
HAL Id: hal-03639448
https://hal.science/hal-03639448v1

Submitted on 12 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fine-Grained Complexity Analysis of Queries: From
Decision to Counting and Enumeration

Arnaud Durand

To cite this version:
Arnaud Durand. Fine-Grained Complexity Analysis of Queries: From Decision to Counting and
Enumeration. 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems,
Jun 2020, Portland, United States. pp.331-346, �10.1145/3375395.3389130�. �hal-03639448�

https://hal.science/hal-03639448v1
https://hal.archives-ouvertes.fr

Fine-Grained Complexity Analysis ofQueries: From Decision to
Counting and Enumeration

Arnaud Durand

arnaud.durand@u-paris.fr

Université de Paris

Paris, France

ABSTRACT
This paper is devoted to a complexity study of various tasks related

to query answering such as deciding if a Boolean query is true or

not, counting the size of the answer set or enumerating the results.

It is a survey of some of the many tools from complexity measures

trough algorithmic methods to conditional lower bounds that have

been designed in the domain over the last years.

CCS CONCEPTS
• Theory of computation → Database theory; Complexity
classes; Finite Model Theory.

KEYWORDS
Query evaluation; enumeration algorithm; counting; logic
ACM Reference Format:
Arnaud Durand. 2020. Fine-Grained Complexity Analysis of Queries: From
Decision to Counting and Enumeration. In Proceedings of the 39th ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems (PODS’20),
June 14–19, 2020, Portland, OR, USA. ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3375395.3389130

1 INTRODUCTION
Query answering is a task of major importance in databases that
motivates both practical and fundamental research. In particular, a
vast literature is devoted to algorithms for efficient query processing
and to their complexity. Given a database D and a query φ, the most

basic problem is that of computing the set φ(D) of tuples that form
the answers when evaluating φ against the database D. When φ is
Boolean, the problem reduces only to determine whether φ is true
in D.

However, query answering covers a plethora of algorithmic prob-
lems for which one has to either find efficient solutions or to un-
derstand why it is hard to adapt tractable approaches for providing
approximated or partial answers.

One such problem that has received a considerable amount of
attention [4, 5, 25, 33–35, 70, 72] is that of counting the number

of results (that is, computing the size of φ(D)). The source of this
might lay in the following:

• Extracting numerical and statistical information is obtained

by counting and by general aggregations (e.g., summing,

averaging etc.)

• It appears as a key tool in probabilistic databases and rea-

soning.

Another problem is that of enumerating the results of a query

(see [14, 76] for surveys on the problem). The answer set of a query

may be of huge size and in many applications one either does not

need the whole set (such as when interested in top k answers under

some criteria) or one can start exploiting the first answers while

waiting for the others. Under this angle, it is interesting to obtain

algorithms that offer guarantees for the regularity of the generating

process. These guarantees can be expressed, for example, in terms

of delay between two consecutive solutions.

Going further, whether it concerns deciding, counting or enu-

merating all of these tasks can be handled in contexts where the

data is known from the beginning and does not change or, by con-

trast, when data is updated regularly (see [3, 15, 16, 54, 55]). In that

latter context, the objective is then to answer without starting the

computation from scratch.

These few examples illustrate how wide the panel of algorithmic

tasks for query answering is. However, query languages may be

rather expressive and it is well-known that the complexity of simple

and popular query problems may be intractable. For example, eval-

uating a Boolean conjunctive query over an arbitrary database is

known to be NP-complete (when both the structure and the query

are regarded as input [24]). When a query problem is intractable,

one approach to find islands of tractability is by putting structural

restrictions either on the class of queries under consideration or on

the data and study the effects of these restrictions on the complexity

of query answering. This research direction is at the core of many

works in the database community.

The objective of this paper is to survey some of the main ap-

proaches dedicated to the fine-grained analysis of query problems.

The diversity of tasks, from deciding through enumerating to count-

ing, has required along the years the elaboration of a wide spec-

trum of algorithmic techniques, of structural results for graphs

and hypergraphs and of methods for finding lower bounds (see

e.g. [1, 2, 4, 8, 11, 21, 22, 28, 31, 32, 36, 37, 42, 44, 59–61, 74, 77]).

In a fundamental way, this diversity has also required to think

differently what tractability means depending on the contexts. A

good example is the notion of constant delay enumeration [11, 32]

that guarantees a delay depending only on the query size (which

is independent on the underlying database) between two outputs

of an enumeration problem. This notion has emerged has a central

class in a re-think of what tractability means for enumeration in the

context of query answering (while in algorithm design, linear or

https://doi.org/10.1145/3375395.3389130

polynomial delay were the paradigm of tractability for years). This

survey is not intended to be exhaustive but is aimed at illustrating

the methods and approaches that have been at the core of fine-

grained complexity analysis of queries, in particular for decision

problems, counting, and enumerating. Consequently, most of the

results will be illustrated through examples.

Structure of the paper. We will survey the complexity of query

problems under two main restrictions: on the data set on the one

side, and on the structure of the queries on the other side (and

sometimes, to some extend, on both).

Data restriction. In Section 3, we examine the complexity of first-

order query languages. As it is well-known that this problem is

PSPACE-complete, one turns into restricting the class of databases

that are considered as input. It has appeared along the years, that

the key notion that leads to tractability is that of sparsity of data

(see [66]) and the section is devoted to the survey of the main

results in that direction for what concerns decision, counting and

enumeration. It turns out that unlike in other domains, tractability

for decision will often extend to the two other tasks. This part is

completed by Section 3.3, where the case of monadic second-order

queries is shortly investigated.

Query restriction. Section 4 is devoted to the wide class of con-

junctive queries. It is by far the most developed part of the paper.

One fragment that is known for a long time to admit efficient al-

gorithms is that of acyclic conjunctive queries. We examine the

complexity of this fragment and show that tractability is, this time,

subject to different criteria depending on the algorithmic task under

consideration. We then study several extensions of this fragments

that enrich its expressive power : taking union of acyclic queries,

allowing comparisons or disequalities, and allowing negations. The

study of this approach based on query restriction is completed in

Section 5 where one studies the classification of counting and enu-

meration complexity for first-order queries based on restricting

their prefixes.

In Section 2, we recall the basic definitions about query problems.

We also introduce and motivate different complexity measures suit-

able for deciding, computing, counting or enumerating the result

of a query. To make the main technical sections as self-contained

as possible, some of the definitions are introduced only later, when

needed. A conclusion is given in Section 6.

1.1 References and acknowledgment
Thanks to Florent Capelli, Nofar Carmeli, Liat Peterfreund, Alexan-

dre Vigny for careful reading of parts of this paper.

Material of Section 3 is inspired by the thesis of Alexandre Vi-

gny [80]. Additional surveys can be found also in [76], [14] (on

enumeration for query answering and, in particular, constant de-

lay enumeration), in [78] (on enumeration complexity) and in [19]

(connexion with knowledge compilation).

2 PRELIMINARIES
We suppose the reader familiar with rudiments of (first order and

second order) logic [64], complexity [7, 43], and graph theory [30].

We write N to denote the set of non-negative integers, Q to denote

the set of rationals, and Q>0
for the set of positive rationals. For

n ∈ N, we set [n] = {1, ...,n}.

2.1 Databases and queries
A signature σ is a finite set of relation R and function f symbols,

each of them associated with a fixed arity ar(R), ar(f) ∈ N. The
arity of σ , is the maximal arity of its symbols. A structure D over

σ , or a σ -structure (σ is omitted when it is clear from the context)

consists of a non-empty finite setDom(D) (oftenD, for short) called
the domain of D, an ar(R)-ary relation RD ⊆ Dom(D)ar(R) for each
relation symbol R ∈ σ and ar(f)-ary function f D : Dom(D)ar(R) →
Dom(D) for each function symbol f ∈ σ . When σ contains relation

symbols only, a σ -structure is said to be relational. In most context

below, a database is a finite relational structure.

The cardinality of a finite set A is denoted |A|. We define the size

||D|| ofD as ||D|| = |σ |+ |Dom(D)|+
∑
R∈σ |R

D |·ar(R). It corresponds
to the size of a reasonable encoding of D. Also, ||φ || denotes the size
of φ i.e. the number of symbols necessary to describe φ.

Let L be a subclass of first-order logic, denoted FO, or second-

order logic, denoted SO. We will give the definition of various

fragments of FO and SO when needed in the paper.

A L (σ)-query is a formula in L of signature σ , for some rela-

tional signature σ (σ is omitted when it is clear from the context).

For φ ∈ L , we denote by var(φ) its set of variables, free(φ) its set
of free variables and atom(φ) its set of atomic formulas. We write

φ(x̄ , X̄) to denote a query whose free first order variables are x̄ , free
second order variables are X̄ . The number of free variables is called

the arity of the query. A Boolean query (i.e. sentence) φ is a query of

arity 0 i.e. with free(φ) = ∅.

2.2 Query problem(s)
Given a structure D and a query φ, an answer to φ in D is a tuple ā
and a tuple of sets Ā of elements of Dom(D) such that D |= φ(ā, Ā).
We write φ(D) for the set of answers to φ in D, i.e. φ(D) = {(ā, Ā) :

D |= φ(ā, Ā)}. When φ is a sentence, the answer is a Boolean.

LetL be a logic andC be a class of structures. The query problem

(resp. Boolean query or model checking problem) of L over C is

the following computational problem: given a (resp. Boolean) query

φ ∈ L and a database D ∈ C , compute φ(D) (resp. test if D |= φ).
For the counting problem of L over C , given a formula (resp.

sentence) φ ∈ L and a database D ∈ C , the objective is to compute

the number of elements of φ(D).
Another important algorithmic task is enumerating solutions.

In the context of query problems for a logic L over a class C , the

enumeration problem is the following: given φ ∈ L and a database

D ∈ C output the elements of φ(D) one by one with no repetition.

When the formula φ is fixed, we denote by ♯ ·φ and enum·φ the

respective counting and enumeration problems.

2.3 Model of computation and complexity
measures

Recall that P (resp. NP) is the class of problems that can be decided

(resp. verified) in polynomial time.

2.3.1 Complexity measures for query problems. Most of the results

given in this paper were designed using Random Access Machines

(RAMs) with addition and uniform cost measure as a model of

computation. For further details on this model and its use in logic

see [43, 50].

The RAM algorithms will take as input a query φ ∈ L of size k
and a database D ∈ C of size n. The complexity of such problems

can be evaluated in two well-known contexts:

• Combined complexity were both ||D|| and ||φ || are taken into

account for the complexity evaluation,

• Data complexity were only ||D|| is taken into account (i.e. φ
being considered as fixed).

Unless otherwise specified, or when precise bounds are given,

we will often consider the data complexity setting. We then say that

an algorithm runs in polynomial time (resp. quasi-linear time, resp.

linear time, resp. constant time) if it outputs the solution within

f (k)·nc steps for some c ∈ N (resp. f (k)·n·(logn)O (1) steps, resp.
f (k)·n steps, resp. f (k) steps), for some computable function f . An
algorithm runs in pseudo-linear time if, for all ϵ ∈ Q>0

it outputs

the solution within f (k, ϵ)·n1+ϵ
steps, for some function f .

Most of the time measures (such as linear time) considered in the

paper are rather restrictive so it is necessary to make precise how

data is accessed. For example, we assume that the input relational

structure comes with a linear order on the domain. If not, we use

the one induced by the encoding of the structure as an input to the

RAM.

2.3.2 Complexity measures for counting. Let Σ be an alphabet. A

predicate B ∈ Σ∗ ×Σ∗ is polynomially balanced if there exists c ∈ N
such that, for all x ,y ∈ Σ∗, (x ,y) ∈ B implies that |y | ≤ |x |c . Given
a polynomially balanced binary predicate B ∈ Σ∗×Σ∗, the counting
function associated to B, is the function ♯ ·B : Σ∗ → N such that,

for all x ∈ Σ∗:

♯ ·B(x) = |{y : (x ,y) ∈ B}|.

Definition 2.1. ♯ ·P, or equivalently ♯P, (resp. ♯ ·NP) the class of

counting functions associated to predicates B ∈ P (resp. B ∈ NP).

2.3.3 Complexity measures for enumeration. The first complexity

measures for enumeration have been formalized in [56]. Algorithms

and complexity for enumeration have deserved a lot of attention in

the recent years (see the survey [78]).

Formally, the enumeration problem is identical to the classical

query problem except that some focus is put on the regularity of

the process that leads to the computation of φ(D) It is natural that
the dynamic of such a process be measured in terms of delay (i.e.

maximal time) between any two consecutive outputs of elements

of φ(D). Due to the important differences in size between data and

query, it will also appear meaningful in this context to separate

the enumeration process itself to the preprocessing time i.e. the

time needed to output the first solution and built necessary data

structures.

Let δ , p : N × N→ N be two functions. We say that the enumer-

ation problem of L over a class C of structures can be solved with

delay δ and after a preprocessing of p, if it can be solved by a RAM

algorithm which, on input φ ∈ L of size k and D ∈ C of size n,
can be decomposed into two phases:

• a preprocessing phase that is performed in time p(k,n), that
produces the first solution and

• an enumeration phase that outputs elements of φ(D) with
no repetition and a delay in time δ (k,n) between two con-

secutive outputs.

Note that, under these conditions, φ(D) can be computed in total

time:

p(k,n) + |φ(D)| × δ (k,n).

When p(k,n) and δ (k,n) are bounded by a polynomial (in n in

the data complexity setting; in n and k in combined complexity)

the enumeration problem is said to be solvable in polynomial delay.

In the database context, where the size of data maybe huge, a

delay even linear in the size of D can hardly be seen as tractable.

Consequently, it is crucial to understand if (and when) enumera-

tion can be handled within a delay independent of the data size.

In this view, we consider that a query problem can be enumer-

ated with constant delay after a linear preprocessing, i.e. is in the

class Constant-Delay
lin

introduced in [32], if there exists a RAM

algorithm which on input φ and D
• performs a preprocessing phase (including the output of the

first element of φ(D)) in time linear in ||D|| and
• enumerates elements of φ(D) with no repetition and a con-

stant delay, i.e. depending on ||φ || only, between two consec-

utive outputs. The enumeration phase has full access to the

output of the preprocessing phase and can use extra memory

whose size depends only on ||φ ||.

2.3.4 Parameterized complexity classes. Let Σ be a finite alphabet. A

parameterization of Σ∗ is a mapping k : Σ∗ −→ N that is polynomial

time computable. A parameterized problem is a pair (Q, k) where
Q ⊆ Σ∗ is a property and k is a parameterization.

Taking into account that the query sizes are usually far smaller

than the data sizes, it makes it natural to consider the parameterized

version of (below, Boolean) query problems.

p-MC(FO)

Input: A database D and a Boolean query φ
Parameter: ||φ ||
Output: Does D |= φ

Such an approach applies not only for decision but also naturally

for function problems. In this paper, we will express that some

algorithmic results can not be improved provided some widely

believed complexity hypothesis from parameterized complexity

hold. For this we recall briefly three useful measures (see [43]).

Definition 2.2. A parameterized problem (Q, k) is in FPT if there

is a computable function f : N→ N, c ∈ N and an algorithm that

upon input x ∈ Σ∗ of size n decides if x ∈ Q in time at most:

f (k(x)) · nc .

Intuitively, FPT corresponds to our definition of polynomial time

in the data complexity setting.

Definition 2.3. Let Σ, Σ0 be two finite alphabets. A FPT-reduction

from (Q, k) over Σ to (Q0, k0) over Σ0 is a mapping R : Σ∗ → Σ∗
0

such that:

• For all x ∈ Σ∗: x ∈ Q ⇐⇒ R(x) ∈ Q0

• R is computable by a FPT algorithm

• There is a computable function д : N→ N such that, for all

x ∈ Σ∗: k0(R(x)) ≤ д(k(x))

The parameterized clique problem is the following: for a graph

G = (V ,E) and parameter k ∈ N, decide whether there is V ′ ⊆ V
of size k such that, for all x ,y ∈ V ′: (x ,y) ∈ E. Then,

• W[1] is the the class of problems FPT-reducible to the pa-

rameterized clique problem and,

• AW[∗] is the class of problems FPT-reducible to p-MC(FO),

the model checking of FO.

3 FIRST-ORDER QUERIES AND SPARSITY
We consider here L = FO and queries φ(x) ∈ FO with only free

first-order variables. It is well known that, given a query φ(x) and
a database D, φ(D) can be computed in time

||φ || × ||D||h

whereh is themaximal number of free variables for a sub-formula of

φ [64]. Although there could be some variant in the expression of the

complexity, under some reasonable complexity assumption (namely

that AW[∗] , FPT), there is no hope, for arbitrary databases, to

obtain an upper bound where h can be replaced by a constant c ∈ N
independent of φ. Indeed, as an obvious consequence, such a bound

would lead to an algorithmic breakthrough for problem such as

testing if a graph has a clique of a given size that can be generically

described by:

∃x1 . . . ∃xk
k∧

i<j=1

xi , x j ∧ E(xi ,x j).

For arbitrary first-order queries, one can then hope for more

efficient bounds only by restricting the databases as input. In this

direction, the notion of sparsity has played a key role[66] as we

will show.

3.1 The role of sparsity
A first restriction that seems natural to consider is when every

elements are in connexion to constantly many others only. Let

D = ⟨D;R1, . . . ,Rq⟩ be a σ -structure for a relational signature

σ = {R1, . . . ,Rq }. For each i ≤ q, Ri ⊆ Dai
. Define the degree of

an element x in D, denoted degD(x) as the total number of tuples

of relations Ri to which x belongs. One defines the degree of a

structure as deg(D) = maxx ∈D (degD(x)).
A class C of structures is of bounded degree if there exists c ∈ N

such that, for all D ∈ C , deg(D) ≤ c . Note that such classes are

closed under substructures: if D′ is a substructure of D and D is of

degree bounded by some c ∈ N, then so is D′.
By taking advantage of the locality of first-order logic and the

fact that in a structure of degree bounded by c ∈ N, for each element

of the domain, the number of elements at distance at most d ∈ N is

bounded by cd+1
, the following result holds.

Theorem 3.1 ([75],[59]). Let C be a class of bounded degree struc-

tures. Then, the model-checking problem of first-order queries over

C can be decided in time linear in the size of the database i.e. there

exists a function f such that, given a sentence φ ∈ FO and D ∈ C ,

testing whether D |= φ can be done in time f (||φ ||) · ||D||. Moreover,

function f is such that:

f (||φ ||) ≤ 2
2

2
O (||φ ||)

.

From [46], it is known that unless AW[∗] = FPT, the constant can

not be lowered to 2
2
O (||φ ||)

. To which extend could the results from

Theorem 3.1 be extended to compute the set φ(D)? In particular,

is it possible to generate the elements of φ(D) through a process

whose regularity is guaranteed? It turns out that it is indeed the

case. Such an investigation leaded to the notion of constant delay

enumeration and to the following result(s).

Theorem 3.2 ([32], [59]). Let C be a class of bounded structures.

Then, there are algorithms that upon input φ ∈ FO and D ∈ C :

• Output the number of elements of φ(D) in time f (||φ ||) · ||D||.
• Enumerate φ(D) with constant delay f (||φ ||) after precompu-

tation time f (||φ ||) · ||D||

for some function f , such that f (k) ≤ 2
2

2
O (k)

.

Note that this implies that computingφ(D)whenD is of bounded

degree can be done in total time:

f (||φ ||) · (|φ(D)| + ||D||).
The approach of [32] and to some extend some of the works

that have followed are based on quantifier elimination methods.

They can roughly be described as follows. First, it is convenient

to represent bounded degree relations by a collection of partial

injective functions. This can be done in different ways. Then, given

φ(x) ∈ FO and a database D ∈ C , one constructs:

• a database D′ ∈ C in time O(f (||φ ||) · ||D||)
• and φ ′(x) ∈ FO, quantifier free, in time O(f (||φ ||))

for some computable function f such that:

φ(D) = φ ′(D′).
Once an equivalent quantifier free has been obtained, enumera-

tion becomes easier.

Example 3.3. Let φ(x) = ∃yϕ(x,y), on a vocabulary σ of unary

function intepreted as partial injective functions. Let F a σ -structure.
We illustrate how to get rid of y. To simplify, let φ(x) be as follows

φ(x) ≡ ∃y [ψ (y) ∧ y , f1(x1) ∧ · · · ∧ y , fk (xk)]

where f1, ..., fk ∈ σ . A term of the form fi (xi) = y above, would

have permit to replace immediately y by fi (xi) everywhere. Let us

call ∃h+1ψ the condition:

∃h+1ψ = ∃x1 · · · ∃xh+1

h+1∧
i, j=1

i,j

xi , x j ∧
h+1∧
i=1

ψ (xi)

Each ∃h+1ψ can be computed in O(||F||). Let F′ be the structure
F enriched with these Boolean informations. Given values for x,
suppose h ≤ k is the number of distinct values among those of the

k terms fi (xi) such thatψ (fi (xi)) is true; then, formula φ(x) is true
if and only if the number of elements b such that F |= ψ (b) holds is
strictly greater than h. Consequently, φ(F) = φ ′(F′) where φ ′(x) is

the (combinatorial involved) quantifier-free formula that look for a

possible h ≤ k that satisfy the above condition:

φ ′(x) ≡
k∨

h=0

∨
P ⊆[k],Q ⊆P, |Q |=h

ψ
Q
P (x) ∧ ∃h+1ψ

with

ψ
Q
P (x) ≡

∧
j ∈Q

ψ (fj (x j))∧
∧
i ∈P

∨
j ∈Q

fi (xi) = fj (x j)∧
∧

j ∈[k]\P

¬ψ (fj (x j))

Why is enumeration easier for quantifier-free formulas? Suppose

a quantifier-free φ(x,y) is as follows:

φ(x,y) ≡ ψ1(x) ∧ψ2(y) ∧
k∧
i=1

y , fi (xi)

ψ2(y) has one free variable,ψ2(F) can easily be computer in linear

time. By induction enumerating φ(F) amounts to enumerate tuples

(a,b) with a ∈ ψ1(F), b ∈ ψ2(F) with at most k exceptions for

each fixed a: when
∧k
i=1

b , fi (ai) is true. Hence it can be done

with constant delay See Algorithm 1 below (if |ψ2(F)| < k an even

simpler tratment can be done).

Algorithm1 Enumerateφ(F) (with the hypothesis that |ψ2(F)| ≥ k)

1: for a ∈ ψ1(F) do
2: for b ∈ ψ2(F) do
3: if D ̸ |=

∨k
i=1

b = fi (ai) then
4: output (a,b)

The results above were the first of a series that prove linear or

pseudo-linear model checking and constant delay enumeration for

increasingly larger classes C , closed under substructures: graphs of

bounded expansion [39, 60], graphs of locally bounded tree-width

[45] (that includes planar and bounded tree-width graph), graphs

of locally bounded expansion [77]. Note that numeration results

were technically harder and most of the time came significantly

later.

All these classes concern structures that can be identified as

sparse: the density of tuples compared to elements of the domains

is somehow restricted. In [67] a notion called nowhere dense graphs

was introduced as a formalization of classes of sparse graphs. It

appears to encompass all known classes of sparse graphs (planar,

bounded tree-width, excluding a minor, locally bounded expansion,

etc [68]). One way to represent it is through the notion of r -minor

defined below.

Definition 3.4. Let G = (V ,E) be an undirected graph and r be
an integer. A graph H = (V ′,E ′) is an r -minor (also named shallow

minor or low depth minor) of G if:

• V ′ ⊆ V ,

• for every ai in V
′
, there is a set Si in V such that:

– Si ⊆ NG
r (ai),

– for every i , j we have Si ∩ Sj = ∅, and
– for every i , j we have (ai ,aj) is in E ′ if and only if in G
there is an edge from a node in Si to a node in Sj .

We note H ∈ G▽r the fact that H is an r -minor of G. We also note

H ∈ C▽r the fact that there is a graph G in C such that H is an

r -minor of G.

We give below the basic definition of nowhere-dense graphs. It

appears to be a very robust notion that can be defined by many

other equivalent properties [67].

Definition 3.5 ([67]). Let C be a class of graphs. C is nowhere

dense if and only if for all r ∈ N there is a Nr ∈ N such that

KNr < C▽r . Here, Kn is the clique with n elements i.e. a graph

with n vertices and every possible edges.

Nowhere dense seems to be one of the broadest class of graphs

that admit good algorithmic properties.

Theorem 3.6 ([53, 74, 80]). Let C be a class of nowhere dense

graphs. For every FO formula φ and ϵ > 0, there is an algorithm and

a function f such that upon input of a graph G ∈ C

• Decide whetherG |= φ in time f (||φ ||, ϵ) · ||G ||1+ϵ (when φ is a

sentence).

• Output the number of solutions of φ(G) in time f (||φ ||, ϵ) ·
||G ||1+ϵ .
• Enumerate φ(D) with delay f (||φ ||, ϵ) after precomputation

time f (||φ ||, ϵ) · ||G ||1+ϵ .

In opposition to nowhere dense, one can define the notion of

somewhere dense as follows: A class of graphs C is somewhere

dense if and only if it is not nowhere dense [67]. Note that none of

those two definitions imply closure under subgraphs. However, if

a class is nowhere dense (resp. somewhere dense) then its closure

by adding every possible subgraph remains nowhere dense (resp.

somewhere dense). Combined with the following result, this leads

to a complexity dichotomy for classes o structures closed under

subgraphs.

Theorem 3.7 ([63]). The model checking problem over somewhere

dense classes of graphs that are closed under subgraphs is AW[∗]

complete, and therefore very unlikely to be in FPT.

Recall that one can hope for an efficient enumeration algorithm

for a query problem (in the sense of a constant delay algorithms after

fixed polynomial time preprocessing), only when its Boolean coun-

terpart, a.k.a. the model checking problem, admits an FPTalgorithm.

Hence the result above also implies a dichotomy algorithm for enu-

meration tasks.

3.2 The end of the story for FO?
The results above emphasize the role played by sparsity for tractabil-

ity of first order queries. They also establish a tractability frontier

along the notion of somewhere dense structure for classes closed

under subgraphs. But what can be said for arbitrary classes of

structures?

Let us consider the class C of graphs of degreeO(logn) where n
is the number of vertices. For k ∈ N, the graph G that contains:

• a clique of size k , and

• 2
k
independent nodes,

is in C . Hence, clearly, C is not closed under substructures: the

subgraph of G restricted to its clique of size k , is not of degree
bounded by O(logk). Such a class C can however be considered as

sparse. One elaborate from this class to the following notion of low

degree structure.

Definition 3.8. A class C of structures has low degree if for every

ϵ > 0, there is a rank N in N such that for everyG in C , if |G | > N
then d(G) ≤ |G |ϵ , where d(G) is the degree of G.

As shown below, such classes of graphs still admit good algo-

rithms.

Theorem 3.9 ([51]). Let C be a class of graphs with low degree.

For every FO formula φ and ϵ > 0, there is an algorithm that upon

input of a graph G in C decides whether G |= φ in time O(|G |1+ϵ).

This result uses some ideas that where at the core of Theorem 3.1

i.e. the locality of first-order logic. The difficulty when generalizing

this to structures with low degree is that a given node does not

have a neighborhood of bounded size but only of small size. This

makes harder to obtain a constant delay enumeration (and not only

an algorithm whose delay could beO(nϵ). Fortunately, it is possible
to work around this main issue.

Theorem 3.10 ([36]). Let C be a class of graphs with low degree.

There is an algorithm which, upon input of a structure D in C and

an FO query φ, enumerates the set φ(D) with constant-time delay

after a pseudo-linear-time preprocessing.

Beyond the particular case above, some recent tractability results

have been obtained by considering first-order interpretations into

formerly studied classes (such as bounded degree [47] or bounded

expansion [48]).

3.3 Monadic queries

Monadic second-order logic, for short MSO extends first-order

logic by allowing quantification over sets. When dealing with MSO

queries, it is quite natural to look at graphs with bounded tree-

width. The so-called Courcelle’s theorem below has been one of the

most influential tractability result in this area.

Theorem 3.11 (Courcelle’s theorem [27]). The model checking

problem forMSO queries over classes of structures of bounded tree-

width can be solved in linear time.

Following this first result, other algorithms tasks such as count-

ing [6] have been proved to be tractable over instances of bounded

tree-width for MSO queries.

In contrast with first-order logic, the expressive power of MSO

can be very high even on some natural classes of sparse (although

of unbounded treewidth) structures. Givenm,n ∈ N, a (m,n)-grid
is a graph on vertex set {1, ...,m} × {1, ...,n} with edge set:

{((i, j), (i ′, j ′) : (i = i ′ and |j − j ′ | = 1) or (j = j ′ and |i − i ′ | = 1))}.

It is easily seen that MSO formulas can be used to describe a n
steps,m space bounded computation of a Turing Machine when

evaluated over a colored (m,n)-grid graph. Hence, there is few

hope to find tractability results beyond treewidth. It is believed that

Courcelle’s theorem is somewhat optimal [52] (see also [62] for

partial result under some complexity hypothesis).

3.3.1 Enumeration. The enumeration problem is also tractable.

However with MSO queries we could potentially encounter free

set variables i.e. be of the form φ(x,X) where X is a tuple of free

second order variables.

This hardly allows constant delay enumeration since the size of

a solution might be as large as the input size. Therefore just writing

one solution could require linear time and two consecutive solutions

may be "far" from each other. Indeed, consider the database D
over the domain D = {1, ..., 2n} with one relation E defined by

{(a, 1) : a = 1, ...,n} ∪ {(a, 2) : a = n + 1, ..., 2n} and

φ(X) = ∃x∀y ∈ X E(y,x) ∧ ∀y < X ¬E(y,x)
It holds φ(D) = {{1, 2, ...,n}, {n + 1,n + 2, ..., 2n}}. The two

solutions are disjoints and no algorithms can produce one after the

other in constant time. The good measure for the delay is to take

into account the output length.

The result below extends Theorem 3.11.

Theorem 3.12 ([8, 29]). Let C be a class of structures with

bounded tree-width, there is an algorithm and a function f which,

upon input of a structure D in C and anMSO query φ, enumerates

each solution s of the set φ(D) with linear-time preprocessing and

delay f (|φ |) · |s | i.e. linear in the output size.

Ifφ(x) contains only free first-order variables then the enumeration

can be done with delay f (|φ |) i.e in constant delay.

Alternatives proof for the constant delay bound, for queries with

free first order variables only has also been found in [61] using

quantifier elimination methods. Additional details can be found

in two thesis, [9] and [58]. More recently, by using technics from

knwoledge compilation, an alternative proof of Theorem 3.12 has

also been given in [1].

4 ACYCLIC CONJUNCTIVE QUERIES AND
BEYOND

In this section, we focus on tractable fragments of FO queries on

arbitrary databases. Recall that conjunctive queries, CQ for short,

are queries of the form:

φ(x) := ∃y
∧
i
Ri (zi)

where for every i , Ri is a relational symbol and zi is a tuple of vari-
ables from x and y. The combined complexity of CQ is NP-complete

and, as such, the fragment is already too expressive. Below, we sur-

vey the complexity of a well-known restriction of CQ called acyclic

conjunctive queries, ACQ. It turns out that for all algorithmic tasks

under consideration tractability results can be found at the price of

introducing new methods and measures. We also investigate possi-

ble extensions of ACQ and study their effects on the complexity of

query evaluation.

Hypergraph of a query. An finite hypergraph H = (V ,E) is
a finite set V together with a subset E of the powerset of V , i.e.
E ⊆ P(V). To each query φ, one can associate an hypergraph

H = (V ,E) whose vertex set is the set var(φ) of variables of φ and

hyperedge set is atom(φ) the set of atoms of φ.

Queries. A query is said to be self-join free if no relation symbol

is used more than once. A query is Boolean if it has no free variables

that is free(φ) = ∅.

4.1 Acyclic conjunctive queries
A join tree of an hypergraph H = (V ,E) is a tree T whose set of

nodes is E the hyperedge set ofH and whose edge set is such that:

• for all v ∈ V , {e ∈ E : v ∈ e} the set of nodes of T in which

v occurs is a connected sub-tree of T .

A conjunctive query is said to be α-acyclic, for short acyclic,
if its associated hypergraph has a join-tree. The class of acyclic

queries is denoted by ACQ. There are several notion of acyclicity

for hypergraphs (see [13, 41]), α-acyclicity being the most general

and admitting a number of alternative characterizations.

Example 4.1. The (path) query φ1(x ,y, z) := E(x ,y) ∧ E(y, z) is
acyclic. The (triangle) query φ2(x ,y, z) := E(x ,y) ∧ E(y, z) ∧ E(z,x)
is not acyclic. However, the more complex query φ3(x ,y, z) :=

E(x ,y) ∧ E(y, z) ∧ E(z,x) ∧T (x ,y, z) is acyclic: It admits a join tree

with root {x ,y, z} that contain as three children {x ,y}, {y, z} and
{z,x}.

Although this is a large class of queries, acyclic conjunctive

queries are sufficiently restricted to obtained quite efficient algo-

rithms as shown in the well-known result below.

Theorem 4.2 ([81]). There is an algorithm which, upon input

of a database D and φ(x) ∈ ACQ, computes the set φ(D) in time

O(||φ || · ||D|| · ||φ(D)||).

4.1.1 Efficient enumeration : from linear to constant delay. Yan-
nakakis result can be turned into an enumeration process that out-

puts the solution one after the other with a linear delay as remarked

in [11] and shown below.

Theorem 4.3 ([11]). There is an algorithm which, upon input of a

database D and φ ∈ ACQ, enumerates the set φ(D) with linear time

preprocessing and linear time delay.

Proof. It is easy to see that Algorithm 2 outputs solutions with

a linear delay between each. One needs Theorem 4.2, to prove

linearity of the base case (p = 1). The proof follows by induction.

□

Algorithm 2 Enumeration of φ(D)

1: if p = 1 then
2: for a ∈ φ(D) do
3: output a
4: else
5: letψ1(x1) ≡ ∃x2 . . . ∃xpφ(x1, . . . xp)
6: for a ∈ ψ (D) do
7: let φa ≡ φ(a,x2, . . . ,xp)

8: for ¯b ∈ φa (D) do
9: output (a, ¯b)

However, a delay which is linear in the size of the database delay

between two solutions can hardly be considered has a very efficient

time bound. It is easily seen, for example, that for quantifier free

x1,x2

x1,y1 x2,x3

x2,x3,y3

y3,y4,y5

x2,y2

Figure 1: A join tree for a query φ(x) ≡ ∃yR(x1,x2) ∧

S(x2,x3,y3) ∧ R(x1,y1) ∧ T (y3,y4,y5) ∧ S(x2,y2). A new hyper-
edge {x2,x3} ⊆ {x2,x3,y3} is introduced that help forming
the join tree above (the subtree of red nodes contains free
variables only)

ACQ the delay can be made constant between two solutions. It

turns out that constant delay can be achieved when free variables

of a query can be grouped together while preserving acyclicity..

Definition 4.4. An acyclic conjunctive query φ(x) is free-connex
if the extended query φ ′(x) := φ(x) ∧ R(x) is acyclic, where R is an

arbitrary new symbol.

Alternatively, given an acyclic query φ(x) with hypergraphH =

(V ,E), φ(x) is free-connex if the hypergraph H = (V ,E ∪ {x}) is
also acyclic. Note that boolean queries or queries with only one

free variable are by definition free-connex. It is not the case for

binary queries.

Example 4.5. The query: φ(x ,y) = ∃w∃z E(x ,w)∧E(y, z)∧B(z).
is free-connex because the queryφ ′(x ,y) = ∃w∃z E(x ,w)∧E(y, z)∧
B(z) ∧ R(x ,y) is still acyclic.

The Boolean matrix multiplication query: Π(x ,y) = ∃z A(x , z) ∧
B(z,y). Since Π′(x ,y) = ∃z A(x , z) ∧ B(z,y) ∧ R(x ,y) is clearly not

acyclic, Π(x ,y) is not free-connex.

It turns out that free-connexity is a sufficient restriction to put

on acyclic conjunctive queries in order to obtained constant delay

enumeration. To see this, remark that being free-connex intuitively

permits to treat free variables together in an evaluation algorithm.

Equivalently, given a free-connex φ(x) of hypergraphH = (V ,E),
it can be transformed into an equivalent query φ ′(x) of hypergraph
H ′ = (V ,E ′) by possibly adding atoms/hyperedges e ′ ⊆ e ∈ E such

that the associated join tree of φ ′(x) contains as root a connected
subtree made of free variables only (corresponding to a).

Figure 1 illustrates this property. Given queryφ(x) ≡ ∃yR(x1,x2)∧

S(x2,x3,y3)∧R(x1,y1)∧T (y3,y4,y5)∧S(x2,y2), one can introduce

a new atom S ′(x2,x3) such that φ(x)′ ≡ φ(x) ∧ S ′(x2,x3) has the

described rooted join tree. Given a database D, To enumerate φ(D),
one first applies the bottom-up Yannakakis algorithm for acyclic

conjunctive query as precomputation steps to filter relations by

projecting out existentially quantified variables until only the join

R(x1,x2) ∧ S
′(x2,x3) remains to be evaluated on the filtered rela-

tions. More precisely, one successively computes:

• S ← {(a,b, c) : there exists d, e : S(a,b, c) and T (c,d, e)}
• S ′ ← {(a,b) : there exists c : S(a,b, c)}
• R ← {(a,b) : there exists c : R(a,b) and R(a, c)}
• R ← {(a,b) : there exists c : R(a,b) and S(b, c)}

From here, after sorting R on its second coordinate and S ′ on its

first coordinate, enumerating the results i.e. the (a,b, c) s.t. (a,b) ∈ R
and (b, c) ∈ S ′ can be easily donewith constant delay. This approach
yields to the following result.

Theorem 4.6 ([11]). There is an algorithm which, upon input of a

databaseD and a free-connex acyclic conjunctive queryφ, enumerates

the set φ(D) with linear-time preprocessing and constant-time delay.

4.1.2 Matching lower bounds. In [11], it is also proved that, when

looking at acyclic conjunctive queries, free-connex is what is needed

to obtain constant delay enumeration, assuming some reasonable

algorithmic hypothesis.

The Boolean matrix multiplication is the problem defined as

follows: given two n × n Boolean matrices A and B, compute their

product A × B. This is the problem defined by query Π(x ,y) in
Example 4.5. Suppose DBM is a database of domain [n] with binary

relations RA,RB such that for all a,b ∈ [n], (a,b) ∈ RA (resp. RB)
iff there is a 1 in line a, column b of matrix A (resp. B). If, on any

such DBM , there exists a constant delay algorithm to enumerate

Π(DBM), then, computing the productA×B would need onlyO(n2)

steps.

So far, the best known algorithm for matrix multiplication (based

on the Coppersmith-Winograd algorithm [26]) requires thanO(nω)
with ω = 2.37 steps [49]. We call Mat-Mul the widely believed

hypothesis that given two such A and B their product can not be

computed in quadratic O(n2) time.

In [11], it is proved, by reduction, that a (self-join free) query that

is not free-connex is at least as hard as query Π(x ,y). Indeed, let
φ(x) ∈ ACQ such that φ is not free-connex. By definition ar(φ) =
m ≥ 2. Let n ∈ N and DBM as above. One can construct a database

D, on domain {0, ...,n − 1} ∪ {⊥} where ⊥ is new symbol, in time

linear in ||DBM || such that, up to reordering of variables:

φ(D) = Π(DBM) × {⊥}
m−2

Hence, there is a one-one mapping from φ(D) to Π(DBM).

Example 4.7. Recall Π(x ,y) ≡ ∃z A(x , z) ∧ B(z,y). Let φ(x) ≡
E(x1,x4) ∧ S(x1,x1,x3) ∧T (x3,x2,x4). Variable x1,x2 can play the

role of x ,y in Π(x ,y) and x3 that of z. Database D contains the

relations: E = {(a,⊥) : a ∈ [n]}, S = {(a,a,b) : (a,b) ∈ A},
T = {(b, c,⊥) : (b, c) ∈ B}.

The result below formalizes the above discussion.

Theorem 4.8 ([11]). Assuming Mat-Mul, for any self-join free,

φ ∈ ACQ the following statements are equivalent:

• φ is free-connex,

• there is an algorithm which, upon an input database D, enu-
merates the setφ(D)with linear-time preprocessing and constant-

time delay,

• there is an algorithm which, upon an input database D, com-

putes the set φ(D) in time O(||D|| + ||φ(D)||)

The hardness part of the above characterization can be extended

beyond acyclic queries. An hypergraph H is k-uniform if all its

hyperedges contain k vertices. An l-hyperclique in a k-uniform hy-

pergraphH is a setV ′ of l > k ≥ 2 vertices, such that every subset

of V ′ of size k forms a hyperedge. Finding such an l-hyperclique

is conjectured to require more than nk−o(1) (see [65]). We refer to

the hypothesis that finding a k-hyperclique in a (k − 1)-uniform

hypergraph H can not be done in O(nk−1) as Hyperclique (for

k = 3, seeing 2-uniform hypergraphs as graphs, this amounts to

find a triangle in a graph in time O(n2)). In [18], it is shown that

assuming Hyperclique, no cyclic query can be enumerated with

linear time preprocessing and constant delay. Combining the results

of [11, 18] we get that assuming bothMat-Mul and Hyperclique,
Theorem 4.8 can be generalized to any self-join free φ ∈ CQ.

Theorem 4.9 ([11, 18]). AssumingMat-Mul and Hyperclique,
for any self-join free φ ∈ CQ:

• either φ is free-connex and enum·φ ∈ Constant-Delay
lin
,

• or enum·φ < Constant-Delay
lin

4.2 Union of conjunctive queries
Definition 4.10. A formula φ(x) is a union of conjunctive query,

denoted UCQ, if it is of the form

φ = φ1 ∨ · · · ∨ φk

where each φi ∈ CQ, i ≤ k .

Let φ = φ1 ∨ · · · ∨ φk ∈ UCQ. If each φi ∈ ACQ is free connex,

it can been shown using technics developed in [79] that enum·φ ∈
Constant-Delay

lin
.

However, as remarked in [22], efficient enumeration can be ob-

tain for union of queries even though some of them are not effi-

ciently enumerable. One can easily anticipate the following situa-

tion, given two queries φ1(x), φ2(x) and a database D:
• φ2(D) can be enumerated easily (say constant delay)

• φ1(D) can not be enumerated easily (is not free-connex for

example)

• But each solution of φ1(D) can be obtained by constant time

computation from some solution of φ2(D)
In that case enumerating (φ1 ∨ φ2)(D) can be enumerated with

constant delay. Indeed, let’s consider the following example:

φ1(x ,y,w) = R1(x , z) ∧ R2(z,y) ∧ R3(x ,w)
φ2(x ,y,w) = R1(x ,y) ∧ R2(y,w)

(1)

Query φ2 is free-connex while φ1 is not. However, for any data-

base D, one remark that any solution of φ1(D) can be built from a

solution of φ2(D): for a tuple (a,b, c) to be in φ1(D), there should
be an element d in the domain such that (a,d,b) ∈ φ2(D). Hence,
to enumerate the union, one can proceed as follows: each time a

solution (a,d,b) is produced, one look for all c such that R3(a, c) is
true and enumerate all tuples (a,b, c). No solution of φ1(D) will be
missed and since φ2(D) can be enumerated with constant delay, the

total delay for the enumeration of the union can be preserved to be

constant (though one also has to deal with duplicates also which

can be done. See [22]). Such an example shows that charting the

tractability frontier for union of conjunctive queries is a challenging

task.

In [22] some partial answers to the problem are given. One key

concept it that of a query providing variables to some other.

Definition 4.11. Let φ1,φ2 ∈ CQ. Query φ2 provides a set of

variables V1 to φ1 if:

• There is a body-homomorphism h from φ2 to φ1 i.e. h :

var(φ2) → var(φ1) such that for every atomR(x) ∈ atom(φ2),

R(h(x)) ∈ atom(φ1)

• h−1(V1) ⊆ free(φ2)

• There is h−1(V1) ⊆ S ⊆ free(φ2), such that φ2 is S-connex.

Going back to Equation 1, it is easy to see that φ2 provides

variable set {x , z,y} to φ1.

Let us now consider a queryφ+
1
(x ,y,w) obtained fromφ1(x ,y,w)

adding the variables provided byφ2(x ,y,w) in a new atom P1(x , z,y):

φ+
1
(x ,y,w) = R1(x , z) ∧ R2(z,y) ∧ R3(x ,w) ∧ P1(x , z,y).

Obviously φ+
1
(x ,y,w) is free-connex. The idea behind this ex-

ample can be formalized. Given φ =
∨k
i=1

φi ∈ UCQ, with each

φi (x) =
∧h
j=1

Rj (xj), a union extension of φ(x) is a syntactic enrich-
ment of the following form:

φ+i (x) =
h∧
j=1

Rj (xj) ∧
s∧
j=1

Pj (vj)

where each P1, ..., Ps is a fresh relational symbol and each {vj } is
provided to φi by some φ j (or, more generally, by way of recursion,

by a union extension of some φ j).

Definition 4.12. Given φ = φ1 ∨ · · · ∨ φk ∈ UCQ, query φ is free-

connex if each of φi , i = 1, ...,k admits a union extension which is

free-connex

Building on this, it can be proved that:

Theorem 4.13 ([22]). Let φ ∈ UCQ. If φ is free-connex then enum·

φ ∈ Constant-Delay
lin
.

Complete characterizations have been obtained in case φ is the

union of two intractable CQ or the union of two particular acyclic

conjunctive queries (called Body isomorphic), see [22]), some lower

bound can be proved and it can be shown that free-connexity fully

captures tractability. However, proving a full classification for UCQ

is an open problem.

4.3 Allowing comparisons and disequalities
For numerical data, it could be interesting to extend ACQ by adding

comparisons operators such as <, ≤,,. In this section, we examine

the effect in terms of expressive power of adding such features.

Definition 4.14. Let ◁ ∈ {≤, <,,}. A formula φ(x) is an acyclic

conjunctive query with comparisons in S , i.e. is in ACQ◁, if it is of

the form:

φ(x) := ∃y ϕ(x) ∧
∧
i
zi ◁ z

′
i

where ϕ(x) is an acyclic conjunctive query, each zi , z
′
i are variables

among x and y.

In the definition above, comparisons are not taken into account

to measure acyclicity. Interpretation of <, ≤,, on a database with

domain [n] has its obvious meaning.

In [69], an interesting example is given that emphasizes the gain

of expressive power compared to ACQ when considering ACQ< .

Let G = (V ,E) be a graph with V = {0, ...,n − 1} (hence implicitly

ordered) and k ∈ N. LetD be a database with binary relations P and

R over a domain D containing all integers (i + j)n3+ |i − j |n2+bn+ i
for i, j ∈ V and b = 0, 1. Let us denote [i, j,b] such an element of

the domain. Let relation P and R be defined as:

• P([i, j, 0], [i, j, 1]) iff (i, j) ∈ E, for all i, j ∈ V (it is also sup-

posed that E has self-loops for each i ∈ V)

• R([i, j, 1], [i, j ′, 0]) for all i, j, j ′ ∈ V

Being a clique can not be defined directly without introducing

a cycle. Instead, one plays with the underlying order and define

the following φ over existentially quantified variables xi j ,yi j for
1 ≤ i, j ≤ k as:∧
1≤i, j≤k

P(xi j ,yi j)∧
∧

1≤i, j,l=i+1≤k

R(yi j ,xil)∧
∧

1≤i<j≤k

xi j < x ji < yi j

The query φ is clearly acyclic: it consist in k paths of length

2k − 1 connecting each xi1, yi1, xi2,..., yik . Considered separately,

even the graph of comparisons is acyclic. However, it can be shown

that:

G has a clique of size k iff D |= φ.

One direction is obvious: ifv1,v2,vk form a clique inG withv1 <

v2 < ... < vk . Interpreting xi j by [vi ,vj , 0] and yi j = [vi ,vj , 1]
the formula is trivially satisfied. For the other direction, one can

deduce from the inequalities that, for each i < j if xi j ,yi j ,x ji ,yji
are respectively interpreted by [vi ,v

′
j , 0], [vi ,v

′
j , 1], [vj ,v

′
i , 0] and

[vj ,v
′
i , 1] then vi = v

′
i and vj = v

′
j . Then, the satisfaction of each

P(xi j ,yi j) implies that each (vi ,vj) ∈ E and the vertices v1, ...,vk
form a clique. Formally, this helps proving the following result.

Theorem 4.15 ([69]). Evaluating queries in ACQ< and ACQ≤

isW [1]-complete for both the size of the query and its number of

variables as parameters.

However, allowing disequalities only, i.e. atoms of the form x , y,
leads to a different situation. In [69], it is also shown that evaluating

a query φ ∈ ACQ, on a database D is in FPT with the query size

as parameter. More precisely, it can be done in time:

f (||φ ||) · ||φ(D)|| · ||D|| · log
2 ||D||.

for some function f such that f (||φ ||) ≤ 2
O (v logv) · ||φ || where v

is the number of variables of φ. Surprisingly, using combinatorial

arguments, it can be shown that free connexity is still the criteria

for fast enumeration even in the the presence of disequalities. A

convenient way to see this is through, again, a mechanism of quan-

tifier elimination. One can at the same time eliminate variables and

disequality constraints. Let us illustrate the method.

A database D on domain D and relations R1, . . . ,Rs can be seen

as a functional structure F = ⟨F ;D,D1, . . . ,Ds , f1, . . . , fp ⟩ where
p = maxi≤s ar(Ri) and :

• D,D1, . . . ,Ds are disjoint unary relations so that the domain

F of F is the disjoint union of D,D1, ..,Ds and {⊥} i.e. F =
D ⊎ D1 ⊎ . . . ⊎ D1 ⊎ {⊥}

• For each i = 1, . . . , s , Di is a set of elements representing

tuples in Ri , and ⊥ is an extra element.

• For 1 ≤ j ≤ p, fj is a unary function: D ′ → D ∪ {⊥} such
that, for every t = (t1, . . . , tai) ∈ Di , we have fj (t) = tj for
1 ≤ j ≤ ai and ai = arRi , and fj (t) = ⊥ otherwise.

Any conjunctive acyclic query with or without disequalities can

be transformed into an acyclic conjonctive query (in the graph

sense) for this functional representation of data. Indeed, consider

the following acyclic queries:

φ(x ,y, z) ≡ ∃tR1(x ,y) ∧ R2(y, z) ∧ R3(x , z, t) ∧ R4(x ,y, z, t)

ϕ(x ,y, z) ≡ φ(x ,y, z) ∧ y , z ∧ y , t ∧ z , t

Let T be a join tree for φ. For each atomic subformula Ai in φ,
one introduce a variable ei and for each connected pair of vertices

(Ai ,Aj) in T , one describe the variables Ai and Aj have in com-

mon by introducing projection functions f1, ..., f4. The following
functional query φ ′(x ,y, z) can be built.

φ ′(x ,y, z) ≡ ∃e1e2e3e4

D1(e1) ∧ D2(e2) ∧ D3(e3) ∧ D4(e4)∧

f1(e1) = x ∧ f2(e1) = y ∧ f2(e2) = z∧
f1(e1) = f1(e4) ∧ f2(e1) = f2(e4)∧

f1(e2) = f2(e4) ∧ f2(e2) = f3(e4)∧

f1(e3) = f1(e4) ∧ f2(e3) = f3(e4) ∧ f3(e3) = f4(e4)

Similarly, ϕ ′ above is the result of the transformation of ϕ:

ϕ ′(x ,y, z) ≡ φ ′(x ,y, z)∧
f1(e1) , f2(e1) ∧ f2(e1) , f2(e2) ∧ f2(e2) , f1(e1)

To each query φ of functional signature σ , one can associate its

underlying graph G = (V ,E) with V = var(φ) and E defined by

(x ,y) ∈ E iff there exists an atomic formula (x) = д(y) for f ,д ∈ σ .
A query will be called acyclic if its associated graph is a tree. The

graph of formula φ ′(x ,y, z) (and ϕ ′(x ,y, z)) above is easily seen to

be acyclic. It is easily seen that a conjunctive query is acyclic, its

functional translation is.

Inequality (≤, <) constraints may force a relative ordering be-

tween the possible range of the variables and then permit to express

global constraints (recall the definition of the k-clique problem by

acyclic queries with inequality). By contrast, disequalities only in-

troduces exception in the possible interpretations: a constraint such

as x , y only says that among the possibly large interpretation

set for x and y, one must choose distinct values. Even repeated

for all pairs of variables, this could be handled by combinatorial

arguments that carry on the formula only. This idea can be handled

through the notion of cover of a table below.

Definition 4.16. Let E, F be two finite sets and f a tuple of k

functions s.t. f : E → Fk . A cover c of a table (E, f) is a tuple

(c1, . . . , ck) ∈ (F ∪ {⊔})
k
such that, for all x ∈ E, there exists some

i ≤ k , such that ci = fi (x). We denote by covers(E, f) the set of
covers of (E, f).

Covers can be compared according to the following definition.

Definition 4.17. A cover c′ ismore general than a cover c, denoted
c′ ≤ c if, for all i ≤ k , either ci = c

′
i or c

′
i = ⊔. A cover c of a table

(E, f) is minimal if this table has no more general cover.

Example 4.18. Provided c′ = (2, 1,⊔) and c = (2, 1, 1) are covers
of a set E by a triple f = (f1, f2, f3) then, c′ is more general than c.

The minimal cover set min-covers(E, f) is the set of all minimal

covers of of (E, f). A representative set of (E, f) is a subset E ′ ⊆ E
such that covers(E, f) = covers(E ′, f).

Example 4.19. Let E = {a,b, c,d, e}, F = {1, 2, 3, 4, 5} and f =
(f1, f2, f3) be the following tuple of unary functions over E:

f1 f2 f3 f4
a 1 2 4 5

b 1 5 1 5

c 3 2 4 5

d 3 5 3 5

e 5 2 4 5

f 2 2 4 5

The complete cover set of f overT (E, f) contains 64 tuples, that is

the following tuples: (1, 2, 3, ∗4), (1, 5, 4, ∗4), (3, 2, 1, ∗4), (⊔, 5, 4, ∗4)

and (∗1, ∗2, ∗3, 5) where ∗1 ∈ {⊔, 1, 2, 3, 5}, ∗2 ∈ {⊔, 2, 5}, ∗3 ∈

{⊔, 1, 3, 4} and ∗4 ∈ {⊔, 5} (a rough count gives 68 = 2+2+2+2+60

but 4 of them are counted twice). The (smaller) minimal cover set

of (E, f) is of size 4: {(1, 2, 3,⊔), (3, 2, 1,⊔), (⊔, 5, 4,⊔), (⊔,⊔,⊔, 5)}.

A representative set is {a,b, c,d}.

Also, given a k-tuple c = (c1, ..., ck) and i ∈ {1, ...,k}, c−i =
(c1, .., ci−1, ci+1, ..., ck). Similarly for f−i . Leta ∈ E, and i ∈ {1, ...,k},
let’s denote Eai = {x ∈ E : fi (x) , fi (a)}. Intuitively, E

a
i is what

remains to be covered of E by c−i when ci = fi (a) has been chosen

is some cover c.
The key remarks rely on the following easily proved combinato-

rial results. For every table (E, f):
(1) |min-covers(E, f)| ≤ k!.

Let E , ∅ and a ∈ E. It is easily seen that, for all tuple

c: c ∈ covers(E, f) iff there exists i ≤ k , s.t. ci = fi (a)
and c−i ∈ covers(Eai , f−i). When Eai = ∅, the cover can

be completed by ⊔ to make it minimal. So, the number of

minimal covers for (E, f) is bounded by д(k) verifying: д(0) =
1 and д(i) = i · д(i − 1) for i ≤ k , hence д(k) = k!.

(2) There exists a representative set of cardinality bounded by

O(k!).

Easily seen by recursively choosing some a ∈ E at each step

of the process described above.

Let F be a functional structure. Let φ(x) be an acyclic conjunctive

query with disequalities over a signature σ containing only unary

function symbols. Let T be the associated tree of φ(x). Suppose
φ(x) ≡ ∃zψ (x, z), that z is a leaf of T and y is a variable of x be the

parent of z in T . Query φ(x) can be written as follows:

φ(x) ≡ ψ0(x)∧∃z(P(z)∧
∧

1≤i≤m
дi (z) = д

′
i (y)∧

∧
1≤i≤k

fi (z) , f ′i (x))

where each дi ,д
′
i , fi , f

′
i ∈ σ , P(z) is a subformula involving only z.

Term f ′i (x) stands for f
′
i (x j) for some x j of x. Query φ(x) can be

rewritten as:

ψ0(x) ∧ ∃z ∈ E(y)
∧

1≤i≤k

fi (z) , f ′i (x)

where E(y) stands as a shortcut for P ∩
⋂
i≤m д−1

i (д
′
i (y)). Note that

a partition of the domain can be obtained using pairwise distincts

E(y), y ∈ Dom(F). Then, the query can be expressed as:

ψ0(x) ∧ f ′(x) < cover(E(y), f).
Considering E ′(y) a minimal representative set of (E(y), f), query

φ(x) can be equivalently seen as:

ψ0(x) ∧ f ′(x) < cover(E ′(y), f)
.

But each E ′(y) is of size bounded by some h = O(k!). Hence,

the database F can be enriched into a new database F′ by adding a

linear number of new information bits describing, for each a ∈ F ,
the content of the minimal representative set E ′(a) and the full

description of its minimal cover. More precisely, let Ej , fi, j , i =
1, ...,k , j = 1, ...,h

• y ∈ Ej ⇔ |E
′(y)| ≥ j;

• vj (y) is the j
th

element of E ′(y) if |E ′(y)| ≥ j; otherwise it
is an arbitrary value ;

• set fi, j = fi ◦vj .

This yields a new formula φ ′(x̄) equivalent to φ(x)

φ ′(x) ≡
∨

1≤j≤h

ψj (x) where

ψj (x) ≡ ψ0(x) ∧ Ej (y) ∧
∧

1≤i≤k

fi, j (y) , f ′i (x).

Hence, φ(x) can be rewritten into φ ′(x) a union of acyclic con-

junctive queries without existentially quantified variable z such

that:

φ(F) = φ ′(F′).
Database F′ can be obtained in linear time in ||F||. By iterating this

process on Boolean query with a richer one can obtain a union of

acyclic and quantifier free conjunctive queries. More generally, the

total time to compute the result of an ACQ, query can be lowered

to:

f (||φ ||) · ||φ(D)|| · ||D||.
for some function f and the enumeration of the result can be

done in linear (in the size of the database) delay. Combining with

methods of theorem 4.8, the following holds.

Theorem 4.20 ([11]). AssumingMat-Mul, any self-join free query
φ ∈ ACQ, can be enumerated with linear-time preprocessing and

constant-time delay if and only if it is free-connex.

Note that the result above implies that for free-connex acyclic

queries with inequalities the total time for query answering is

f (||φ ||) · (|φ(D)| + ||D||).

Additional extensions for enumeration. Numerous other variants

of CQ have been considered from the point of view of enumeration.

For example : extensions of CQ with functional dependencies [21],

tree like databases with X properties [10] , random acces random

order enumeration for [23]. A much thorough review of constant

delay enumeration can be found in [14].

4.4 Counting results of ACQ queries

We consider here the counting problem, denoted ♯CQ, associated

to conjunctive query answering, that is: given φ ∈ CQ, given a

database D, return |φ(D)| i.e. the number of solutions of query φ
over D. Such task is usually harder than deciding. However, as

shown in this section, large islands of tractability can be found

and the frontier between tractable and intractable problems be

delineated.

As a generalization of #3SAT, it is easy to see that counting so-

lutions to quantifier free conjunctive queries, for short the ♯CQ
0

problem, which correspond to queries without projections in the

database view, is ♯P-complete. The effect of adding existential quan-

tification (i.e. projections) really increases the expressive power: it

is proved that counting solutions of general conjunctive queries

becomes even harder than ♯P and that ♯CQ is ♯ ·NP-complete [12].

What is the situation for acyclic queries? We first present a

tractability result that also hold in the more general context, intro-

duced below, of weighted counting. Let F be a field andD be a finite

structure of domain D. A F-weight function for D is a mapping

w : D → F. If a is a tuple of elements of D of length k , the weight
of a is

w(a) =
k∏
i=1

w(ai).

The weighted counting problem for CQ, denoted ♯FCQ, is the

following problem: given φ ∈ CQ, given D and an F-weighted
functionw , return the sum of the weights of all solutions, i.e., the

value of ∑
a∈φ(D)

w(a).

When φ is acyclic the counting and the weighted counting prob-

lems are respectively denoted by ♯ACQ and ♯FACQ.

Not too surprisingly, the weighted counting problem associated

to projection (i.e. quantifier) free acyclic query ♯FACQ0
is tractable

in a very strong sense (one suppose that, in F, arithmetic operations

can be handled in polynomial time).

Theorem 4.21. The combined complexity of ♯FACQ0
is polyno-

mial time see [34]). In particular, there is an algorithm that upon input

a quantifier free acyclic query φ and a database D, output |φ(D)| in
time O(||φ || · ||D||2) (see [70]).

More surprisingly, the effect of adding even a single existen-

tial quantification to acyclic queries results in a huge gain of ex-

pressive power. Let G = (V ,E) be a bipartite graph V = A ∪ B,
A = {a1, ...,an },B = {b1, ...,bn }. Let’s consider the following

queries (a1, ...,an can be viewed as constants):

φ(x1, ...,xn) =
n∧
i=1

E(ai ,xi), ψ (x1, ...,xn) = ∃t
n∧
i=1

E(ai ,xi)∧E(t ,xi)

(2)

A careful analysis shows that the number of perfect matchings

in G is equal to

|φ(G)| − |ψ (G)|.

x2

x1

y1

y2 y3 x6

x7

y4x4x3

y5

x8

y6

x5
y7

x9

Figure 2: The hypergraph H of a query φ(y) with S =

free(φ) = {y1, ...,y7}.

Consequently, the combined complexity for counting ACQ is

#P-complete [70] and, as shown by the preceding example, even if

the query as only one quantified variable. To summarize:

Theorem 4.22. The combined complexity of

• ♯CQ
0
and ♯ACQ are ♯P-complete [70]

• ♯CQ is ♯ ·NP-complete [12]

A particularity of formula ψ (x) in Equation 2 is that the free

variables are not connected to each other and the hypergraph (ac-

tually, a graph) of ψ (x) forms a star whose center is the unique

quantified variable t . Elaborating on that remark, a new parameter,

called quantifier-star size, was introduced in [34], to measure how

free variables are spread in the formula. This will be central to

characterize tractability for counting.

Let φ(x) be an acyclic conjonctive query,H = (V ,E) its associ-
ated hypergraph and S ⊆ V such that S = free(φ). We suppose to

allege the notation that there is no edges e ∈ E such that e ⊆ S
i.e. fully included in the free variables set S . For E ′ ⊆ E, the hy-
pergraph induced by E ′ is H[E ′] = (

⋃
e ∈E′ e,E

′). For V ′ ⊆ V ,
H[V ′] = (V ′, {e ∩ V ′ | e ∈ E, e ∩ V ′ , ∅}). For x ,y ∈ V , a path
between x and y is a subset of edges e1, ..., ek ∈ E such that x ∈ e1,

y ∈ ek , and for all i ≤ k − 1, ei ∩ ei+1 , ∅. An independent set I of
H is a subset of V such that for all x ,y ∈ I there is no e ∈ E such

that x ∈ E and y ∈ E.
A central notion in the following is that of S-component, defined

in [11].

Definition 4.23 (S-component). Let H = (V ,E), S be as above.

The S-component of e ∈ E is the hypergraphH[E ′] where E ′ is the
set of all edges e ′ ∈ E⊈S such that there is a path from e − S to

e ′ − S inH[V − S].
A subhypergraphH ′ ofH is an S-component if there is an edge

e ∈ E⊈S such thatH ′ is the S-component of e .

Example 4.24. In Figure 2 an hypergraph H of an acyclic con-

junctive query φ(y) is given with S = free(φ) = {y1, ...,y7}. It has

three S-components are illustrated by Figure 3.

Given S ⊆ V , one can decompose H = (V ,E) into disjoint

S-components. A measure how S vertices are "spread" into each

components through the notion of independence.

x3

y1y1

y2y2

x2

x1
y3 x6

x7

y4x4

y5

x8

y6 y6

x5
y7

x9

Figure 3: The decomposition of hypergraph H of Figure 2
into three edge distinct S-components. The central compo-
nent (in yellow) contains an independent set of size 3 which
is here the maximal size among all independent set of S-
components

Definition 4.25 (S-star size [34]). LetH = (V ,E) be a hypergraph,
S ⊆ V . and k ∈ N. The S-star size ofH is the maximum size of an

independent set of an S-component ofH .

Definition 4.26 (quantified-star size [34]). The quantified star size

of an acyclic conjunctive formula φ(x) is the S-star size of the

hypergraphH associated toφ(x), where S is the set of free variables
in ϕ(x).

Note that being of quantified star size 1 is equivalent to being

free-connex. A class C of acyclic conjunctive queries is of bounded

quantified star size if there is a s ∈ N such that every φ ∈ C is of

quantified-star size bounded by s .

Example 4.27. In Figure 3, the maximal size of an independent

set among all S-components is three. For example : {y3,y5,y6}.

Similarly, the quantified star size of formulaψ (x) in Equation 2 is

n, the domain size of the database.

To understand why the decomposition into S-components has

influence on the complexity, let us make several remarks:

• A query φ(x) can be decomposed into φ1∧φ2∧· · ·∧φm ∧ψ0

where m is the number of S-components of it associated

hypergraph andψ0 is a subformula containing free variables

only.

• Let i ∈ {1, ..,n} and suppose subquery φi is of maximal

quantified-star size s ∈ N. Then, it is not hard to see there

exists ϕ1, ...,ϕs atomic formulas of φi that contains all the
free variables free(φi) (recall s is the size of the maximal

independent set in the S-component associated to φi).
• Since all free variables of φi are packed into at most s atomic

formulas, given a database D and using technics similar to

Yannakakis algorithm one can built a new relation Ri =
φi (D) in time O(||D||s) and replace each φi by a new atomic

formulaψi on free variables only. Let’s call D′ the collection
of all relations Ri
• Now the queryψ = ψ1 ∧ψm ∧ψ0 is acyclic and is such that

ψ (D′) = φ(D). One conclude using Theorem 4.21.

The arguments above give the basic intuition of the result below.

The hardness result can be proved by reduction.

Theorem 4.28 ([34]). There is an algorithm for the problem ♯ACQ

that runs in time (||D|| + ||φ ||)O (k) where k is the quantified star

size of the input query Φ. Moreover, if a class of acyclic conjunctive

queries does not have a bounded quantifier-star size, then its associated

counting problem is #W[1] hard. It is therefore not FPT

The quantified star size of a query φ can be computed in poly-

nomial time. See [25, 35] for further use of this measure for the

counting complexity of CQ.

4.5 Allowing negations: from queries to CSP
A natural extension is to allow negations of atoms in conjunctive

queries. However such a possibility results in a huge gain of ex-

pressive power even in contexts that were previously tractable.

The main reason is related to its connexion with the satisfiability

problem and the succinctness it permits. Consider, as an example,

the Boolean clause:

x1 ∨ x2 ∨ x3 ∨ x4 ∨ ¬x5 ∨ ¬x6

Such a clause is satisfied by all possible assignments of x1, ...,x6

except (0, 0, 0, 0, 1, 1). By allowing negations, we can see such a

clause as the query that tests whether D = ¬R(x1, ...,x6) where the

domain of D is {0, 1} and R = {(0, 0, 0, 0, 1, 1)}.
It is then clear that α-acyclic queries can not be tractable. Indeed

letφ(x) be any conjunctive query. Extending the notion of acyclicity
to negative atoms as well, the queryφ ′(x) = φ(x)∧¬R(x)where R is

a new relation symbol is acyclic. Upon a database D, defining D′ as
D extended with the empty relation R, it is clear that:φ(D) = φ ′(D′).

Tractability fragments have to be searched into a more restricted

version of acyclicity for hypergraph: β-acyclicity.

Definition 4.29. A query is β-acyclic if its associated hypergraph

H is α-acyclic and all its subhypergraphs H ′ ⊆ H are also α-
acyclic.

Definition 4.30. A negative conjunctive query, NCQ, over a sig-

nature σ is a formula of the form

φ(x) ≡ ∃y
∧
i
¬Ri (zi)

where zi is a tuple of variables from x and y, Ri ∈ σ . A NCQ query

is β-acyclic if its associated hypergraph is β-acyclic.

We call Triangle the hypothesis that the existence of a triangle
in a graph of n vertices can not be decided in time O(n2

logn). The
following result holds.

Theorem 4.31 ([17]). Assuming Triangle, an NCQ is decidable

in quasi-linear time iff it is β-acyclic.

Roughly speaking, an NCQ can be seen as a negative encoding of

constraint satisfaction problems (CSP) in the context where the arity

of constraints is not fixed (under the simpler form of a sat problem,

each disjunctive clause is represented by a negative atom ¬R(x)
for which the associated relation R contains only one element). To

prove the quasi-linear time algorithm of Theorem 4.31 two main

tools are used:

• the well-known Davis-Putnam resolution procedure that

replace two clauses of the form C1 ∨ x , C2 ∨ ¬x , by their

resolvent C1 ∨C2.

• Hypergraphs that are β-acyclic can be characterized in terms

of an an elimination ordering of their vertices (through the

notion of nest point [38]). This ordering will be used to drive

the Davis-Putnam procedure in the choice of the resolvent

variable.

Partial characterizations for the complexity of signed queries,

i.e. of queries having both negative and positive atoms are given

in [18].

Complexity issues for CSP, in particular their counting ver-

sions, based on formula restrictions has deserved a lot of atten-

tions [71, 73]. New measures based on hypergraph decompositions

and interesting connexions with domains such as knowledge compi-

lation have been established that have helped understanding where

the frontier for tractability is (see [19] for a survey and [20] also

for the special case of weighted counting for β-acyclic CSP).

5 PREFIX RESTRICTED QUERIES FOR
COUNTING AND ENUMERATION

In this part we study the more unusual setting of FO with second

order free variables. More precisely, we consider FO queries of the

form φ(x,X) where x and X are respectively free first-order and

second-order variables. Recalling Fagin’s theorem [40], it is clear

that a such query language is highly expressive.

One approach to find tractable fragments is to restrict the quan-

tifier prefixes of formulas. For any k , the fragments Σk and Πk of

FO are the classes of all formulae in prenex normal form with a

quantifier prefix with k alternations starting with an existential or

an universal quantifier, respectively. When restricted to relations

only as second order variables, we call this fragments Σrel

k , Πrel

k . The

well-known examples below shed some light on the expressiveness

of queries under these restrictions.

Example 5.1. Let DNF (resp. 3DNF) be the problem of deciding

if a propositional formula in disjunctive normal-form (resp. with at

most 3 literals per clause) is satisfiable. Letσ3DNF = (D0,D1,D2,D3).

Given a 3DNF-formula φ over variables V , we construct a cor-

responding σ -structure Aφ with universe V such that for any

x1,x2,x3 ∈ V , Di (x1,x2,x3) holds iff
∧

1≤j≤i ¬x j ∧
∧
i<j≤3

x j ap-
pears as a disjunct. Now consider the σ -formula Φ0(T) below:

Φ0(T) ≡ ∃x∃y∃z ((
D0(x ,y, z) ∧T (x) ∧T (y) ∧T (z)

)
∨
(
D1(x ,y, z) ∧ ¬T (x) ∧T (y) ∧T (z)

)
∨
(
D2(x ,y, z) ∧ ¬T (x) ∧ ¬T (y) ∧T (z)

)
∨
(
D3(x ,y, z) ∧ ¬T (x) ∧ ¬T (y) ∧ ¬T (z)

))
Formula Φ1 is in Σrel

1
. Moreover, there is a bijection between the

set of relations T such that Aφ |= Φ0(T) and the set of satisfying

assignments of φ.
To express DNF, one can consider the language with predicate

V for variables, D for disjunct (whose union represent the domain)

and two predicate P(d,v) (resp. N (d,v)) representing the fact that

variable v appears positively (resp. negatively) in disjunct D and

write the following Φ2 ∈ Σ
rel

2
:

Φ2 ≡ ∃d∃v D(d) ∧ (P(d,v) → T (v)) ∧ (N (d,v) → ¬T (v))

Example 5.2. The formula Ψ0 ∈ Σ0 and Ψ1 ∈ Π
rel

1
below express

respectively the existence of a 3-clique (on an ordered graph) and

of a clique:

Ψ0(v) ≡ v1 < v2 < v3 ∧ E(v1,v2) ∧ E(v2,v3) ∧ E(v3,v1)

Ψ1(T) ≡ ∀v1∀v2 T (v1) ∧T (v2) → E(v1,v2)

5.1 Counting
In [72], the prefix restricted approach has been used to characterized

counting classes above ♯P. Given a class L (here a prefix class) we

denote by ♯L , the class of functions

♯ ·φ : D −→ |φ(D)| = |{(a,A) : D |= φ(a,A)}|

for formulas φ(x,X) ∈ L . It holds that:

Theorem 5.3 ([72]). On ordered structures:

#Σ
rel

0
= #Π

rel

0
⊂ #Σ

rel

1
⊂ #Π

rel

1
⊂ #Σ

rel

2
⊂ #Π

rel

2
= #FO

rel = ♯P.

Moreover, every function in #Σ
rel

0
is computable in polynomial time.

In [5] a quantitative extension of second-order logic, called QSO

is defined that allow to use first-order and second-order sum and

product as closure operators on top of second-order formulas. The

restriction of QSO to first-order and second-order sum, called

ΣQSO(FO), provides a hierarchy, ΣQSO(Σrel

i), ΣQSO(Π
rel

i) for i ≥ 0

similar (in spirit but different on the lowest classes) to the one

of [72]. In [33], an analog of [72] that allows quantifications over

functions too is studied. As expected the hierarchy is shorter :

#Σ0

⊂
#AC

0

⊂

⊂
#Σ1

⊂
#Π1 = #FO = ♯P. (3)

where #AC
0
is the class of functions that computes the number

of accepting proof trees of FO-uniform families of circuit (or simi-

larly that counts the number of skolem functions for existentially

quantified variables of a FO formula).

Not surprisingly with counting problems, the classes in the hi-

erarchies become expressive quite fast. For example, already #Σ
rel

1

contains ♯P-complete problems (#3DNF in Example 5.1). However,

for such functions, it can be worth to relaxe the constraint of ex-

act and certain computations and look for algorithms that provide

good approximations with high probability for them. This is done

through the concept of randomized approximation that follows.

Definition 5.4. Let f : {0, 1}∗ → N be a counting problem. f
is said to have a fully polynomial-time randomized approximation

scheme (FPRAS), if there is a randomized algorithmM working on

inputs (x , ϵ) with x ∈ {0, 1}∗, ϵ ∈ Q such that for all such inputs:

• Pr

[
|M(x ,) − f (x)| > · | f (x)|

]
< 1

4
, where M(x , ϵ) is the

random variable describing the output ofM on input (x , ϵ),
• the running time ofM on input (x , ϵ) is bounded by a poly-

nomial in |x |, 1

ϵ .

One early and celebrated FPRAS was obtained in [57] for the

problem ♯DNF. It served as an inspirational method for proving that

#Σ
rel

1
(and even some syntactic extension of it) admits a FPRAS. It is

also the case for the distinct classes: #Σ1 (from [33]) and ΣQSO(Σrel

1
)

(from [5]). Finding good approximation algorithms for aggregate

functions (and the related problem of random algorithm for uniform

generation) has deserved even more attention recently (see for

example [4]) although it is not clear yet if classes that admit FPRAS

can be characterized.

5.2 Enumeration
One can define similarly enumeration classes related to prefix re-

stricted classes of queries. Given a class L , enum ·L notes the

collection of enum·φ problems forφ ∈ L . In [37], a characterization

of an hierarchy of enumeration problems is given.

Theorem 5.5 ([37]). On linearly ordered structures, the following

hold:

enum·Σ0 ⊊ enum·Σ1 ⊊ enum·Π1 ⊊ enum·Σ2 ⊊ enum·Π2.

Moreover:

• enum·Σ0 can be enumerated with polynomial time precompu-

tation and constant delay

• enum·Σ1 can be enumerated with polynomial delay

• enum·Π1 can not be enumerated with polynomial delay unless

P = NP.

Since a formula φ(x,X) ∈ Σ0 has second-order free variable the

constant delay bound is questionable at first sight. The algortihmic

model used is the following: it has an output tape on which the cur-

rent output is written. During the enumeration phase the algorithm

only modifies the content of this tape to transform the previous so-

lution into a new one. In the Σ0 case, by relating to the well-known

problem of Gray code enumeration, one can find an enumeration

ordering such that the delta between two consecutive solutions

only affects a constant part of the output and thus can be performed

in constant time resulting in a procedure with delta-constant delay

(see also [4] for additional results on the subject).

6 CONCLUSION
In this paper we have presented a subjective panorama on the com-

plexity of query evaluations. We have put the focus on new com-

plexity measures that have been introduced (in particular to deal

with enumeration), structural decompositions and parameters that

allows to design efficient algorithms and conditional lower bounds.

We have considered various algoritmic task related to query an-

swering such as decision, computation of the answer set, counting,

enumeration. Some new framework such as query evaluation under

updates (see [3, 15, 16, 54, 55]) for which counting or enumerating

make sense, have been ignored in the paper. They have developped

so deeply in the last years that they deserve independent surveys.

REFERENCES
[1] Antoine Amarilli, Pierre Bourhis, Louis Jachiet, and Stefan Mengel. 2017. A

Circuit-Based Approach to Efficient Enumeration. In 44th International Collo-

quium on Automata, Languages, and Programming, ICALP 2017, July 10-14, 2017,

Warsaw, Poland (LIPIcs), Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and

Anca Muscholl (Eds.), Vol. 80. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,

111:1–111:15. https://doi.org/10.4230/LIPIcs.ICALP.2017.111

https://doi.org/10.4230/LIPIcs.ICALP.2017.111

[2] Antoine Amarilli, Pierre Bourhis, Stefan Mengel, and Matthias Niewerth. 2019.

Constant-Delay Enumeration for Nondeterministic Document Spanners. In 22nd

International Conference on Database Theory, ICDT 2019, March 26-28, 2019, Lis-

bon, Portugal (LIPIcs), Pablo Barceló and Marco Calautti (Eds.), Vol. 127. Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, 22:1–22:19. https://doi.org/10.4230/

LIPIcs.ICDT.2019.22

[3] Antoine Amarilli and Benny Kimelfeld. 2019. Uniform Reliability of Self-Join-

Free Conjunctive Queries. CoRR abs/1908.07093 (2019). arXiv:1908.07093 http:

//arxiv.org/abs/1908.07093

[4] Marcelo Arenas, Luis Alberto Croquevielle, Rajesh Jayaram, and Cristian Riveros.

2019. Efficient Logspace Classes for Enumeration, Counting, and Uniform Gen-

eration. In Proceedings of the 38th ACM SIGMOD-SIGACT-SIGAI Symposium on

Principles of Database Systems, PODS 2019, Amsterdam, The Netherlands, June 30

- July 5, 2019, Dan Suciu, Sebastian Skritek, and Christoph Koch (Eds.). ACM,

59–73. https://doi.org/10.1145/3294052.3319704

[5] Marcelo Arenas, Martin Muñoz, and Cristian Riveros. 2017. Descriptive Com-

plexity for counting complexity classes. In 32nd Annual ACM/IEEE Symposium

on Logic in Computer Science, LICS 2017, Reykjavik, Iceland, June 20-23, 2017. IEEE

Computer Society, 1–12. https://doi.org/10.1109/LICS.2017.8005150

[6] Stefan Arnborg, Jens Lagergren, and Detlef Seese. 1991. Easy Problems for

Tree-Decomposable Graphs. J. Algorithms 12, 2 (1991), 308–340.

[7] Sanjeev Arora and Boaz Barak. 2009. Computational Complexity. Cambridge

University Press.

[8] Guillaume Bagan. 2006. MSO Queries on Tree Decomposable Structures Are

Computable with Linear Delay. In Computer Science Logic (CSL). 167–181.

[9] Guillaume Bagan. 2009. Algorithmes et complexité des problèmes d’énumération

pour l’évaluation de requêtes logiques. (Algorithms and complexity of enumeration

problems for the evaluation of logical queries). Ph.D. Dissertation. University of

Caen Normandy, France.

[10] Guillaume Bagan, Arnaud Durand, Emmanuel Filiot, and Olivier Gauwin. 2010.

Efficient Enumeration for Conjunctive Queries over X-underbar Structures. In

Computer Science Logic, 24th International Workshop, CSL 2010, 19th Annual Con-

ference of the EACSL, Brno, Czech Republic, August 23-27, 2010. Proceedings (Lec-

ture Notes in Computer Science), Anuj Dawar and Helmut Veith (Eds.), Vol. 6247.

Springer, 80–94. https://doi.org/10.1007/978-3-642-15205-4_10

[11] Guillaume Bagan, Arnaud Durand, and Etienne Grandjean. 2007. On Acyclic

Conjunctive Queries and Constant Delay Enumeration. In Computer Science Logic

(CSL). 208–222.

[12] Michael Bauland, Philippe Chapdelaine, Nadia Creignou, Miki Hermann, and

Heribert Vollmer. 2004. An Algebraic Approach to the Complexity of Gener-

alized Conjunctive Queries. In Seventh International Conference on Theory and

Applications of Satisfiability Testing, SAT’04, Vancouver, BC, Canada.

[13] Catriel Beeri, Ronald Fagin, David Maier 0001, and Mihalis Yannakakis. 1983. On

the Desirability of Acyclic Database Schemes. J. ACM 30, 3 (1983), 479–513.

[14] Christoph Berkholz, Fabian Gerhardt, and Nicole Schweikardt. 2020. Constant

delay enumeration for conjunctive queries: a tutorial. SIGLOG News 7, 1 (2020),

4–33. https://doi.org/10.1145/3385634.3385636

[15] Christoph Berkholz, Jens Keppeler, and Nicole Schweikardt. 2017. Answering

Conjunctive Queries under Updates. In Proceedings of the 36th ACM SIGMOD-

SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 2017, Chicago,

IL, USA, May 14-19, 2017, Emanuel Sallinger, Jan Van den Bussche, and Floris

Geerts (Eds.). ACM, 303–318. https://doi.org/10.1145/3034786.3034789

[16] Christoph Berkholz, Jens Keppeler, and Nicole Schweikardt. 2018. Answering

UCQs under Updates and in the Presence of Integrity Constraints. In 21st Inter-

national Conference on Database Theory, ICDT 2018, March 26-29, 2018, Vienna,

Austria (LIPIcs), Benny Kimelfeld and Yael Amsterdamer (Eds.), Vol. 98. Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, 8:1–8:19. https://doi.org/10.4230/

LIPIcs.ICDT.2018.8

[17] Johann Brault-Baron. 2012. A Negative Conjunctive Query is Easy if and only if

it is Beta-Acyclic. In Computer Science Logic (CSL). 137–151.

[18] Johann Brault-Baron. 2013. De la pertinence de l’énumération : complexité en

logiques propositionnelle et du premier ordre. (The relevance of the list: propositional

logic and complexity of the first order). Ph.D. Dissertation. University of Caen

Normandy, France.

[19] Florent Capelli. 2016. Structural restrictionsof CNF-formulas: applications to model

counting and knowledge compilation. Ph.D. Dissertation. University of Paris-

Diderot, France.

[20] Florent Capelli. 2017. Understanding the complexity of #SAT using knowledge

compilation. In 32nd Annual ACM/IEEE Symposium on Logic in Computer Science,

LICS 2017, Reykjavik, Iceland, June 20-23, 2017. IEEE Computer Society, 1–10.

https://doi.org/10.1109/LICS.2017.8005121

[21] Nofar Carmeli and Markus Kröll. 2018. Enumeration Complexity of Conjunc-

tive Queries with Functional Dependencies. In 21st International Conference on

Database Theory, ICDT 2018, March 26-29, 2018, Vienna, Austria (LIPIcs), Benny

Kimelfeld and Yael Amsterdamer (Eds.), Vol. 98. Schloss Dagstuhl - Leibniz-

Zentrum für Informatik, 11:1–11:17. https://doi.org/10.4230/LIPIcs.ICDT.2018.11

[22] Nofar Carmeli and Markus Kröll. 2019. On the Enumeration Complexity of

Unions of Conjunctive Queries. In Proceedings of the 38th ACM SIGMOD-SIGACT-

SIGAI Symposium on Principles of Database Systems, PODS 2019, Amsterdam, The

Netherlands, June 30 - July 5, 2019, Dan Suciu, Sebastian Skritek, and Christoph

Koch (Eds.). ACM, 134–148. https://doi.org/10.1145/3294052.3319700

[23] Nofar Carmeli, Shai Zeevi, Christoph Berkholz, Benny Kimelfeld, and Nicole

Schweikardt. 2019. Answering (Unions of) Conjunctive Queries using Ran-

dom Access and Random-Order Enumeration. CoRR abs/1912.10704 (2019).

arXiv:1912.10704 http://arxiv.org/abs/1912.10704

[24] A K Chandra and P M Merlin. 1977. Optimal Implementation of conjunctive

queries in relational databases. In Proceedings of the 9th Annual ACM Symposium

on Theory of Computing, ACM New York (Ed.). 77–90.

[25] Hubie Chen and Stefan Mengel. 2017. The logic of counting query answers.

In 32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017,

Reykjavik, Iceland, June 20-23, 2017. IEEE Computer Society, 1–12. https://doi.

org/10.1109/LICS.2017.8005085

[26] Don Coppersmith and Shmuel Winograd. 1990. Matrix Multiplication via Arith-

metic Progressions. J. Symb. Comput. 9, 3 (1990), 251–280. https://doi.org/10.

1016/S0747-7171(08)80013-2

[27] Bruno Courcelle. 1990. Graph Rewriting: An Algebraic and Logic Approach. In

Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics

(B). Elsevier, 193–242.

[28] Bruno Courcelle. 2009. Linear delay enumeration and monadic second-order

logic. Discrete Applied Mathematics 157, 12 (2009), 2675–2700.

[29] Bruno Courcelle. 2009. Linear delay enumeration and monadic second-order

logic. Discrete Applied Mathematics 157, 12 (2009), 2675–2700.

[30] Reinhard Diestel. 2006. Graph Theory. Springer Science & Business Media.

[31] Johannes Doleschal, Benny Kimelfeld, Wim Martens, and Liat Peterfreund. 2020.

Weight Annotation in Information Extraction. In 23rd International Conference on

Database Theory, ICDT 2020, March 30-April 2, 2020, Copenhagen, Denmark (LIPIcs),

Carsten Lutz and Jean Christoph Jung (Eds.), Vol. 155. Schloss Dagstuhl - Leibniz-

Zentrum für Informatik, 8:1–8:18. https://doi.org/10.4230/LIPIcs.ICDT.2020.8

[32] Arnaud Durand and Etienne Grandjean. 2007. First-order queries on structures

of bounded degree are computable with constant delay. ACM Trans. Comput. Log.

8, 4 (2007).

[33] Arnaud Durand, Anselm Haak, Juha Kontinen, and Heribert Vollmer. 2016. De-

scriptive Complexity of #AC
0
Functions. In 25th EACSL Annual Conference on

Computer Science Logic, CSL 2016, August 29 - September 1, 2016, Marseille, France

(LIPIcs), Jean-Marc Talbot and Laurent Regnier (Eds.), Vol. 62. Schloss Dagstuhl -

Leibniz-Zentrum für Informatik, 20:1–20:16. https://doi.org/10.4230/LIPIcs.CSL.

2016.20

[34] Arnaud Durand and Stefan Mengel. 2014. The complexity of weighted counting

for acyclic conjunctive queries. J. Comput. Syst. Sci. 80, 1 (2014), 277–296.

[35] Arnaud Durand and Stefan Mengel. 2015. Structural Tractability of Counting of

Solutions to Conjunctive Queries. Theory Comput. Syst. 57, 4 (2015), 1202–1249.

https://doi.org/10.1007/s00224-014-9543-y

[36] Arnaud Durand, Nicole Schweikardt, and Luc Segoufin. 2014. Enumerating

answers to first-order queries over databases of low degree. In Symp. on Principles

of Database Systems (PODS).

[37] Arnaud Durand and Yann Strozecki. 2011. Enumeration Complexity of Logical

Query Problems with Second-order Variables. In Conf. on Computer Science Logic

(CSL).

[38] Duris, David. 2012. Some characterizations of γ and β -acyclicity of hypergraphs.

Inform. Process. Lett. 112, 16 (Aug. 2012).

[39] Zdeněk Dvořák, Daniel Král, and Robin Thomas. 2010. Deciding First-Order

Properties for Sparse Graphs. In Symp. on Foundations Of Computer Science (FOCS).

133–142.

[40] R. Fagin. 1974. Generalized first-order spectra and polynomial-time recognizable

sets. In Proceedings Complexity of Computation, R. M. Karp (Ed.). Vol. 7. SIAM-

AMS, 27–41.

[41] R. Fagin. 1983. Degrees of acyclicity for hypergraphs and relational database

schemes. 30, 3 (1983), 514–550.

[42] Fernando Florenzano, Cristian Riveros, Martín Ugarte, Stijn Vansummeren, and

Domagoj Vrgoc. 2020. Efficient Enumeration Algorithms for Regular Document

Spanners. ACM Trans. Database Syst. 45, 1 (2020), 3:1–3:42. https://doi.org/10.

1145/3351451

[43] Jörg Flum and Martin Grohe. 2006. Parameterized Complexity Theory. Springer-

Verlag.

[44] Dominik D. Freydenberger, Benny Kimelfeld, and Liat Peterfreund. 2018. Joining

Extractions of Regular Expressions. In Proceedings of the 37th ACM SIGMOD-

SIGACT-SIGAI Symposium on Principles of Database Systems, Houston, TX, USA,

June 10-15, 2018, Jan Van den Bussche and Marcelo Arenas (Eds.). ACM, 137–149.

https://doi.org/10.1145/3196959.3196967

[45] Markus Frick and Martin Grohe. 2001. Deciding first-order properties of locally

tree-decomposable structures. J. ACM 48, 6 (2001), 1184–1206.

[46] Markus Frick and Martin Grohe. 2004. The complexity of first-order and monadic

second-order logic revisited. Ann. Pure Appl. Logic 130, 1-3 (2004), 3–31.

[47] Jakub Gajarský, Petr Hlinený, Jan Obdrzálek, Daniel Lokshtanov, and M. S. Ra-

manujan. 2016. A New Perspective on FO Model Checking of Dense Graph

https://doi.org/10.4230/LIPIcs.ICDT.2019.22
https://doi.org/10.4230/LIPIcs.ICDT.2019.22
http://arxiv.org/abs/1908.07093
http://arxiv.org/abs/1908.07093
http://arxiv.org/abs/1908.07093
https://doi.org/10.1145/3294052.3319704
https://doi.org/10.1109/LICS.2017.8005150
https://doi.org/10.1007/978-3-642-15205-4_10
https://doi.org/10.1145/3385634.3385636
https://doi.org/10.1145/3034786.3034789
https://doi.org/10.4230/LIPIcs.ICDT.2018.8
https://doi.org/10.4230/LIPIcs.ICDT.2018.8
https://doi.org/10.1109/LICS.2017.8005121
https://doi.org/10.4230/LIPIcs.ICDT.2018.11
https://doi.org/10.1145/3294052.3319700
http://arxiv.org/abs/1912.10704
http://arxiv.org/abs/1912.10704
https://doi.org/10.1109/LICS.2017.8005085
https://doi.org/10.1109/LICS.2017.8005085
https://doi.org/10.1016/S0747-7171(08)80013-2
https://doi.org/10.1016/S0747-7171(08)80013-2
https://doi.org/10.4230/LIPIcs.ICDT.2020.8
https://doi.org/10.4230/LIPIcs.CSL.2016.20
https://doi.org/10.4230/LIPIcs.CSL.2016.20
https://doi.org/10.1007/s00224-014-9543-y
https://doi.org/10.1145/3351451
https://doi.org/10.1145/3351451
https://doi.org/10.1145/3196959.3196967

Classes. In Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Com-

puter Science, LICS ’16, New York, NY, USA, July 5-8, 2016, Martin Grohe, Eric

Koskinen, and Natarajan Shankar (Eds.). ACM, 176–184. https://doi.org/10.1145/

2933575.2935314

[48] Jakub Gajarský, Stephan Kreutzer, Jaroslav Nesetril, Patrice Ossona de Mendez,

Michal Pilipczuk, Sebastian Siebertz, and Szymon Toru’nczyk. 2018. First-Order

Interpretations of Bounded Expansion Classes. In 45th International Colloquium

on Automata, Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague,

Czech Republic (LIPIcs), Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel

Marx, and Donald Sannella (Eds.), Vol. 107. Schloss Dagstuhl - Leibniz-Zentrum

für Informatik, 126:1–126:14. https://doi.org/10.4230/LIPIcs.ICALP.2018.126

[49] Francois Le Gall. 2014. Powers of tensors and fast matrix multiplication. In Intl.

Symp. on Symbolic and Algebraic Computation (ISSAC).

[50] Etienne Grandjean and Frédéric Olive. 2004. Graph properties checkable in linear

time in the number of vertices. J. Comput. Syst. Sci. 68, 3 (2004), 546–597.

[51] Martin Grohe. 2001. Generalized Model-Checking Problems for First-Order Logic.

In Symp. on Theoretical Aspects in Computer Science (STACS).

[52] Martin Grohe. 2008. Logic, graphs, and algorithms. In Logic and Automata.

[53] Martin Grohe, Stephan Kreutzer, and Sebastian Siebertz. 2017. Deciding First-

Order Properties of Nowhere Dense Graphs. J. ACM 64, 3 (2017), 17:1–17:32.

[54] Muhammad Idris, Martín Ugarte, and Stijn Vansummeren. 2017. The Dynamic

Yannakakis Algorithm: Compact and Efficient Query Processing Under Updates.

In Proceedings of the 2017 ACM International Conference on Management of Data,

SIGMOD Conference 2017, Chicago, IL, USA, May 14-19, 2017, Semih Salihoglu,

Wenchao Zhou, Rada Chirkova, Jun Yang, and Dan Suciu (Eds.). ACM, 1259–1274.

https://doi.org/10.1145/3035918.3064027

[55] Muhammad Idris, Martín Ugarte, Stijn Vansummeren, Hannes Voigt, and Wolf-

gang Lehner. 2018. Conjunctive Queries with Inequalities Under Updates. PVLDB

11, 7 (2018), 733–745. https://doi.org/10.14778/3192965.3192966

[56] David S. Johnson, Christos H. Papadimitriou, and Mihalis Yannakakis. 1988. On

Generating All Maximal Independent Sets. Inf. Process. Lett. 27, 3 (1988), 119–123.

https://doi.org/10.1016/0020-0190(88)90065-8

[57] Richard M. Karp, Michael Luby, and Neal Madras. 1989. Monte-Carlo Approxima-

tion Algorithms for Enumeration Problems. J. Algorithms 10, 3 (1989), 429–448.

https://doi.org/10.1016/0196-6774(89)90038-2

[58] Wojciech Kazana. 2013. Query evaluation with constant delay. (L’évaluation de

requêtes avec un délai constant). Ph.D. Dissertation. École normale supérieure de

Cachan, Paris, France.

[59] Wojciech Kazana and Luc Segoufin. 2011. First-order query evaluation on struc-

tures of bounded degree. Logical Methods in Computer Science (LMCS) 7, 2 (2011).

[60] Wojciech Kazana and Luc Segoufin. 2013. Enumeration of first-order queries on

classes of structures with bounded expansion. In Principle of Database Systems

(PODS). 297–308.

[61] Wojciech Kazana and Luc Segoufin. 2013. Enumeration of monadic second-order

queries on trees. ACM Trans. Comput. Log. 14, 4 (2013). https://doi.org/10.1145/

2528928

[62] Stephan Kreutzer. 2009. On the Parameterised Intractability of Monadic Second-

Order Logic. In Conf. on Computer Science Logic (CSL).

[63] Stephan Kreutzer and Anuj Dawar. 2009. Parameterized Complexity of First-

Order Logic. Electronic Colloquium on Computational Complexity (ECCC) 16

(2009), 131. http://eccc.hpi-web.de/report/2009/131

[64] Leonid Libkin. 2004. Elements of Finite Model Theory. Springer.

[65] Andrea Lincoln, Virginia VassilevskaWilliams, and R. RyanWilliams. 2018. Tight

Hardness for Shortest Cycles and Paths in Sparse Graphs. In Proceedings of the

Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018,

New Orleans, LA, USA, January 7-10, 2018, Artur Czumaj (Ed.). SIAM, 1236–1252.

https://doi.org/10.1137/1.9781611975031.80

[66] JaroslavNesetril and Patrice Ossona deMendez. 2012. Sparsity - Graphs, Structures,

and Algorithms. Algorithms and combinatorics, Vol. 28. Springer. https://doi.

org/10.1007/978-3-642-27875-4

[67] Jaroslav Nešetřil and Patrice Ossona de Mendez. 2010. First order properties on

nowhere dense structures. J. Symb. Log. 75, 3 (2010), 868–887. https://doi.org/10.

2178/jsl/1278682204

[68] Jaroslav Nešetřil and Patrice Ossona de Mendez. 2011. On nowhere dense graphs.

Eur. J. Comb. 32, 4 (2011), 600–617. https://doi.org/10.1016/j.ejc.2011.01.006

[69] C Papadimitriou and M Yannakakis. 1999. On the complexity of database queries.

J. Comput. System Sci. 58, 3 (1999), 407–427.

[70] Reinhard Pichler and Sebastian Skritek. 2013. Tractable counting of the answers

to conjunctive queries. J. Comput. Syst. Sci. 79, 6 (2013), 984–1001.

[71] Sigve Hortemo Sæther, Jan Arne Telle, and Martin Vatshelle. 2015. Solving #SAT

and MAXSAT by Dynamic Programming. J. Artif. Intell. Res. 54 (2015), 59–82.

https://doi.org/10.1613/jair.4831

[72] S. Saluja, K. V. Subrahmanyam, and M. N. Thakur. 1995. Descriptive complexity

of #P functions. 50, 3 (1995), 493–505.

[73] Marko Samer and Stefan Szeider. 2010. Algorithms for propositional model

counting. J. Discrete Algorithms 8, 1 (2010), 50–64. https://www.ac.tuwien.ac.at/

files/pub/SamerSzeider10.pdf

[74] Nicole Schweikardt, Luc Segoufin, and Alexandre Vigny. 2018. Enumeration

for FO Queries over Nowhere Dense Graphs. In Proceedings of the 37th ACM

SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, Houston,

TX, USA, June 10-15, 2018, Jan Van den Bussche and Marcelo Arenas (Eds.). ACM,

151–163. https://doi.org/10.1145/3196959.3196971

[75] Detlef Seese. 1996. Linear Time Computable Problems and First-Order Descrip-

tions. Mathematical Structures in Computer Science 6, 6 (1996), 505–526.

[76] Luc Segoufin. 2014. A glimpse on constant delay enumeration (Invited Talk). In

31st International Symposium on Theoretical Aspects of Computer Science (STACS

2014), STACS 2014, March 5-8, 2014, Lyon, France (LIPIcs), Ernst W. Mayr and

Natacha Portier (Eds.), Vol. 25. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,

13–27. https://doi.org/10.4230/LIPIcs.STACS.2014.13

[77] Luc Segoufin and Alexandre Vigny. 2017. Constant Delay Enumeration for FO

Queries over Databases with Local Bounded Expansion. In Intl. Conf. on Database

Theory (ICDT).

[78] Yann Strozecki. 1988. Enumeration Complexity. Bulletin of the EATCS, the

Algortihmics column 129 (1988).

[79] Yann Strozecki. 2010. Enumeration complexity and matroid decomposition. Ph.D.

Dissertation. Université Paris Diderot, Paris, France.

[80] Alexandre Vigny. 2018. Query enumeration and nowhere dense graphs. Ph.D.

Dissertation. University of Paris-Diderot, France.

[81] Mihalis Yannakakis. 1981. Algorithms for Acyclic Database Schemes. In Proceed-

ing of VLDB. 82–94.

https://doi.org/10.1145/2933575.2935314
https://doi.org/10.1145/2933575.2935314
https://doi.org/10.4230/LIPIcs.ICALP.2018.126
https://doi.org/10.1145/3035918.3064027
https://doi.org/10.14778/3192965.3192966
https://doi.org/10.1016/0020-0190(88)90065-8
https://doi.org/10.1016/0196-6774(89)90038-2
https://doi.org/10.1145/2528928
https://doi.org/10.1145/2528928
http://eccc.hpi-web.de/report/2009/131
https://doi.org/10.1137/1.9781611975031.80
https://doi.org/10.1007/978-3-642-27875-4
https://doi.org/10.1007/978-3-642-27875-4
https://doi.org/10.2178/jsl/1278682204
https://doi.org/10.2178/jsl/1278682204
https://doi.org/10.1016/j.ejc.2011.01.006
https://doi.org/10.1613/jair.4831
https://www.ac.tuwien.ac.at/files/pub/SamerSzeider10.pdf
https://www.ac.tuwien.ac.at/files/pub/SamerSzeider10.pdf
https://doi.org/10.1145/3196959.3196971
https://doi.org/10.4230/LIPIcs.STACS.2014.13

	Abstract
	1 Introduction
	1.1 References and acknowledgment

	2 Preliminaries
	2.1 Databases and queries
	2.2 Query problem(s)
	2.3 Model of computation and complexity measures

	3 First-order queries and sparsity
	3.1 The role of sparsity
	3.2 The end of the story for FO ?
	3.3 Monadic queries

	4 Acyclic conjunctive queries and beyond
	4.1 Acyclic conjunctive queries
	4.2 Union of conjunctive queries
	4.3 Allowing comparisons and disequalities
	4.4 Counting results of ACQ queries
	4.5 Allowing negations: from queries to CSP

	5 Prefix restricted queries for counting and enumeration
	5.1 Counting
	5.2 Enumeration

	6 Conclusion
	References

