b) Sketch of the Cavity 2/Plate/Cavity 1 test case. Cavity 1 is excited
by a spherical source located at (xS , yS , zS).

In both examples, mode shapes of the plate with simply supported bound-
ary conditions and of the cavities with rigid walls have been computed using
analytical solutions up to 3500 Hz. Coupling coefficients αpq have been com-
puted with Eq. (10) and the gyroscopic coefficient γpq have been computed
with Eq. (39) of [14].
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Plate
Lpx [m] 0.65
Lpy [m] 0.6

dx [m] 0.0554
dy [m] 0.1254
Ep [Pa] 2e11

ρp [kg/m3] 7800
νp [-] 0.3

hp [mm] 3
ηviscp [-] 0.05

xF [m] 0.2
yF [m] 0.2

Cavity 1 Cavity 2
Lcx [m] 0.8
Lcy [m] 0.9

Lcz [m] 0.65 0.3
ρc [kg/m3] 1.2
cc [m/s] 340
ηviscc [-] 0.02
xS [m] 0.34 /
yS [m] 0.22 /
zS [m] 0.29 /

Table 2: Characteristics of subsystems for the Plate/Cavity 1 and Cavity 2/Plate/Cavity
1 test cases

6.1. Plate/Cavity 1 coupling test case

For the plate/cavity 1 coupling case, the expectations of subsystem en-
ergies are plotted in Fig. 8. They are compared to a reference computation
made with the commercial finite element software ACTRAN. It is worth
mentioning that Actran computation is here completely deterministic: there
is no randomness neither in the description of the source nor in the behavior
of the subsystems. For the plate energy, the comparison with the reference
computation is almost perfect due to the fact that the plate is directly driven
by the point force. For the cavity energy, the comparison exhibits the same
trends for both curves but some discrepancies are visible. These discrepancies
might originate from the uncorrelated forces assumption made in MODENA.

Expectations and confidence intervals are plotted in Fig. 9. Confidence
intervals are defined respectively as the expectation plus or minus one, two
or three times the standard deviation (square root of the variance).

As can be seen in Fig. 9(a-b), the confidence intervals of the energy of
the plate are almost not distinguishable. For the plate, the uncorrelated
force assumption is verified (mode shapes of the plate are orthogonal and
forces due to the cavity interactions are negligible due to the weak coupling).
This point was also observed by Zhang et al. [15]. In contrast, the confi-
dence intervals of the cavity energy are clearly visible in Fig. 9(c-d). They
translate the fact that, from the cavity point of view, the forces due to the
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Figure 8: Expectations of the total energies of the plate (solid lines) and the cavity 1
(dotted lines). MODENA expectations: black lines; ACTRAN reference computation:
grey lines.

coupling with the plate are not uncorrelated. However, when comparing to
the reference computation, one can see that in the whole frequency range,
the reference solution always lies in the confidence interval. In addition, as
underlined by Zhang et al. [15], this kind of excitation is the worst situation
for application of MODENA. Indeed, the excitation pressure field is perfectly
correlated. It has been demonstrated that MODENA produces much more
reliable results in case of rain-on-the-roof excitation (purely random pressure
field) or Turbulent Boundary Layer excitations.

6.2. Cavity 2/Plate/Cavity 1 coupling test case

Consider now the same configuration as previously (plate 1 coupled to
cavity described in Tab. 2) but with an additional cavity (cavity 2) backing
the plate on its other side. Characteristics of this second cavity are listed in
Tab. 2. A monopole source is acting in cavity 1 at position (0.34; 0.22; 0.29)
m. In that case, two subsystems (the plate and cavity 2) are not directly
excited. In addition, cavity 2 is not directly linked to cavity 1. One can
expect in that case some huge confidence intervals for the energy of cavity
2. The expectations and confidence intervals for cavity 1, plate and cavity 2
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(a) (b)

(c) (d)

Figure 9: Expectations (solid black lines) and confidence interval (in grey scale) of the
total energies of the plate and the cavity. (a): total energy of the plate in the [300:600]Hz
frequency range; (b): total energy of the plate in the [600:3000]Hz frequency range; (c):
total energy of the cavity in the [300:600]Hz frequency range; (d): total energy of the cavity
in the [600:3000]Hz frequency range. Red dotted lines: ACTRAN reference computations.

are plotted in Fig. 10. Again, for the excited subsystem (here cavity 1), the
variance of the energy is almost null and the MODENA expectation compares
well with simulations. This example is comparable to case 2 of section 4.1:
modes of cavity 1 are directly excited and weakly coupled to a set of modes
(of the plate) with a low level of excitation (indirect excitation). In that
scenario, the response of the excited subsystem is almost unaffected by the
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Figure 10: Expectations of the total energies of the cavity 1 (solid lines), the plate (dashed
lines) and the cavity 2 (dotted lines). MODENA expectations: black lines; ACTRAN
reference computation: grey lines.

presence of the other subsystems and its variability remains low. For the
second subsystem (here the plate), the three main peaks in between 400 and
550 Hz (Fig. 11) are due to resonances in cavity 1. This is comparable to case
2 where a peak is due to the Eigen-frequency of the directly excited oscillator
generating a relatively high variability of the response around the peak (see
Fig. 4). Thus in the [400;550] Hz frequency band, the large confidence
intervals (for low levels of energy) are due to this phenomenon. It’s the same
for the last subsystem (cavity 2) but amplified by the high variance of the
energy response of the plate.
At higher frequency, the confidence intervals seems to be lower and spread
over the whole frequency response (for low and higher levels) due to the
increase of modal overlap. Finally, with respect to the expectations of the
energies, the confidence intervals increase from the subsystem closest to the
excitation (cavity 1) to the farthest (cavity 2).

6.3. Lateral car window coupled to a passenger compartment

In this example, a lateral car window is coupled to the passenger com-
partment. The window is made of glass (Ew = 48.5 GPa, ρw = 2500 kg.m−3,
νw = 0.24, ηw= 0.01) and is 3 mm thick and has a surface of 0.28 m2. A
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rubber seal (Er = 60 MPa, ρr = 1010 kg.m−3, νr = 0,48) is considered glued
on the boundaries of the window. The opposite surface of the rubber seal
is considered here to be blocked. Both the glazing and the rubber seal have
been modeled by solid elements. In the [0:2250] Hz frequency band, the win-
dow has 59 Eigen-frequencies. The window is excited by a pressure field due
to a turbulent flow around the rear view mirror. An example of the pressure
map at a particular frequency can be seen in Fig. 12. The modal input
powers are computed with Eq. (37)

Πn(ω) =
1

2
<
(∫

Sw

p(M,ω)V ∗n (M,ω) dS

)
, (37)

where p(M,ω) is the turbulent pressure field and V ∗n (M,ω) is the normal
velocity of mode n of the window at angular frequency ω (•∗ stands for the
complex conjugate of •).
The passenger compartment has a volume of 3.3 m3 and is filled of air (char-
acteristics of air given in Tab. 2, ηpc=0.01). To extract the mode shapes
of the acoustic volume, rigid walls boundary conditions have been specified.
The acoustic volume has 4950 modes in the [0:2250] Hz frequency band.
The total energy of the passenger compartment is computed in between 300
Hz and 2000 Hz (frequency step 2 Hz). The total energy alongside with the
corresponding confidence intervals are plotted in Fig. 13.

As can be seen in Fig. 13, the confidence intervals are much more pro-
nounced at low frequency. Increasing the frequency, the confidence intervals
narrow when correlation lengths of the pressure field decrease. As demon-
strated by Zhang et al., the accuracy of MODENA strongly depends on the
spatial correlation of the pressure field. Therefore, turbulent pressure fields
are good candidates for MODENA applications. This translates to small
confidence intervals.
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Figure 11: Expectations (solid black lines) and confidence intervals (in grey scale) of the
total energies of the subsystems in the Cavity/Plate/Cavity coupling case for two frequency
ranges : [300:600]Hz for (a), (c) and (e) and [1000-3000]Hz for (b), (d) and (f). (a) and
(b): total energy of Cavity 1; (c) and (d): total energy of the Plate; (e) and (f): total
energy of the Cavity 2. Red dotted lines: ACTRAN reference computations.
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(a) (b)

Figure 12: (a) A lateral car window submitted to a pressure field [Pa] due to a flow around
the rear view mirror. (b) Part of the mesh of the passenger compartment and representa-
tion (in red) of the coupling surface between the window and the acoustic volume.
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Figure 13: Expectations (black solid line) and confidence intervals (in grey scale) of the
total energy of the passenger compartment as a function of frequency.
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7. Conclusion

The present article has investigated the assumption of uncorrelated forces
needed to derive the basic equations of MODal ENergy Analysis. It has
been demonstrated that expectations and variances of modal energies can
be expressed as a function of modal energies and coefficients depending on
frequency and on modal parameters of uncoupled subdomains. The effect
of coupling strength on modal energy variances has been analyzed in case
of two coupled oscillators. Finally, two cases of multi-modal coupling have
been addressed and compared to a reference deterministic solution. For the
excited subsystem, the variance is almost null and the expectation almost
equal to the deterministic solution. For non directly excited subsystems, the
variance increases but the deterministic solution still lies in the MODENA
confidence intervals. Finally, it has been observed that an increase of the
modal overlap decrease the variance of the subsystems energies.
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