
HAL Id: hal-03639616
https://hal.science/hal-03639616

Submitted on 13 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Prediction and analysis of excitation sources of car
booming noise through a Bayesian meta-model

Gianluigi Brogna, Jérôme Antoni, Nicolas Totaro, Olivier Sauvage, Laurent
Gagliardini

To cite this version:
Gianluigi Brogna, Jérôme Antoni, Nicolas Totaro, Olivier Sauvage, Laurent Gagliardini. Prediction
and analysis of excitation sources of car booming noise through a Bayesian meta-model. Journal of
Sound and Vibration, 2021, 510, pp.116228. �10.1016/j.jsv.2021.116228�. �hal-03639616�

https://hal.science/hal-03639616
https://hal.archives-ouvertes.fr


 

Prediction and analysis of excitation sources of car booming noise through a Bayesian meta-model

Journal Pre-proof

Prediction and analysis of excitation sources of car booming noise
through a Bayesian meta-model
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Abstract

Current approaches in the automotive domain to predict booming noise essentially tar-
get extreme loading conditions. This is useful when mechanical strength is of concern,
but not representative of the actual vehicle usage. Usage is however important when
addressing acoustic annoyance. One issue in this respect is the lack of databases repre-
sentative of the diversity of client usages and, therefore, of the excitation forces applied
to the vehicle in real usage conditions. This paper introduces a possible answer to this
problem. First, it proposes a measurement protocol to estimate the excitation forces in
real usage responsible of booming noise. Second, it provides an array of algorithms to
analyze the large amount of data collected during the measurement step. In particular,
an ad hoc Independent Component Analysis algorithm is introduced to extract excita-
tion components specific to well-defined operating condition regions, thus providing
insights in the excitation behaviour, as well as data reduction. Next, the excitation com-
ponents are modelled as a function of the vehicle operating conditions with a Radial Ba-
sis Function network. A meta-model of the excitations in real usage conditions is thus
obtained, composed of two levels: the analysis level and the modelling level. The pro-
posed methodology is developed in the Bayesian framework. In addition to its advan-
tages linked to the trivial introduction of prior knowledge, the Bayesian framework is
found particularly useful for propagating uncertainties throughout the successive steps
of the approach.

Keywords: Booming noise; Load estimation; Independent component analysis; Radial
basis functions network; Bayesian meta-model; Gibbs sampler

1. Introduction

The acoustic performance of a vehicle is a discriminating feature for the client. Ac-
cording to client’s tastes, a car may have to sound sporty or smooth, or not to sound
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at all. In order to consider such preference at minimum cost, the NVH (Noise, Vibra-
tion and Harshness) performance of vehicles is addressed as early as possible in the5

design process. Among the targeted NVH characteristics in internal combustion engine
powered cars, the booming noise related to the engine dominates the low frequency
band [1, 2] and is strictly linked to the client perception of quality [3]. A comprehensive
approach to its prediction should take into account a large range of operating condi-
tions (OCs) in order for it to be representative of the client perception. However, usual10

booming noise models seem to lack this completeness.
On the one hand, the classical approach is to synthesize the acoustic pressure linked

to the booming noise by coupling the excitation sources with the vehicle frequency re-
sponse functions (FRFs). While the estimation of these FRFs can be performed numeri-
cally, by finite element method (in the low frequency band) or statistical energy analysis15

(in the high frequency band) [4], the determination of the loads is more problematic. In
theory, the inner load tensor of the engine can be obtained analytically and over the full
operational range knowing the operating conditions and combustion parameters [5].
However, even when the excitation can be modelled analytically, it is so modelled in
the active subsystem (the engine) and its application on the passive subsystem (for in-20

stance the car body) most of the times goes through some anti-vibration mounts. Unfor-
tunately, these damping elements have often an unwell defined non-linear behaviour,
so that the actual loads exciting the car body are basically unknown except at some very
specific operating points for which the mount properties are known [6, 7]. This means
that even if the FRFs can be estimated, a model of the loads injected in the car body is25

not available.
On the other hand, a purely “machine learning” take at booming noise prediction

can be adopted by measuring the booming noise for several operating conditions and
trying to build a model explaining the noise as a function of the OCs. Even if this
approach shows promising results [8], the model so created is by no means general,30

but rather specific to the combination vehicle/power-train used to record the learning
database.

In this context, this paper adopts a hybrid approach. A model of the excitation
sources linked to the booming noise is built in a machine learning fashion from a large
database of measured loads in operating conditions. Then, these loads are multiplied to35

the vehicle FRFs to yield a booming noise prediction. This has two main advantages:

• The definition of booming noise sources depend only on the power-train. This
means that different car models sharing the same power-train will be affected by
the same real usage excitations. This in turn reduces the number of measurements
required to deal with several car models.40

• Making the FRFs appear explicitly in the booming noise synthesis opens the path
to more advanced FRFs estimation techniques that are able for instance to simulate
the vehicle structural uncertainty due to the production dispersion (e.g. by non-
parametric stochastic finite element approach [9]).

In order to alleviate the need of a large number of measurements to cover the whole45

operating condition range, the proposed approach consists in a meta-model composed
of two stages: analysis with data reduction and modelling.
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The analysis step is performed through an ad hoc Independent Component Analysis
(ICA) algorithm. ICA is generally regarded as a way to extract from measurements
independent phenomena. For instance, this makes it a valuable approach to identify50

hidden independent acoustic sources [10] or to perform Operational Modal Analysis
[11, 12]. ICA is prone to extract sparse components, making it a particularly relevant
for data reduction [13, 14]. In the context of this paper, ICA reveals all its value since,
thanks to the sparsity of the components, it manages to identify loading patterns specific
to well-defined operating conditions regions. However, its application to this aim is not55

straightforward. Therefore, a specific Bayesian version of ICA is proposed based on the
formulations of Knuth and Djafari [15, 16].

Then, the second step aims at modelling the extracted independent components as a
function of the vehicle OCs. The proposed approach is based on a Radial Basis Function
(RBF) network. First developed in 1988 by Broomhead and Lowe [17], RBF networks are60

an interesting way of performing simple non-linear regression, which could approach
as precisely as desired a target function. The Bayesian framework is again necessary in
this step to take into consideration the uncertainty deriving from the data reduction in
ICA.

Eventually, the complete model – hereafter referred to as the “meta-model” – will65

be used to simulate load scenarios corresponding to client usage. The full methodology
is depicted in Fig. 1. It is resumed as follows: (1) a typical client usage of a vehicle
described through vehicle OC distributions is taken as input, (2) the meta-model gener-
ates a population of independent components corresponding to the OCs input, (3) the
meta-model recombines the components with extracted loading patterns to yield the70

loads, (4) finally, the synthesized loads are multiplied by the vehicle FRFs to yield an
estimation of the booming noise representative of the client usage.

Moreover, the Bayesian approach adopted in this work allows the propagation of
uncertainties through the successive steps listed in Fig. 1. As a consequence, the esti-
mation of booming noise comes not only with point estimates, but also with credible75

intervals.
Note that the identified meta-model is specific to a power-train, which has to already

be in the production phase since real usage measurements are necessary. However, in
the automotive industry, a new car model rarely features a completely new power-train.
This means that the meta-model can also be used in the early design stage of a new ve-80

hicle to predict its booming performance, given that the new vehicle features an existing
power-train and that a computational model to estimate its FRFs exists. Otherwise, the
proposed model can always be used for existing vehicles to compare two different client
usage profiles with respect to their influence to the booming performance.

The paper is organized as follows. Section 2 covers a description of the vehicle sys-85

tem. First of all, the definition of the booming noise is clarified, along with the defini-
tion of the loads considered at its origin. Then, a brief sub-section covers the protocol
to obtain the real usage excitation database, which is the input for the model building
procedure. Section 3 targets the two levels of the meta-model, namely the ICA of the
loads and the modelling of the extracted components. In this section, some basis of90

Bayesian modelling are also provided in order to introduce the framework in which the
modelling is realised. Section 4 covers the exploitation of the identified meta-model.
It first details the synthesis steps yielding a prediction of the booming noise. Then, it
proposes an actual application and validates the model performance by comparing the
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booming noise prediction to the actual measurement. A final conclusion is drawn on the95

advantages of the proposed approach, as well as on the difficulties one might encounter
when applying it.
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Figure 1: Explanatory diagram of the steps covered in the paper. In red the recovery of load f from measured
accelerations a and given FRF matrix H, in green the load analysis, in blue the component modelling and in
magenta the model synthesis and evaluation steps. The corpus of processing units that takes the operating
conditions (OCs) as input and return the estimated pressure p̃ in the cabin as output is referred to as the
“meta-model”.

2. Target system and input data

Let p(t, ω) be the evolution along time t of the spectrum of the acoustic pressure
inside a vehicle. On a low frequency range [ωl , ωu], it can be considered composed of a
wide-band part pwb(t, ω) and a harmonic part p(ho)(t) with respect to the engine speed
ω0:

∀ω ∈ [ωl , ωu], p(t, ω) = pwb(t, ω) +
O

∑
o=1

p(ho)(t)δ(ω− hoω0(t))/(hoω̇0(t)), (1)

where δ stands for the Dirac distribution and ω̇0(t) = dω0(t)/dt is the engine accelera-
tion.100

The harmonic part of the acoustic pressure in Eq. (1) is commonly called booming
noise and it is the key NVH issue in this paper. Largely covered in literature [3], the
booming noise is pretty well defined. It is considered one of the most important contri-
butions to the noise inside the cabin over a large low-frequency band and its structure-
borne part is dominant with respect to the air-borne one. Several harmonics O can con-105

tribute to the noise inside the cabin and, typically for a 4-cylinder internal combustion
engine, the most energetic ones are ho ∈ {1, 2, 4, 6}.
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The modelling of the excitation sources at the origin of the booming noise being the
aim of this paper, a mechanical system covering the engine excitations to the vehicle
body has to be defined.110

2.1. The vehicle system
It is largely recognised that the loads at the origin of the booming noise come from

the engine excitation [5]. However, the actual external loads generated in the engine
can be hardly defined in terms of specific application points. As a consequence, the
widely spread sub-structuring approach [18] is used in this paper. The vehicle system115

is considered composed of an active and a passive subsystems and the loads to esti-
mate are the ones considered applied at the interface between the two subsystems. The
decomposition is depicted in Fig. 2 and declined as follows:

• The active subsystem is composed of the engine (E) and the drive wheels1 (A
and B). The interface between the engine and the passive subsystem is located120

at the centres of the engine elastic mounts. Three loads are considered applied
at each mount centre (1E1 , 1E2 , 1E3 ). The interface between the wheels and the
passive subsystem is at the spindle bearings for the drive train. Three loads and
two moments2 are considered applied at each mount centre (1A, 1B).

• The rest of the car composes the passive sub-system (P).125

As a consequence, Ne = 19 excitation degrees of freedom (DOFs) are here considered at
the source of the booming noise inside the vehicle.

Once the active and passive subsystems and the excitation DOFs have been identi-
fied, the loads to estimate can be defined. If defined as the loads the active parts apply
on the passive subsystem, then they correspond to the commonly called “operational”130

loads. If defined as external loads applied to the complete system at the above defined
interfaces, then they rather correspond to the so-called “equivalent” loads [19]. Both
definitions have their strong and weak points, however the “equivalent” loads are here
preferred since:

• They only depend on the active sub-system, i.e. on the power-train. As explained135

in the introduction, this feature makes the model applicable to several different
car models.

• They are associated with the frequency response functions of the whole system,
therefore no dismounting is needed for the measurement of the FRFs (this is a
characteristic problem of the “operational” loads).140

Let f(ho)
1 (t) ∈ CNe×1 be the vector containing the time evolution of the ho-harmonic

for the Ne excitations defined above. Then, in a linear mechanical system in which the
equation of motion is verified, the ho-harmonic pressure responses p(ho)

3 (t) ∈ CNo×1 at
observation DOFs 3 read:

p(ho)
3 (t) = H31(hoω0(t))f

(ho)
1 (t) , (2)

1The drive wheels are considered as sources as they are themselves excited by the engine harmonic torque
ripple.

2The dynamic moment along the drive train direction is supposed null.
5
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Figure 2: Decomposition of the vehicle system into an active subsystem (engine E, wheels A and B) compris-
ing the main harmonic excitations and a passive subsystem P. Loads from the engine are transferred through
mount centres 1E1 , 1E2 , and 1E3 . Vibrations are measured at DOFs 2Ai , 2Bi , 2Eij and pressure is measured at
point 3 in the cabin. The dotted lines stand for the influence of the engine on the drive wheels through the
drive-line.

where H31(hoω0(t)) ∈ CNo×Ne stands for the FRF matrix between the Ne excitations and
the No responses. Note that the FRFs are linear time invariant (as functions of hoω0) and
their dependence with time is due to the fact that an harmonic instantaneous frequency
changes in time with the engine speed ω0(t).

The aim now is to identify the excitation f(ho)
1 (t) in real usage, i.e. while the vehicle145

operating conditions change in time. This in turn will allow a model of the excitations
as a function of the OCs to be built from the collected database.

2.2. Real driving load estimation

Unfortunately, the direct measurement of the loads f(ho)
1 (t) in real usage conditions

is impossible. It can be shown that it can only be achieved clamping the active part to150

a rigid test bench [19]. While this kind of measurement is currently performed in the
automotive domain [20, 21], it necessarily needs the active part to be dismantled from
the system, thus compromising the “real usage” constraint needed in this work. As a
consequence, the indirect in-situ approach is preferred here [22, 23].

Let a(ho)
2 (t) ∈ CNa×1 be the vector containing the time evolution of the ho-harmonic

for Na acceleration DOFs. In the vehicle system, they can be written as a function of the
excitations as:

a(ho)
2 (t) = H21(hoω0(t))f

(ho)
1 (t) , (3)

where H21(hoω0(t)) ∈ CNa×Ne stands for the FRF matrix between the Ne excitations and155

the Na learning DOFs. If the FRFs in H21(hoω0(t)) are known (computed or measured)
6

                  



and if during the real usage test the accelerations a(ho)
2 (t) are measured, then Eq. (3) can

be inverted at each instant t and the excitations f(ho)
1 (t) recovered. This in-situ approach

allows the identification of the loads in the whole mechanical system without any need
for dismounting it. Thus, it is especially indicated for real usage tests.160

2.2.1. Inverse problem
Solving the aforementioned inverse problem is far from trivial. First of all, the inver-

sion of the transfer matrix requires H21(hoω0(t)) to be full rank (at each time instant).
In order to ensure this constraint, the number of learning DOFs is taken larger than the
number of excitations to be estimated (Na > Ne). Therefore, 4 triaxial accelerometers165

have been placed around each spindle and 3 triaxial accelerometers around each engine
mount, for a total of Na = 51 learning DOFs to estimate 19 excitation.

The overdetermined problem can then be solved using the Moore-Penrose pseudo-
inverse, which returns the minimum norm solution,

∀t, f(ho)
1 (t) =

(
H21(hoω0(t))HH21(hoω0(t))

)−1
H21(hoω0(t))Ha(ho)

2 (t) , (4)

where •H stands for the Hermitian transpose.
However, even with an overdetermined problem, one has to pay attention to the

conditioning of matrix H21(hoω0(t)). An ill conditioned FRF matrix would make the170

estimation utterly sensitive to measurement noise. For this reason, regularization tech-
niques are normally used. They consist in modifying slightly the original problem in
order to obtain a more stable one.

A review of all regularization methods is not in the scope of this paper, but simply
note that several approaches exist and among them the most used are the Tikhonov reg-175

ularization and the Truncated Singular Value Decomposition [24]. They perform usu-
ally well and are easy to use, but the degree of regularization these methods impose is
purely mathematical and endless discussion exists to find out the best method to choose
the value of the regularization parameter (today one of the most used approaches is the
L-curve [25]).180

In this paper, the loads to be modelled have been obtained through a completely
different method. The inverse problem has been formulated in the Bayesian framework
and a probabilistic estimation of the loads has been carried out. Such an approach has
a double advantage over the classic ones. First of all, the Bayesian context allows prior
knowledge and information to be used as a way of regularizing the problem through185

“physical” considerations. Secondly, the probabilistic take at load estimation yields not
only a deterministic result, but full probability distributions, thus yielding also credible
intervals on the results. Already proposed by Calvetti [26], this method has been further
developed in the context of force reconstruction by Aucejo and Feng [27, 28]. The results
of its application on the database used for the present paper can be found in [29].190

Knowing the way to estimate the loads f(ho)
1 (t), what is left is to define the measure-

ment protocol which shall yield the load database necessary to perform the modelling.

2.2.2. Measurement protocol
Looking at Eqs. (3) and (4) it seems clear that the load estimation needs the measure-

ment of the FRF matrix H21(hoω0(t)) and of the real usage accelerations a(ho)
2 (t). The195
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measurements cover only the low frequency range [20, 250] Hz. This range is enough
to fully analyse the booming noise contribution of the main orders ho ∈ {1, 2, 4, 6} in a
4-cylinders Diesel engine.

FRF measurements. The FRF matrix were measured once at still vehicle and for the
whole frequency range, since it is considered invariant with the operating conditions3.200

Two types of FRFs were measured: vibro-acoustical, from the excitation DOFs noted 1Ei

in Fig. 2 toward the microphones inside the vehicle cabin at point 3 (used for synthesis
in Eq. (2)), and vibratory, from the same excitation DOFs toward the observation DOFs
noted 2Ai, 2Bi and 2Eij in Fig. 2 (used for load estimation in Eq. (3)). The former were
measured by reciprocity [30], using sound sources at 3 and measuring the acceleration205

response at 1. The latter were measured by direct method, applying a hammer impact
on 1 and measuring the accelerations at 2. Each measurement has been realized three
times and the empirical mean is taken as a result. The hypothesis of local rigid body mo-
tion needed for this approach has been verified for the studied interfaces and it holds
well above 250 Hz.210

Acceleration measurements. This second protocol provides the acceleration measurements
needed to solve the inverse problem (2). It has to cover different vehicle life situations,
in order to build a complete database of the loads injected in a car during its usage.
As a consequence, it needs to be applicable in a moving vehicle. The acquisition sys-
tem records all the accelerations at the learning DOFs 2, which have been fitted with215

accelerometers (adapted to withstand real driving conditions). At the same time, the
vehicle cabin was equipped with 4 microphones. For what concerns the vehicle op-
erating conditions, they have been recorded directly from the CAN (Controller Area
Network) bus of the vehicle (Fig. 3). The complete list of recorded channels can be seen
in table 1.220

In order to cover the widest operating conditions range possible with a reasonable
agenda, different tests have been realized. For instance, acceleration/coast tests are
useful to cover all the torque and engine speed ranges, while circuit tests aim at driving
the car like a “normal” customer would and give an image of the range of all the oper-
ating conditions during a common vehicle usage.225

All results in the following sections have been obtained from data of the circuit test
and concern the second harmonic h2, the most energetic ones when dealing with four
cylinders engines.

3Note that the time invariant hypothesis is not completely verified, since the FRFs are slightly influenced
by the dynamical behaviour of the vehicle. However, FRFs in driving conditions are much more complex to
obtain and are not in the scope of this work.
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Triaxial Accelerometers Microphones
Place n. of accelerometers Place n.

Right mount 2E3 3 Cabin 4
Bottom mount 2E2 3

Left mount 2E1 3
Right mount (on engine) 1

Bottom mount (on engine) 1
Left mount (on engine) 1

Front left wheel 2A 4
Front right wheel 2B 4

GPS CAN data
Speed Vehicle speed

North Velocity Engine speed
East Velocity Torque
Up Velocity Wheel angle

Latitude Gear
Longitude Throttle
Altitude Temperatures

Table 1: List of the data recorded for the harmonic noise protocol.

M M

M M

M microphones

triaxial accelerometer

cabin

OC

OC CAN bus

Figure 3: For the harmonic protocol 3 triaxial accelerometers have been placed at each engine mount (body
side) and 4 at each front wheel hub. Inside the cabin, the acoustic pressure is measured thanks to 4 micro-
phones. The operating conditions of the vehicle are recorded directly from the CAN bus.

3. Meta-model

The measurement protocols and processing steps intriduced in Section 2 yield a real230

driving condition database of the loads responsible for the booming noise. For each
load sample, the corresponding OCs have been measured as well. However, modelling
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and interpreting each of the Ne = 19 excitations can be cumbersome. Therefore, the
proposed model features two stages (Fig. 4):

• In the first stage a probabilistic factor analysis deals with data reduction and analy-235

sis. The Ne loads are therefore described through a few independent components,
which have the property to be dominant on well-defined OC regions.

• The second stage tackles the modelling of the components obtained at the previ-
ous step as a function of the vehicle operating conditions.

The probabilistic Bayesian approach is deemed here valuable to estimate the uncer-240

tainties introduced in the factor analysis stage and to propagate them to the modelling
step.

In what follows each stage is detailed.

Identification

Loads
Probabilistic

factor
analysis

Patterns

Components Regression
model

Operating
conditions

Model
Parameters

Synthesis

Operating
conditions

(Client profiles)

Model
Parameters

Components

Patterns

Loads

FRF

Booming
noise

Figure 4: Depiction of the proposed meta-model in its identification and then exploitation to estimate the
booming noise.

3.1. Probabilistic factor analysis
3.1.1. Definition of the problem245

The first aim of the factor analysis stage is to describe the loads through a small
number of components, thus easing the interpretation.

Let Nc (Nc 6 Ne) be the number of component extracted; a reduced version of the
loads is sought in the following form:

f(ho)
1 (t) =

Nc

∑
i=1

λiγi(t) + r(t) , (5)

where the loads are expanded as a sum of contributions due to the components γi(t) ∈
C multiplied by what will be hereafter called excitation patterns λi ∈ CNe×1. The pat-
terns contain the magnitude and phase relations among the excitation DOFs and are250

not time dependent; the time evolution is rather described through the corresponding
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components γi(t). Moreover, the number Nc of extracted components is usually less
than the number Ne of excitations, thus performing data reduction, but also yielding a
reconstruction error r(t).

The second aim of the factor analysis is linked to the nature of the components.255

Indeed, it must be noted that the decomposition in Eq. (5) is not unique: an infinity
of bases are available to extract the components. As a consequence, several techniques
exist in the literature in order to impose some kind of constraint and yield a unique
pertinent decomposition4. In the context of this study, the components are wished to be
dominant over well-defined operating condition regions. This would yield significant260

knowledge to solve engineering problems, since, in a given operating condition region,
only one pattern describes the excitation.

The way to answer this need is not straightforward. It is recognised that the decom-
position performed under the constraint of statistical independence among the compo-
nents leads to sparse components, i.e. components dominating only on small regions of265

the sampled dimension [13]. However, this means that using Independent Component
Analysis (ICA) [31] directly on f(ho)

1 (t) would yield components dominating on small
time regions, not OC regions. To solve this problem, it is proposed here to re-sample the
loads along the operating conditions and then apply ICA to the re-sampled data. The
loss of the time domain structure is not detrimental for the definition of the meta-model270

which is the aim of this paper, however it will be shown that the re-sampling step is not
properly defined and entails the introduction of an error. The Bayesian formulation of
the ICA is then necessary to take into account this error.

Hereafter, the algorithms used to achieve both aims are presented. First of all, data
reduction is performed by Singular Value decomposition. A change of variable is then275

necessary to consider the so-reduced loads as samples in the operating condition do-
main, rather then in the time domain. Finally, Bayesian ICA manages to yield compo-
nents dominant only on well-defined OC regions.

3.1.2. Step 1: Data reduction

Let F ∈ CNe×N be the matrix containing the N time samples of f(ho)
1 (t), where it is280

assumed that N > Ne.
First of all, the matrix F can be expressed as:

F = Λ•C• =
Ne

∑
i=1

λiγi , (6)

where Λ• ∈ CNe×Ne and C• ∈ CNe×N are the matrices storing patterns and components
without any reduction (the number of components Nc is equal here to Ne). This relation
can be rewritten as a sum of the contributions of each component, given that λi is the ith

column of matrix Λ• and γi is the ith row of matrix C•.285

As for Eq. (5), the decomposition in Eq. (6) is not unique. As a consequence, a
decorrelation constraint among the components can for instance be added. This con-
straint yields the principal components [32] and reads:

C•C•H = INc . (7)

4For instance, one of the most widespread is the Principal Component Analysis, which imposes the decor-
relation among the components.
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Now the deterministic resolution is straightforward. One computes:

S = FFH = VD1/2D1/2VH , (8)

where V ∈ CNe×Ne and D ∈ CNe×Ne are respectively the matrix of the eigenvectors and
the diagonal matrix of the eigenvalues of S. Also, from Eq. (7):

S = FFH = Λ•C•C•HΛ•H = Λ•Λ•H . (9)

By identification of Eqs. (8) and (9), Λ• is determined and so λi and γi for all i ∈
{1, . . . , Ne}.

Data reduction is achieved keeping a reduced number of components γi to perform
the recomposition in Eq. (6). Classically in Principal Component Analysis, the eigen-
values in matrix D are ordered by decreasing value and the “first” Nc components are290

kept - i.e. the components related to the Nc “most energetic” eigenvalues, with Nc cho-
sen through a threshold on the cumulative sum of eigenvalues. This is a good protocol
to minimize the number of components necessary to describe the loads with a certain
degree of precision. In this work however, one final quantity to predict is the vehicle
response. So, assuming that the global acoustic response is the priority, another cost295

function can be defined.
Let S be the set of all the components, so that S has Ne elements. Let PS be the set of

all possible combinations
(

Ne
k

)
for all k ∈ {1, . . . , Ne}. Noting N(set)

c one of the possible

combinations, the minimization problem becomes:

N(opt)
c = argmin

N(set)
c ∈PS

∣∣∣∣∣
1

No N

No

∑
m=1

N

∑
n=1
|Lm,n − LN(set)

c
m,n |2 − Lthr

∣∣∣∣∣ , (10)

where Lm,n is the acoustic level at one of the No observation DOFs 3 recomposed from

the identified loads with Eq. (2), while LN(set)
c

m,n is the same level but computed using the

loads after reduction through the N(set)
c components. The threshold for the data reduc-

tion is chosen by the user through Lthr. The higher the threshold, the higher the data
reduction and consequently the reconstruction error. In practice, the set PS is extremely
wide and not all possible combinations can be tested. In order to find a good combi-
nation, an iterative algorithm starts with the full set of components S and one by one
removes those that have the least contribution to the acoustic pressure. Applied to the
circuit test load database, this approach returns the approximation F̃ of the matrix F as:

F̃ = ∑
i∈N(algo)

c

λiγi , (11)

with N(algo)
c of size Nc = 7 for Lthr = 3 (Fig. 5).

It is important to note that this data reduction has indeed a physical meaning. As ex-
plained in Section 2, the loads responsible for the booming noise are strictly linked to
the engine excitation. A running engine state is mainly described through only two pa-300

rameters: its speed and torque. Reality is certainly more complex, but a high degree of
data reduction at this stage seems completely within expectations.
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Figure 5: Comparison between the second harmonic h2 of the acoustic pressure at the driver’s ears recom-
posed using the loads estimated by inverse method (blue solid line) and using the loads after reduction with
Nc = 7 (red dashed line). The curves are smoothed over 1 s.

3.1.3. Step 2: Change of variables
The matrix F̃ now contains a reduced version of the load time samples. The aim of

the change of variable is to rewrite the loads in the operating condition domain, instead305

of the time domain.
Let T be the smooth manifold for the time and O the one for the operating condi-

tions. A regular variable substitution is the map Π so that Π : T → O is continuous and
bijective. If this map exists, a direct change of variable can be performed.

In the harmonic case, one might restrain the operating condition domain to the en-310

gine torque and speed only5. In this case, the domain becomes O : [Tmin, Tmax] ×
[Rmin, Rmax] with Tmin and Rmin standing for the minimum engine torque and speed
during the test and Tmax and Rmax the maximum of the same quantities.

In practice, in the discretized context, the manifold O is gridded and separated in
torque/speed bins. Then, knowing the values of the engine torque and speed at each315

measured temporal sample (during the drive test), the map Π is empirically built. Un-
fortunately this map does not comply with the theoretical conditions above, due to two
main problems both shown in Fig. 6:

• The map is not bijective since some torque/speed bins are “visited” more than
once during the drive test (Fig. 6(a));320

• The manifold O is not smooth (or dense) since the loads are not defined on all
the torque/speed bins, i.e. some bins have not been “visited” during the test (Fig.
6(b)).

5The harmonic source is the engine and the engine operating conditions are globally described by its torque
delivery and speed.
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(a) (b)

Figure 6: Histogram of the engine torques and speeds covered during the driving test. (a) shows the occur-
rences, (b) the torque/speed pairs covered.

To solve the second problem one just has to map T towards another manifold O
′

composed of only the “visited” torque/speed bins, thus yielding to a reduced bin num-325

ber Nbins = 801. This solution is simple, but it has to be reminded that operations such
as interpolation or extrapolation loose all their physical meaning since two neighbour
points in this domain may correspond to two completely different torque/speed pairs.

For the first problem an original solution is proposed. Instead of forcing the one-
to-one correspondence between the two domains, all occurrences in the torque/speed330

bins are kept. As a consequence, a new structure for the reduced loads F̃ is defined as
{F̃} = {F̃(1), . . . , F̃(Nbins)}, with Nbins the number of “visited” torque/speed bins. For

each s ∈ {1, . . . , Nbins}, F̃(s) ∈ CNe×N(s)
s is the matrix containing the N(s)

s occurrences
in the torque/speed bin s of the complex harmonic amplitude of the Ne reduced loads.
Keeping all occurrences in each bin, the fundamental information stored in this struc-335

ture is the dispersion inside each bin (Fig. 7). This dispersion is meant to be directly
taken into account in the Bayesian ICA presented in the next paragraph.
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Figure 7: Evolution of the second harmonic h2 of the load at the right engine mount Z direction along the
torque/speed bins (zoom on the first 180 bins). The grey area depicts the bins where more occurrences are
available and stands for the gap between the highest and lowest amplitude value.

3.1.4. Step 3: Bayesian ICA
The problem to be solved in the Bayesian ICA step is equivalent to the one in Eq. (5),

but now carried out on the resampled loads in the structure {F̃}. Let F̂ ∈ CNe×Nbins be
the matrix containing the mean of the load occurrences for each engine torque/speed
bins. It thus reads:

∀s = 1, . . . , Nbins, F̂:,s =
1

N(s)
s

N(s)
s

∑
p=1

F̃(s)
:,p . (12)

The aim is to decompose F̂ as:

F̂ = Λ̂Ĉ + R̂ =
Nc

∑
i=1

λ̂iγ̂i + R̂ , (13)

where λ̂i ∈ CNe×1 are the patterns, γ̂i ∈ C1×Nbins are the corresponding components and
R̂ ∈ CNe×Nbins is a reconstruction error. The matrices Λ̂ and Ĉ store respectively the340

patterns and the components and, together with the error R̂, are the target of estimation.
First of all, note that the number of components extracted is fixed to the previously

defined Nc. This means that this step does not search additional reduction, but rather
an analysis of the already reduced loads.

Secondly, as usual this decomposition is not unique. A well-chosen constraint is
sought in order to unequivocally define the components and patterns so that the former
are sparse and dominant only on small engine torque/speed regions. Such a constraint
appears to be the statistical independence of the extracted components. Largely covered
in literature [31, 13], it is a stronger conditions than decorrelation and it needs the loads
F̂ to be considered as a collection of Nbins samples of a stochastic load vector. In this
context, the components γ̂i are themselves a collection of samples of stochastic variables
γ̂i. Their independence can then be properly defined resorting to the separability of the
joint probability density function (PDF) of the components. The components γ̂i are
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independent if and only if:

[γ̂1, . . . , γ̂Nc ] =
Nc

∏
i=1

[γ̂i] , (14)

where [γ̂i] stands for the PDF of the component γ̂i and [γ̂1, . . . , γ̂Nc ] for the joint PDF of345

all components. In practice, such constraint can be enforced in several different ways. A
wide review of these approaches can be found in Hyvarinen’s book [31]. In the context
of our work, it must be reminded that the input data F̂ actually comes already with a
dispersion, described by the structure {F̃}. For this reason, the estimation of the inde-
pendent components and respective patterns is here carried out in the Bayesian context.350

In the Bayesian framework, every term in Eq. (13) has to be considered as a random
variable and the problem is thus rewritten as:

F̂ = Λ̂Ĉ+ R̂ , (15)

where F̂ is a random term whose available data is F̂, whereas Λ̂, Ĉ and R̂ are the ran-
dom terms respectively describing the patterns, the components and the error. The aim
is to estimate the posterior PDF of Λ̂ and Ĉ knowing the data F̂. To do so by Bayes
theorem, the likelihood function and prior distributions are needed.

The likelihood of F̂ is linked to the error hypothesis. It is reminded that the like-
lihood corresponds to the PDF of the data, for given values of the unknown random
variables. In this application, if Λ̂ and Ĉ are considered as fixed, Eq. (15) shows that
the only random influence to the data comes from the error R̂. Classically, R̂ is sup-
posed to follow a circularly symmetric complex Gaussian distribution, being it a plain
data reduction error. Under this assumption and given a value for the components and
patterns, the likelihood reads:

[f̂v|Λ̂, Ĉ, σ2
f1,1

, . . . , σ2
fNe ,Nbins

] ∼ N


f̂v,




σ2
f1,1

. . .
σ2

fNe ,Nbins





 , (16)

where f̂v is the vectorization of F̂, whereas f̂v is the vectorization of the product Λ̂Ĉ.355

Note that the error has been supposed Gaussian, but this does not mean that its un-
known variance is supposed the same for each excitation DOF and sample. Instead, it
is allowed to be different in order to account for important error on specific DOFs and
torque/speed bins. In particular, admitting different variances along the sample dimen-
sion is commonly referred to as Scaled Mixture Of Gaussians (SMOG) modelling [33]360

and it is here necessary to properly propagate the dispersion described by the structure
{F̃}. This being said, note that this increased precision in the model comes at a price:
instead of inferring one global variance for the noise, Ne · Nbins variances have to be
inferred, thus implying an increased computational cost.

Now that the likelihood function has been defined, another ingredient is necessary365

for the application of Bayes rule: the prior PDFs. They are chosen by the analyst and
mirror the knowledge he/she has on the random variables to infer prior to taking into
account of the measurements or input data. One first way to convey information is
the family of distribution. For instance, if no information is available, usually uniform
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distributions are used. On the other hand, if we know that the random variable has pos-370

itive support (as variances for instance), then positive distributions can be used, such
as Gamma or Inverse Gamma. Once the family of distribution is chosen, some more
information can be conveyed by choosing the distribution parameters accordingly. For
instance, the analyst could have an idea of the mean value of the inferred variable even
before the measurements are accounted for. In this case, this knowledge is conveyed375

by fixing the mean of the prior PDF to the analyst’s believed value. On the other hand,
if no information on the prior PDF parameters is available then they can also be con-
sidered as random variables to be inferred through the measurements6. This escalating
approach leads to the so called hierarchical models. They are an interesting way of re-
ducing the influence of the analyst, since the higher he/she injects information in the380

model, the lesser influence it has on the low placed random variables [34]. As a trade
of, the number of random variables to infer increases, as well as the computational cost.

The choice of the prior PDF depends on the analyst and it is thus debatable. As
such, it is often seen as a weak point of Bayesian methods due to the lack of a unique
definition. In simple practical applications however, simple distributions conjugate to385

the likelihood are usually preferred in order to obtain a closed form of the conditional
posterior PDFs of each random variable and so simplify the sampling algorithms. In
this work, the same underlying choice has influenced the definition of the prior PDFs of
the unknown random variables.

In the light of what said above, the estimation problem in Eq. (15) can be condensed390

through the hierarchical model in Fig. 8. The following assumptions have been made
on the prior PDFs:

• The Nc components are a priori modelled as independent identically distributed
stochastic processes, for which Nbins samples are available. Moreover, they are
mutually independent, thus the prior PDF of the components reads:

[Ĉ|θĉ ] =
Nc

∏
i=1

Nbins

∏
s=1

[ĉi,s|θĉ ] , (17)

where θĉ stands for the set of parameters defining the prior distribution of the
components. The choice of each prior distribution [ĉi,s|θĉ ] and corresponding pa-
rameters θĉ determines the kind of factorial analysis performed. If, as in this work,
an independent component analysis is wished then the prior distributions must
not be Gaussian [31]. As a consequence, here Student t distributions are preferred,
since they can be easily implemented in a Gibbs sampler by Scaled Mixture of
Gaussian (SMOG) [33]. Under this assumption, the following prior PDFs are cho-
sen for the components:

∀i = 1, . . . , Nc, ∀s = 1, . . . , Nbins [ĉi,s|ĉJ
i,s, ν2

i,s] ∼ N (ĉJ
i,s, ν2

i,s)

[ν2
i,s|αi, βi] ∼ InvGamma(αi, βi) ,

(18)

where the component prior mean ĉJ
i,s is fixed and chosen to be a prior estimation

as yielded for instance by a deterministic ICA algorithm, while the variance ν2
i,s

6Then, they also need a prior PDF.
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changes for each component i and torque/speed bin s as a random variable fol-395

lowing an Inverse Gamma distribution (noted InvGamma). Fixing the prior to a
good deterministic estimation (here by JADE algorithm [35]) is important to sta-
bilise the SMOG algorithm that otherwise might have too many unknown random
variables.

• The stability of the algorithm is also helped by favouring low values for the vari-
ances ν2

i,s, so that more weight is given to the prior estimation ĉJ
i,s. To this aim, an

exponential distribution is chosen for the parameters αi:

∀i = 1, . . . , Nc, [αi|aα] = aαe−aααi , (19)

where the upright letter aα stands for an hyper-parameter, i.e. a parameter which400

is not inferred but fixed by the analyst according to his/her knowledge. In this
case, the parameter is high in the hierarchy, so that any non “degenerate” value is
adapted and won’t have much of an influence on the inference of the components
distribution.

• Always to help the stability of the algorithm through low variance values, a Gamma
distribution is chosen as prior for the parameters βi:

∀i = 1, . . . , Nc, [βi|aβ, bβ] ∼ Gamma(aβ, bβ) , (20)

where the terms aβ bβ are hyper-parameters chosen by the user, as before. Also405

note that the choice of a Gamma distribution is particularly adapted here since it
is conjugate with respect to the Inverse Gamma distribution of the variances. This
greatly simplifies the application of the Bayes theorem to retrieve the posterior
distributions.

• The inference of the pattern matrix exploits all the Nbins samples (unlike the com-
ponents, where a value for each sample has to be inferred). Therefore, enough
information is available to perform a stable inference of the matrix Λ̂ without the
need for prior information. A non-informative prior can thus be chosen:

[l̂v] ∼ 1 , (21)

with l̂v = vec(Λ̂).410

• The error variances appearing in Eq. (16) are supposed to follow an Inverse
Gamma distribution as:

∀j = 1, . . . , Ne, ∀s = 1, . . . , Nbins, [σ2
f j,s
|a f , b f ] = InvGamma(a f , b f ) . (22)

An Inverse Gamma distribution is adapted here since it is conjugate to the like-
lihood. As a consequence, it makes the posterior computation by Bayes theorem
analytically feasible, while being flexible enough to convey the analyst knowledge
(or lack of it).

Knowing the likelihood and the prior PDFs makes it possible to express the poste-415

rior PDF of the patterns Λ̂, the components Ĉ, and the error variances σ2
f1,1

, . . . , σ2
fNe ,Nbins
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Figure 8: Hierarchical Bayesian model for ICA. Diamonds for hyper-parameters, rounds for parameters,
squares for measurements. F̂ is the measurement set to be decomposed, Ĉ stands for the independent com-
ponents matrix to be inferred, ν2 ∈ RNc×Nbins stands for the variances of the components, αi and βi are the
parameters of the distribution of ν2

i , ∀i = 1, . . . , Nc, Λ̂ is the pattern matrix, σ2
f ∈ RNe×Nbins contains the vari-

ances of the noise R̂, ĈJ is the estimation of the components made by JADE ICA used as hyper-parameter for
Ĉ, the a and b in the diamonds are the others hyper-parameters chosen by the user.

in Eq. (15) (see Fig. 8 and Appendix B for the corresponding equations). In this work,
the exploration of the posterior PDF is performed by means of Gibbs sampling [36]. Be-
longing to the MCMC methods, Gibbs sampling is an iterative algorithm that at each
iteration yields a sample out of the posterior distribution of only one unknown random420

variable given all the others fixed at their most recent sampled value. After a number
of iterations high enough, convergence toward the joint posterior distribution is en-
sured and can be for instance checked using the Gelman & Rubin convergence criterion
[37]. Gibbs sampling is preferred here thanks to its fast convergence when it comes to
hierarchical models [34]. Indeed, Knuth and Djafari [15, 16] showed that the decompo-425

sition in independent component can be formulated through a hierarchical model in the
Bayesian framework. The algorithm is detailed in Appendix C.

One of the outputs of the algorithm is the posterior distribution of the component
matrix Ĉ described through its Gibbs samples as {Ĉ} = {Ĉ(1), . . . , Ĉ(Nrun)} where
Nrun is the number of converged Gibbs iterations and ∀r ∈ {1, . . . , Nrun}, Ĉ(r) ∈430

CNc×Nbins contains one sample of the evolution along the bins of the independent com-
ponents. The other principal output is the posterior distribution of the mixing ma-
trix Λ̂ described through its Gibbs samples as {Λ̂} = {Λ̂(1), . . . , Λ̂(Nrun)} where ∀r ∈
{1, . . . , Nrun}, Λ̂(r) ∈ CNe×Nc contains the patterns corresponding to Ĉ(r).

If needed, any point estimate can be chosen out of the posterior distributions. For435

instance, the interpretations hereafter are performed using the mean as point estimate
for the components and patterns.

3.1.5. Interpreting the results: components vs. patterns
Fig. 9 shows the relative contribution of each component to the acoustic level and

it appears that ICA behaves as predicted: a sparse behaviour in the operating condi-440
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tions domain O is visible, since each component appears to be dominant in a different
torque/speed region. This result has a remarkable engineering value when the compo-
nents are analysed along the corresponding patterns, since each pattern condenses the
behaviour of the excitation over the OC region highlighted by the component.

For instance, Fig. 10 shows in parallel the third component and its pattern. It appears445

to target the high torque scenario, while the pattern shows an important load compo-
nent at the wheels along the X direction. Physically, this can be explained knowing that
high torque scenarios imply high torque ripple at the wheels, which is in turn balanced
by a load along the X direction at the wheel centre. Thus, not only the proposed ap-
proach finds a well known remarkable excitation pattern in a completely unsupervised450

way, but it also clearly defines the region of dominance of this excitation.
Another remarkable example is shown in Fig. 11, which shows the sixth component

and its pattern. The component seems to target high engine speed scenarios, regardless
of the torque. Usually in automotive engineering such a region is considered dominated
by the pitch engine movement. Indeed, the pattern highlights a strong excitation at the455

right engine mount along the Z direction. As before, the proposed method allows a
unique definition of the dominance region.

Finally, a definite advantage of the Bayesian formulation is to take into account the
dispersion in each bin described in the structure {F̃}. The posterior distributions of the
mixing matrix Λ̂ as well as the components Ĉ mirror the content of each torque/speed460

bin. For instance, Fig. 12 shows the acoustic level at the driver’s ears along the active
torque/speed bins. As it can be noticed, the dispersion of the recomposed level at the
end of the probabilistic factor analysis (grey area) encompasses well the level recom-
posed directly from the loads F (red area), whose dispersion is only due to the presence
of multiple occurrences inside the torque/speed bins. Note that the grey area in Fig.465

12 mirrors not only the multiplicity of occurrences in a bin, but also the reduction and
corresponding modelling error due to the choice of only Nc independent components.

3.2. Modelling the components
The analysis proposed in the previous section is already valuable as a standalone

tool to understand the most common loading cases during the vehicle life and act on470

them if needed, by targeting only specific excitation DOFs. However, it becomes even
more interesting in a modelling context since it separates DOFs-dependent patterns and
OC-dependent components. As a consequence, to achieve a model of the loads, it is
sufficient to model only the Nc components instead of modelling each of the Ne excita-
tion DOFs. The modelled components are then multiplied by the patterns to obtain the475

loads.
The aim of this section is to present a modelling approach able to capture the evo-

lution of the components with respect to the operating conditions and to propagate the
dispersion described by the samples {Ĉ} of the marginal posterior distribution of the
components Ĉ. To do this, a Bayesian regression on a radial basis is proposed hereafter.480
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Figure 9: The relative contribution to the second harmonic h2 of the acoustic level inside the car of Nc = 7
(a-g) extracted independent components with their evolution in the engine torque/speed plane.
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Figure 10: (a) Relative contribution of component (c) in Fig. 9 to the acoustic level inside the car. (b) Corre-
sponding pattern. The ellipses show the magnitude, while the arrows the phase relations among the excitation
DOFs in a car.
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Figure 11: (a) Relative contribution of component (f) in Fig. 9 to the acoustic level inside the car. (b) Corre-
sponding pattern. The ellipses show the magnitude, while the arrows the phase relations among the excitation
DOFs in a car.
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Figure 12: Acoustic level at the driver’s ears (h2 harmonic) along the active engine torque/speed bins. Com-
parison between the recomposition through the estimated loads F (red area) and the one obtained after reduc-
tion and analysis of the loads (grey area, black dashed median).

3.2.1. Radial basis networks
Let Ĉ ∈ CNc×Nbins be a point estimator of the components Ĉ (for instance the mean).

Then two real matrices can be defined as:

Ĉmod = real(ln(Ĉ))

Ĉph = imag(ln(Ĉ)) ,
(23)

where Ĉmod ∈ RNc×Nbins stores the natural logarithm of the components magnitude and
Ĉph ∈ RNc×Nbins stores the phase. Then, finding a model for the complex components
means finding one model for the magnitude and one for the phase. For both, the kind of
model proposed is the same, so that for simplicity only the magnitude case is detailed.485

Let Ĉmod
(r) be the continuous form of Ĉmod in its evolution on the manifold O

′
. The

model chosen for Ĉmod
(r) reads:

Ĉmod
(r) =

Nrb

∑
b=1

wbφ(||r− µb||,σ2
b) , (24)

where φ(||r− µb||,σ2
b) is a radial basis function, i.e. a function symmetric with respect

to a center µb and characterized by a spread σ2
b. This kind of model is called radial

basis function (RBF) model and it aims at decomposing the target as a sum of weighted
(by weights wb) radial functions. It has been developed first in 1988 by Broomhead and
Lowe [17] as a way of performing a simple non-linear modelling, which could approach490
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as precisely as desired a target function. Moreover, through the spread parameter, one
can tune the regularization of the model, making this approach quite flexible [38].

The identification of a RBF model consists in finding the optimal number, position
and spread of the radial functions (Nrb, µb and σ2

b) and the weights wb with respect to an
arbitrary approximation goal and regularization coefficient chosen by the user. In the495

early days of machine computing, the identification was performed in a sequential way
[39]: first an unsupervised step identified Nrb, µb and σ2

b in order to cover the manifold
in the best way possible; then a simple regression between the target function and the
computed basis yielded the weights wb. This simple although not optimal approach
explains the early interest and wide use of this approach. Nowadays, it is inscribed500

in the appealing neural networks context, where it can be considered as a basic one
hidden layer network. With the increased computational power at disposal, commercial
software propose ready-to-use libraries to identify RBF models.

3.2.2. Bayesian take at RBF models
In this work, the RBF model is chosen as the simplest non-linear model. It is con-505

sidered that linearity of the component magnitudes Ĉmod with respect to the OC is not
realistic and a wider, but still easy to use model is adopted. Moreover, the model identi-
fication is inscribed in the Bayesian context. The approach proposed here is hybrid: the
radial functions parameters (Nrb, µb and σ2

b) are obtained by optimization using a com-
mercial software, then the weight coefficients wb are considered as random variables510

wb, whose PDF is inferred by Bayesian regression.
As for the factor analysis, also regression problems can be tackled in a Bayesian

framework. In the proposed application, the problem can be described as:

Ĉ = WX + E (25)

where a sample Ĉ of the predicted random variable Ĉ ∈ RNc×Nbins is available, as well
as the measurement of the corresponding predictor variables X ∈ RNrb×Nbins . The aim of
the inference is the posterior distribution of the weights W ∈ RNc×Nrb , their parameters
and the error E variance.515

Based on Eq. (25), the likelihood reads:

[ĉv|X,W, σ2
c1,1

, . . . , σ2
cNc ,Nbins

] ∼ N


ĉv,




σ2
c1,1

. . .
σ2

cNc ,Nbins





 , (26)

where ĉv is a vectorization of Ĉ while ĉv a vectorization of product WX. Moreover, note
that the variance is supposed to change for each engine torque/speed bin, making this
kind of regression a SMOG model [8, 33].

As before, in order to use the Bayes theorem, some prior distributions have to be
defined. In this case of application, the hierarchical model is shown in Fig. 13 and the520

following choices have been made for the prior PDFs:

• The modelling error variances are supposed to be different for each component
and for each engine torque/speed bin. They are also supposed to follow an In-
verse Gamma PDF as:

∀i = 1, . . . , Nc, ∀s = 1, . . . , Nbins, [σ2
ci,s
|αc,βc] ∼ InvGamma(αc,βc) . (27)
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Ĉ

σ2
c

αw

βw

σ2
w

αc

βc

W
0

X

Figure 13: Hierarchical Bayesian model for the regression. Diamonds for hyper-parameters, rounds for pa-
rameters, squares for measurements. Ĉ is the predicted variable sample, while X stands for the predictor
variables sample. W is the weight matrix to infer, whose prior mean is 0 and variance σ2

w ∈ RNc×Nrb . The
hyper-parameters of σ2

w are chosen by the user and noted αw and βw. σ2
c ∈ RNc×Nbins contains the variances

of the error E, which are supposed to follow Inverse Gamma distributions of hyper-parameters αc and βc.

The choice for the Inverse Gamma PDF is dictated by practicality. The terms αc
and βc are hyper-parameters chosen by the analyst.

• The weights are supposed to follow a Gaussian PDF as:

[wv|σ2
w1,1

, . . . , σ2
wNc ,Nrb

] ∼ N


0,




σ2
w1,1

. . .
σ2

wNc ,Nrb







∀i = 1, . . . , Nc, ∀b = 1, . . . , Nrb, [σ2
wi,b
|αw,βw] ∼ InvGamma(αw,βw) ,

(28)

where wv is a vectorization of matrix W.

Note that a null prior mean is supposed here in order to help the sparsity of the525

model. Otherwise, the choice of the Gaussian PDF (and Inverse Gamma PDF
for the variances) is dictated by practicality to lead to a fast and stable sampling
algorithm.

Having defined the likelihood and the prior distributions, again Gibbs sampling can be
used to obtain a collection of samples out of the target posterior distribution. The algo-530

rithm is detailed in Appendix D. The posterior computations leading to the algorithm
are very similar if not simpler than those in Appendix B, therefore they are not detailed
in this work.

The Bayesian approach is here necessary to propagate the dispersion of Ĉ described
by all the samples {Ĉ}. Indeed, instead of using Ĉmod as input data, at each iteration of535

the Gibbs sampler one single occurrence of the components is randomly drawn follow-
ing a uniform distribution out of the population {Ĉ}. After a number high enough of
iterations, the measurement space described by {Ĉ}will have been visited and the pos-
terior distribution of the weights W will mirror the component dispersion. For instance,
Fig. 14 compares the population of the sixth component magnitude to the RBF model540
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Figure 14: Magnitude of the sixth component along the active engine torque/speed bins (in natural logarith-
mic scale). Comparison between the population in {Ĉ} (red area) and the one simulated through the RBF
model (grey area, black dashed mean).

prediction. It can be noticed that the prediction encompasses the input samples, with a
dispersion that is increased since it also mirrors the modelling error.

The same approach can be applied to the components phase whose point estimator
has been previously noted Ĉph. Fig. 15 compares the population of the sixth component
phase to the RBF model prediction. As it can be seen, the 95% credible interval of the545

prediction is often larger than 2π. This implies a phase virtually unpredictable as a
function of the operating conditions7. As a consequence, the choice has been made to
focus on and model only the magnitude of the components. When synthesizing and
predicting the loads and the acoustic level as a function of the operating conditions, a
random phase is assigned to the components, while keeping all phase relations in the550

patterns and FRFs. The effects of such an assumption on the acoustic level prediction are
pointed out in the next section.

At this point, the wished useful reduced model for the loads has been built. From an
operating condition input, the components can be simulated, then they are multiplied
by the OC-independent patterns and FRFs in order to obtain a prediction of the response555

of the vehicle. To give more details about this synthesis process and verify its feasibility
is the aim of the next section.

4. Model exploitation

4.1. Discussion on the obtained meta-model
The processing in the previous sections reduces the identified loads F to F̃ choosing560

wisely the components, then applies a change of variable to F̃ in order to analyse it in the

7With this kind of model and component dispersion.
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Figure 15: Phase of the sixth component along the active engine torque/speed bins. Comparison between the
population in {Ĉ} (red area) and the one simulated through the RBF model (grey area, black dashed mean).

engine torque/speed plane. This leads to the structure {F̃} that stores all the reduced
load samples in torque/speed bins. Afterwards, a modified Bayesian ICA is performed
and the marginal posterior distributions for the components Ĉ and for the patterns Λ̂
are obtained. Finally, the components are modelled as a function of the OCs.565

Note that none of the previous steps is truly “reversible”:

• The data reduction by definition trades a decreased dimension of the data de-
scription for the appearance of a random error. The statistical properties of the
error can be inferred, but the exact reconstruction of the input signal is impossible.
Normally this is completely accepted since the measured data itself is polluted by570

noise, so that a good reduction processing is supposed to keep the fundamental
characteristics of the input and to interpret the rest as noise. Thus, it reduces the
data weight and also delivers a “clean” version of the signal.

• The change of variable, due to the absence of a bijective map, prevents a signal in
the torque/speed-domain to be changed back to the exact previous signal in the575

time-domain. Once multiple time samples are put in the same torque/speed bin,
the time information is not kept and the exact time at which a sample has been
measured cannot be traced back.

• The Bayesian ICA does not process all the samples in one single bin one by one,
but at each iteration draws randomly one sample. The correspondence between580

the samples in the bins and the iterations at which they have been drawn is not
available and it is not of interest. The information that is propagated by the
Bayesian algorithm is only the dispersion inside each bin.

• Modelling the components as a function of the operating conditions yields an
approximate simulation, whose error is known and can be propagated. More-585

over, as shown previously, this error prevents the model on the phase to be useful.
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Therefore, only the magnitude of the independent components is modelled. These
losses of information prevent the exact components to be retrieved.

This being said, the proposed model has not the ambition of recomposing the exact
acoustic level measured inside the cabin, but it is more intended to provide an over-590

all broad prediction of the noise level with a well determined credible interval, which
accounts for all loss of information in the modelling process.

4.2. Synthesis steps
The forward synthesis steps are, thus, the following:

1. Simulate a sample of the operating conditions O following a target client profile8.595

One simple way of doing this is to use slice sampling [40].

2. Use the Bayesian regression model to obtain the components magnitude from the
operating conditions. When simulating the components a Monte Carlo approach
can be performed to propagate the uncertainty in the model identification to the
components. Then, a random phase is considered for the amplitudes to get a600

sample {Ĉ}(synth) of components related to the input OCs.

3. The components are multiplied by the patterns to yield the loads. By Monte Carlo,
random samples out of {Ĉ}(synth) are multiplied by random samples out of {Λ̂}
to yield samples of the harmonic loads {F}(synth).

4. The loads are multiplied by the transfer function H. If the latter are considered605

as deterministic, then every sample in {F}(synth) is simply multiplied by the FRFs
and a population of the vehicle response level {U}(synth) is obtained. If they are
stochastic - obtained for instance by a non-parametric stochastic finite element ap-
proach - and described by a set of samples {H}, again Monte Carlo techniques can
be used to propagate both the dispersion of the FRFs and the loads to {U}(synth).610

5. {U}(synth) is the population of the vehicle response representative of the client
profile and of the loads and FRFs uncertainty. From these samples any statistical
analysis can be performed.

Remark that important approximations are made in steps 2 and 3. In step 2, an ar-
bitrary random phase is applied to the component amplitudes. Note that out of the615

Bayesian ICA step the components have a defined phase, however resorting to a ran-
dom phase is justified in the following modelling step by the need of a simple model
to be used industrially: such a simple model is not able to simulate the evolution of the
component phases. This may seem an important limitation specific to this work, but it is
in fact quite common. For instance, in the mid-high frequency domain the phase is very620

hard to analyse and one is in practice led to focus only on the magnitude. This work
targets a lower frequency band, but, as it will be shown in the application, assuming a
random phase for the components still does not sensibly worsen the load synthesis.

8In the automotive industry, usually client profiles are described through a joint distribution of the most
important driving parameters (such as engine torque and speed and vehicle speed).
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In step 3, the modelled components are multiplied by the patterns and a Monte Carlo
approach is proposed as a way of propagating the uncertainty described in {Ĉ}(synth)

625

and {Λ̂}. Note that this approach assumes the components Ĉ(synth) and the patterns
Λ̂ to be independent. Out of the Bayesian ICA step, this is clearly not the case: they
are classically defined by their joint posterior distribution9. However, the simulated
components {Ĉ}(synth) come from a RBF modelling of the components amplitude with
a random phase, therefore any kind of dependence with respect to the pattern samples is630

assumed lost. The effects of these assumptions are pointed out in the application below.

4.3. Application
To validate the meta-model, the measured acoustic level at the driver’s ear during

the driving test is recomposed using the identified model. Fig. 17 shows the comparison
between the measurement and the simulation for each modelling step. It must be noted635

that in Figs. 17(b-c) the measurement and the model are not in the same domain. The
measurement is in the time domain, whereas the simulation comes from components
defined on the engine torque/speed space. However, since the time trajectory of the
operating conditions is known (in matrix O), the torque/speed bin visited at each time
can be obtained and thus the simulation plotted in the time domain.640

More in general, it is clear that the further one goes with the model the more the
uncertainty increases. This is well testified through the credible intervals, here unilateral
upper 95% credible intervals10. Fig. 18 compares specifically the noise level prediction
achieved after the Bayesian ICA, keeping the phase of the components (green lines) or
using a random phase (blue lines). It is interesting to notice that the performance of the645

mean prediction is globally unchanged, as well as the credible interval which widens
just locally to mirror the loss of information.

Finally, a scalar indicator can be used to condense the information of the prediction
and convey an idea of the vehicle performance. The indicator proposed here is the
equivalent noise level, defined as:

Lho ,eq = 10 · log10

(
1
N

N

∑
n=1

|pho ,n|2
p2

0

)
, (29)

where pho ,n ∈ CNo is the nth time sample of the ho harmonic acoustic pressure at the No
microphones inside the cabin (measured or simulated).

Moreover, as a whole population of acoustic levels can be simulated from the in-650

put OCs, the same can be done for a population of indicators {Lho ,eq}. This allows
the median equivalent level prediction as well as the inherent credible intervals to be
computed. Table 2 resumes the equivalent level measurement and predictions at four
microphones inside the vehicle for the second harmonic in the real driving test.

9Which is different from the product of their marginal posterior distributions. Behaviour that is implied
by the independence.

10In engineering applications one is more concerned with the upper limit of a prediction since it may cause
problems with respect to the clients perception of quality.
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Measured Lh2,eq (dB ref. p0) Simulated Lh2,eq (dB ref. p0)
Median Upper 95% credible interval

Rear right 86.78 86.85 95.15
Rear left 87.03 87.69 95.99

Front right 86.82 88.04 96.79
Front left 85.87 87.82 96.55

Table 2: The equivalent level Lh2 ,eq at the 4 microphones inside the vehicle cabin: measured and simulated by
the model.

It can be noticed that the gap between the median predicted level and the mea-655

sured one is acceptably low (maximum 2 dB), which means that the median is a per-
tinent point estimate. However, as expected the wide credible intervals testify for the
several simplifications adopted in the model identification. If a more precise model is
searched, one can skip some of the steps that introduce uncertainties (such as the reduc-
tion) and/or use a more advanced way of modelling the components.660

Figure 16: Engine speed and torque corresponding to the loads processed in this paper.
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Figure 17: Acoustic level (h2 harmonic) inside the car at the driver’s ears. In solid blue line the measured
level. In red (a) the recomposition through the identified loads, in green (b) the recomposition through the
independent components and in brown (c) the recomposition through the radial basis model of the compo-
nents. In the three figures the median is in solid line and the 95% upper credible interval in dotted line. The
curves are smoothed over 1 s.
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Figure 18: Acoustic level (h2 harmonic) at the driver’s ear. Comparison between the recomposition through
the components magnitude and phase (in green) and the one through the components magnitude and a
random phase (in dark blue). The medians are in solid line and the 95% upper credible intervals in dotted
line. The curves are smoothed over 1 s.

5. Conclusion

In order to achieve the prediction of booming noise performance, this paper intro-
duced a meta-model of the harmonic excitation sources in a vehicle. Unlike what is
proposed in the literature to the authors knowledge, the proposed approach has the
advantage to cover most of the vehicle usage conditions. This means that the acoustic665

quality can now be judged looking at entire client profiles, rather than only at “extreme”
scenarios. This will allow a better optimised vehicle design leading to a reduction of
production cost and/or an increased comfort for the drivers and passengers.

To build such a meta-model, Independent Component Analysis has been chosen as
way to perform data reduction. Of all possible approaches, ICA has the peculiarity of670

yielding sparse components. This property has been used to achieve the complemen-
tary (but nonetheless interesting) result of defining excitation patterns specific to OC
regions. These patterns have been demonstrated to be useful for acoustic validation in
automotive industry.

Besides, reduction and modelling approaches intrinsically imply modelling errors.675

In order to understand, infer and propagate such errors in the meta-model, each algo-
rithm has been developed in the Bayesian framework. Even if it may seem that this
choice increases the complexity, the authors believe that the Bayesian framework is the
most suited to aforementioned tasks, making it finally the “simplest” approach.

Finally, the meta-model can be extended to account for wide-band excitations and,680

thus, open to an even larger scope of applications, ranging from vehicle rolling noise to,
for instance, drones vibration. More generally, the main aim of the model is to target
systems whose operating conditions are spread, nonstationary, and uncontrolled.
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Appendix A. Usual PDFs

Appendix A.1. Multivariate real normal distribution690

The multivariate normal distribution of a N-dimensional random vector x ∈ RN×1

is noted:
[x] ∼ N (µ, Σ) , (A.1)

where µ is the N-dimensional mean vector

µ = E{x} (A.2)

and Σ is the N × N covariance matrix

Σ = E{(x − µ)(x − µ)t} , (A.3)

with E{•} the expected value operator and •t the transpose operator.
In the non-degenerate case (i.e. Σ is definite positive), the PDF of the multivariate real
normal distribution is written:

[x|µ, Σ] =
1

(2π)N/2det
1
2 Σ

e−
1
2 (x−µ)tΣ−1(x−µ) , (A.4)

where det • stand for the determinant of a matrix.

Appendix A.2. Gamma distribution
The Gamma distribution can be parametrized using the shape parameter α and the

rate parameter β. A random variable x which follows a Gamma distribution is noted:

[x] ∼ Gamma(α,β) . (A.5)

The corresponding PDF is written as:

[x|α,β] =
βα

Γ(α)
xα−1e−βx , (A.6)

where Γ(•) stands for the Gamma function. Its support is R+.

Appendix A.3. Inverse-Gamma distribution
The Inverse-Gamma distribution can be parametrized using the shape parameter

α and the rate parameter β. A random variable x which follows an Inverse-Gamma
distribution is noted:

[x] ∼ InvGamma(α,β) . (A.7)
The corresponding PDF is written as:

[x|α,β] =
βα

Γ(α)
x−α−1e−

β
x . (A.8)

Its support is R+. If [x] ∼ Gamma(α,β) then [1/x] ∼ InvGamma(α,β).695

33

                  



Appendix A.4. Exponential distribution
The exponential distribution is parametrized using a rate parameter λ. A random

variable x which follows an Exponential distribution is noted:

[x] ∼ Exp(λ) . (A.9)

The corresponding PDF is written as:

[x|λ] =
{
λe−λx, x ≥ 0
0, x < 0

. (A.10)

Its support is R+. If [x] ∼ Exp(λ) then [x] ∼ Gamma(1, λ).

Appendix A.5. Multivariate complex normal distribution
If the complex normal random vector x is improper, than the PDF is written:

[x|µ̆x, Σ̆xx] =
1

πndet
1
2 Σ̆xx

exp
{
−1

2
(x̆− µ̆x)

HΣ̆−1
xx (x̆− µ̆x)

}
, (A.11)

where the breve mark stands for the augmented versions the random variable x̆, the
mean µ̆ and the covariance Σ̆xx.
If the complex normal random vector x is proper, than the PDF is written:

[x|µx, Σxx] =
1

πndetΣxx
exp

{
−(x− µx)

HΣ−1
xx (x− µx)

}
, (A.12)

where µx and Σxx are respectively the mean and the covariance of x.

Appendix B. Posterior PDF computation700

In what follows, the details about the computation of the Bayesian posterior distri-
butions for the Bayesian Independent Component Analysis are proposed.

The posterior PDFs at the rth iteration of the Gibbs sampling algorithm are obtained
as follows:

• Posterior distribution of σ2
f j,s

, ∀j ∈ [1, . . . , Ne], ∀s ∈ [1, . . . , Nbins]:

Likelihood : [f̂j,s|l̂j, ĉs, σ2
f j,s
] ∼ N (l̂jĉs, σ2

f j,s
) .

Prior : [σ2
f j,s
] ∼ InvGamma(α f ,β f ) .

(B.1)
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[σ2
f j,s
|rest] ∝ [f̂j,s|l̂(r−1)

j , ĉ(r−1)
s , σ2

f j,s
][σ2

f j,s
]

∝ N (l̂(r−1)
j ĉ(r−1)

s , σ2
f j,s
) · InvGamma(α f ,β f )

∝
1

πσ2
f j,s

exp


− 1

σ2
f j,s

(f̂j,s − l̂(r−1)
j ĉ(r−1)

s )H(f̂j,s − l̂(r−1)
j ĉ(r−1)

s )


 · · ·

×
β
α f
f

Γ(α f )
(σ2

f j,s
)−α f−1e

−
β f

σ2
f j,s

∝ (σ2
f j,s
)−α f−2exp


− 1

σ2
f j,s

(
(f̂j,s − l̂(r−1)

j ĉ(r−1)
s )H(f̂j,s − l̂(r−1)

j ĉ(r−1)
s ) + β f

)

 ,

Note that in Eq. (B.2) the only random term is the variance σ2
f j,s

. In particular,705

the equation is identified to be an Inverse-Gamma distribution with parameters
α′f = α f + 1 and β′f = (f̂j,s − l̂(r−1)

j ĉ(r−1)
s )H(f̂j,s − l̂(r−1)

j ĉ(r−1)
s ) + β f .

• Posterior distribution of l̂t
j , ∀j ∈ [1, . . . , Ne]:

Likelihood : [f̂t
j |l̂t

j , Ĉ, σ2
f j,1

, . . . , σ2
f j,Nbins

] ∼ N ((l̂jĈ)
t,Σ f ) .

Prior : [l̂j] ∝ 1 .
(B.2)

[l̂t
j |rest] ∝ [f̂t

j |l̂t
j , Ĉ(r−1), Σ f ]

∝ N ((l̂jĈ)
t, Σ f )

∝
1

πNbins det(Σ f )
exp

(
−(f̂t

j − (l̂jĈ(r−1))t)HΣ−1
f (f̂t

j − (l̂jĈ(r−1))t)
)

∝ exp
(
(−l̂∗j Ĉ(r−1) ∗Σ−1

f Ĉ(r−1) tl̂t
j + f̂∗j Σ−1

f Ĉ(r−1) tl̂t
j + l̂∗j Ĉ(r−1) ∗Σ−1

f f̂t
j)
)

.

(B.3)

A Multivariate Gaussian distribution for a random variable xt with mean m and
covariance matrix S would lead to:

[xt|m, S] ∝ exp
(
−x∗S−1xt + x∗S−1m + mHS−1xt

)
. (B.4)

Eqs. (B.3) and (B.4) have the same form and by identification it can be recognised
that the posterior distribution of l̂t

j is a Multivariate Gaussian distribution with
parameters:

µlj
= Σlj

Ĉ(r−1) ∗Σ−1
f f̂t

j

Σ−1
lj

= (Ĉ(r−1)Σ−1
f Ĉ(r−1) H)∗ .

(B.5)

It is reminded that has defined in the algorithm, here Σ f = diag(σ2 (r)
f j,1

, . . . ,σ2 (r)
f j,Nbins

).
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• To prove the posterior PDF computation of ĉi,s, the model in Eq. (15) has to be
rewritten for all s ∈ {1, . . . , Nbins} as:

f̂s = ĉi,sλ̂i + ∑
k,i

ĉk,sλ̂k + rs

λ̂
H
i f̂s

λ̂
H
i λ̂i

= ĉi,s + ∑
k,i

ĉk,s
λ̂

H
i λ̂k

λ̂
H
i λ̂i

ĉk,s +
λ̂

H
i rs

λ̂i
H

λ̂i

λ̂
H
i f̂s

λ̂
H
i λ̂i

−∑
k,i

ĉk,s
λ̂

H
i λ̂k

λ̂
H
i λ̂i

ĉk,s = ĉi,s +
λ̂

H
i rn

λ̂
H
i λ̂i

.

(B.6)

The left hand term is considered as a random variable and noted f̂i|−i,s and condi-
tionally to the other parameters it follows a Gaussian distribution of mean ĉi,s and

variance σ2
i,s =

λ̂
(r) H
i S f λ̂

(r)
i∥∥∥λ̂(r)

i

∥∥∥
4

2

, with S f as defined in the algorithm. Since the inference

targets only ĉi,s, the component terms ĉk,s for k , i as well as the matrix Λ̂ are fixed

to their previous sample ĉ(r−1)
k,s and Λ̂(r). A sample of f̂i|−i,s is thus available and

noted f̂i|−i,s.
As a consequence, the posterior distribution of ĉi,s, ∀s = 1, . . . , Nbins and ∀i =
1, . . . , Nc is:

Likelihood : [f̂i|−i,s|ĉi,s, σ2
i,s] ∼ N (ĉi,s, σ2

i,s) .

Prior : [ĉi,s|ĉJ
i,s, ν2

i,s] ∼ N (ĉJ
i,s, ν2

i,s) .
(B.7)

[ĉi,s|rest] ∝ [f̂i|−i,s|ĉi,s,σ
2 (r)
i,s ] · [ĉi,s|ĉJ

i,s,ν
2 (r−1)
i,s ]

∝ N (ĉi,s, σ2
i,s) · N (ĉJ

i,s, νi,s)

∝
1

πσ
2 (r)
i,s

exp


− 1

σ
2 (r)
i,s

(f̂i|−i,s − ĉi,s)
∗(f̂i|−i,s − ĉi,s)


 ·

1

πν
2 (r−1)
i,s

exp


− 1

ν
2 (r−1)
i,s

(ĉi,s − ĉJ
i,s)
∗(ĉi,s − ĉJ

i,s)




∝ exp


−


 1

σ
2 (r)
i,s

+
1

ν
2 (r−1)
i,s


 ĉ∗i,s ĉi,s + ĉ∗i,s


 f̂i|−i,s

σ
2 (r)
i,s

+
ĉJ

i,s

ν
2 (r−1)
i,s




 ·

exp




 f̂∗i|−i,s

σ
2 (r)
i,s

+
ĉJ ∗

i,s

ν
2 (r−1)
i,s


 ĉi,s


 .

(B.8)

A Gaussian distribution for a random variable x with mean m and covariance s2

would lead to:

[x|m, s2] ∝ exp
(
− 1

s2x
∗x +

1
s2x

∗m +
1
s2 m∗x

)
. (B.9)
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Eqs. (B.8) and (B.9) have the same form and by identification it can be recognised
that the posterior distribution of ĉi,s is a Gaussian distribution with parameters:

µci,s = σ2
ci,s


 f̂i|−i,s

σ
2 (r)
i,s

+
ĉJ

i,s

ν
2 (r−1)
i,s




σ2
ci,s

=


 1

σ
2 (r)
i,s

+
1

ν
2 (r−1)
i,s



−1

.

(B.10)

• Posterior distribution of ν2
i,s, ∀i = 1, . . . , Nc and ∀s = 1, . . . , Nbins:

Likelihood : [ĉ(r)i,s |ĉ
J
i,s, ν2

i,s] ∼ N (ĉJ
i,s, ν2

i,s) .

Prior : [ν2
i,s] ∼ InvGamma(αi, βi) .

(B.11)

[ν2
i,s|rest] ∝ [ĉ(r)i,s |ĉ

J
i,s, ν2

i,s][ν
2
i,s]

∝ N (ĉJ
i,s, ν2

i,s) · InvGamma(αi, βi)

∝
1

(2πν2
i,s)

1/2
exp

(
− 1

ν2
i,s
(ĉ(r)i,s − ĉJ

i,s)
H(ĉ(r)i,s − ĉJ

i,s)

)
· · ·

× β
(r−1)α(r−1)

i
i

Γ(α(r−1)
i )

(ν2
i,s)
−α(r−1)

i −1e
−β

(r−1)
i
ν2
i,s

∝ (ν2
i,s)
−α(r−1)

i −2exp

(
− 1

ν2
i,s

(
(ĉ(r)i,s − ĉJ

i,s)
H(ĉ(r)i,s − ĉJ

i,s) + β
(r−1)
i

))
.

This corresponds to an Inverse-Gamma distribution with parameters α′i = α
(r−1)
i +

1 and β′i = (ĉ(r)i,s − ĉJ
i,s)

H(ĉ(r)i,s − ĉJ
i,s) + β

(r−1)
i .710

• Posterior distribution of αi, ∀i = 1, . . . , Nc:

Likelihood : [ν
2 (r)
i,: |αi, βi] ∼

Nbins

∏
s=1

[ν
2 (r)
i,s |αi, βi]

∼
Nbins

∏
s=1

InvGamma(αi, βi) .

Prior : [αi] ∼ Exp(aα) .

(B.12)
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[αi|rest] ∝ [ν
2 (r)
i,: |αi,β

(r−1)
i ][αi]

∝
Nbins

∏
s=1

InvGamma
β
(r−1)
i

(αi,βi) · Exp(aα)

∝
Nbins

∏
s=1

β
(r−1) αi
i
Γ(αi)

(ν
2 (r)
i,s )−αi−1exp


−β

(r−1)
i

ν
2 (r)
i,s


 aαexp (−aααi)

∝ exp


−Nbins ln (Γ(αi)) +




Nbins

∑
s=1

ln


β

(r−1)
i

ν
2 (r)
i,s


− aα


 αi


 .

(B.13)

This form cannot be recognised as a usual distribution. However, it can be sam-
pled using sampling algorithms such as Metropolis-Hasting [41] or slice sampling
[42].

• Posterior distribution of βi, ∀i = 1, . . . , Nc:

Likelihood : [ν
2 (r)
i,: |αi, βi] ∼

Nbins

∏
s=1

[ν
2 (r)
i,s |αi, βi]

∼
Nbins

∏
s=1

InvGamma(αi, βi) .

Prior : [βi] ∼ Gamma(aβ, bβ) .

(B.14)

[βi|rest] ∝ [ν
2 (r)
i,: |α

(r)
i , βi][βi]

∝
Nbins

∏
s=1

InvGamma
α
(r)
i
(αi, βi) ·Gamma(aβ, bβ)

∝
Nbins

∏
s=1

β
α
(r)
i

i

Γ(α(r)
i )

(ν
2 (r)
i,s )−α

(r)
i −1exp


− βi

ν
2 (r)
i,s


 b

aβ

β

Γ(aβ)
β

aβ−1
i exp

(
−bββi

)

∝ β
aβ−1+Nbinsα

(r)
i

i exp


−βi


bβ +

Nbins

∑
s=1

1

ν
2 (r)
i,s




 .

(B.15)

This corresponds to a Gamma distribution with parameters a′β = aβ + Nbins · α(r)
i

and b′β = bβ + ∑Nbins
s=1

1
ν

2 (r)
i,s

.715

Appendix C. Bayesian ICA Algorithm

In what follows the notation •H stands for the Hermitian transpose, •t for the matrix
transpose, •∗ for the complex conjugate and “rest” stands for all the random variables
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but for the one whose posterior PDF is being expressed. The samples of the random
variables are noted with upright letters, such as c(r) or α(r)

i , with r standing for the rth
720

sample in the iterative algorithm. For the analytic form of usual PDFs refer to Appendix
A, whereas for the computations leading to this algorithm refer to Appendix B.

The proposed Bayesian ICA consists of 10 steps:

1. Initialize the values of Λ̂(0), Ĉ(0), ∀i = 1, . . . , Nc and ∀s = 1, . . . , Nbins, ν
2 (0)
i,s and

∀i = 1, . . . , Nc, β
(0)
i and α

(0)
i .725

For all r = 1, . . . , Nrun, do:

2. Generate an input F̂(r) out of the structure {F̃}. It can be generated as:

∀s = 1, . . . , Nbins, F̂(r)
:,s = F̃(s)

:,z(r)s
, (C.1)

where z(r)s is a sample from a discrete uniform distribution defined on {1, . . . , N(s)
s }.

3. ∀j = 1, . . . , Ne, ∀s = 1, . . . , Nbins, draw a sample σ2 (r)
f j,s

from [σ2
f j,s
|rest] ∼ InvGamma(α′f ,β′f )

with

α′f = α f + 1

β′f = β f + |f̂(r)j,s − l̂(r−1)
j ĉ(r−1)

s |2 ,
(C.2)

where f̂(r)j,s is a term out of the matrix F̂(r), while l̂(r−1)
j is the jth row of the pattern

matrix Λ̂(r−1) and ĉ(r−1)
s the sth column of the component matrix Ĉ(r−1).

4. ∀j ∈ [1, . . . , Ne], draw a sample l̂t (r)
j from [l̂t

j |rest] ∼ N (µlj
, Σlj

) with

µlj
= Σlj

Ĉ(r−1) ∗Σ−1
f f̂(r) t

j

Σlj
= ((Ĉ(r−1)Σ−1

f Ĉ(r−1) H)∗)−1 ,
(C.3)

with Σ f = diag(σ2 (r)
f j,1

, . . . ,σ2 (r)
f j,Nbins

).730

5. Normalize the columns of Λ̂(r) to 1 to solve the indeterminacy on gain.

6. ∀i = 1, . . . , Nc and ∀s = 1, . . . , Nbins, draw a sample ĉ(r)i,s from [ĉi,s|rest] ∼ N (µci,s ,σ
2
ci,s
)
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with

µci,s = σ2
ci,s




f̂(r)i|−i,s

σ2
i,s

+
ĉJ

i,s

ν
2 (r−1)
i,s




σ2
ci,s

=


 1

σ2
i,s

+
1

ν
2 (r−1)
i,s



−1

σ2
i,s =

λ̂
(r) H
i S f λ̂

(r)
i∥∥∥λ̂(r)i

∥∥∥
4

2

f̂(r)i|−i,s =
λ̂
(r) H
i f̂(r)s

λ̂
(r) H
i λ̂

(r)
i

−∑
k,i

λ̂
(r) H
i λ̂

(r)
k

λ̂
(r) H
i λ̂

(r)
i

ĉ(r−1)
k,s ,

(C.4)

with S f = diag(σ2 (r)
f1,s

, . . . ,σ2 (r)
fNe ,s

) and λ̂
(r)
i standing for the ith column of the pattern

matrix Λ̂(r).

7. ∀i = 1, . . . , Nc and ∀s = 1, . . . , Nbins, draw a sample ν2 (r)
i,s from [ν2

i,s|rest] ∼ InvGamma(α′i,s,β
′
i,s)

with

α′i,s = α
(r−1)
i + 1

β′i,s = β
(r−1)
i + |ĉ(r)i,s − ĉJ

i,s|2 .
(C.5)

8. ∀i = 1, . . . , Nc, draw a sample α
(r)
i from

[αi|rest] ∝ exp


−NbinslogΓ(αi) +




Nbins

∑
s=1

log
β
(r−1)
i

ν
2 (r)
i,s

− aα


 αi


 . (C.6)

This distribution is obtained by Bayes theorem as the product of an Inverse Gamma
distribution by an exponential distribution (see Appendix B) and it is not easy to
sample. A Metropolis-Hastings sampler might be needed. In practice, since αi is
high in the hierarchy (see Fig. 8) deterministic moves are found to not compro-
mise the convergence of the Markov Chain. As a consequence, the mode of the
distribution is chosen as sample at each iteration:

α
(r)
i = argmax

αi


−NbinslogΓ(αi) +




Nbins

∑
s=1

log
β
(r−1)
i

ν
2 (r)
i,s

− aα


 αi




= ψ−1


 1

Nbins




Nbins

∑
s=1

log
β
(r−1)
i

ν
2 (r)
i,s

− aα




 ,

(C.7)

where ψ−1(•) is the inverse Digamma function.
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9. ∀i = 1, . . . , Nc, draw a sample β
(r)
i from [βi|rest] ∼ Gamma(a′β, b′β) with

a′β = aβ + N · α(r)
i

b′β = bβ +
Nbins

∑
s=1

1

ν
2 (r)
i,s

.
(C.8)

10. Check the convergence and set the number of iterations Nrun in order to collect735

a sufficiently large sample of the random variables after the convergence of the
Markov chain.

The proposed algorithm is built upon the one developed by Fevotte [43], but it
presents some major differences. First of all, it works on complex quantities unlike the
former version which is valid only for real signals. This entails some modified expres-740

sion and an indeterminacy on the phase of the result. While the indeterminacy on the
amplitude is solved by normalizing the columns of the pattern matrix (step 5), the de-
termination of the phase is performed naturally thanks to the prior distributions. More-
over, step 2 is specific to the proposed algorithm. The aim here is to make the algorithm
explore all possible input samples, in order to propagate the uncertainty described by745

the structure {F̃} to the results of the ICA.

Appendix D. OC Modelling algorithm

The algorithm is detailed for Ĉmod, but is exactly equivalent when applied to the
phase. It is the following:

1. Let O ∈ RNOC×Nbins be the matrix of the predictor variables. Here, it contains the750

engine torque and speed corresponding to the active bins of the manifold O
′
. As

a consequence, NOC = 2.

2. Apply the MATLAB function newrb(...), with arguments O, Cmod, g and v. The
mean squared error g allows to control the dimension of the model, while the
spread v its regularity. This function yields the number of RBF Nrb and for each755

b ∈ {1, . . . , Nrb} their position µb ∈ RNOC×1 and variance σ2
b ∈ R.

3. Compute the radial basis X ∈ RNrb×Nbins where each component of the matrix
reads:

∀b = 1, . . . , Nrb, ∀s = 1, . . . , Nbins

Xb,s =e
− 1

σ2
b
||µb−os ||2

,
(D.1)

where os is the sth column of matrix O. Note that in the MATLAB function and
thereof in this application, the radial function φ(r) is a Gaussian function.

4. Initialize the values of W(0), ∀i = 1, . . . , Nc and ∀s = 1, . . . , Nbins, σ
2 (0)
ci,s and ∀i =

1, . . . , Nc and ∀b = 1, . . . , Nrb, σ
2 (0)
wi,b .760

For all r = 1, . . . , Nrun, do:
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5. Draw a component sample from the structure {Ĉ}, as Ĉ(z(r)), where z(r) is a sample
from a discrete uniform distribution defined on {1, . . . , Nrun}. Using this sample,
compute Ĉmod (r) as in Eq. (23).

6. ∀i = 1, . . . , Nc, ∀s = 1, . . . , Nbins, draw a sample σ2 (r)
ci,s from [σ2

ci,s
|rest] ∼ InvGamma(α′c,β′c)

with

α′c = αc + 1/2

β′f = β f + 1/2|ĉmod (r)
i,s −w(r−1)

i xs|2 ,
(D.2)

where ĉmod (r)
i,s is a term out of the matrix Ĉmod (r), while w(r−1)

i is the ith row of the765

weight matrix W(r−1) and xs the sth column of the predictor matrix X.

7. ∀i = 1, . . . , Nc, draw a sample wt (r)
i from [wt

i |rest] ∼ N (µwi
, Σwi ) with

µwi
= Σwi XΣ−1

c (ĉmod (r)
i )t

Σwi = (XΣ−1
c Xt + S−1

w )−1 ,
(D.3)

with Σc = diag(σ2 (r)
ci,1 , . . . ,σ2 (r)

ci,Nbins
) and Sw = diag(σ2 (r−1)

wi,1 , . . . ,σ2 (r−1)
wi,Nrb

).

8. ∀i = 1, . . . , Nc and ∀b = 1, . . . , Nrb, draw a sample σ2 (r)
wi,b from [σ2

wi,b
|rest] ∼ InvGamma(α′i,b,β′i,b)

with

α′i,b = αw + 1/2

β′i,b = βw + 1/2|w(r)
i,b |2 .

(D.4)

9. Check the convergence and set the number of iterations Nrun in order to collect
a sufficiently large sample of the random variables after the convergence of the
Markov chain.770
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