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ABSTRACT

Recently, a variety of unrolled networks have been pro-
posed for image reconstruction. These can be interpreted
as parameter-optimized algorithms that incorporate steps that
are traditionally encountered during the optimization of hand-
crafted objectives . Here, we address the problem of training
such networks in the presence of signal-dependent noise,
which is more realistic that the common additive Gaussian
noise . We focus on algorithms that requires the inversion
of large signal-dependent matrices during training, which
increases considerably the training time compared signal-
independent inversions that can be precomputed before train-
ing. In particular, we describe how to approximate the de-
noising step of the deep expectation-maximization network
to reduce the computational cost and memory requirements
while limiting the reconstruction error. We present recon-
struction results from simulated and experimental data at
different noise levels. Our network yields higher reconstruc-
tion peak signal-to-noise ratios than other similar approaches
and greater robustness in the practical case where the noise
level is unknown or is badly estimated.

Index Terms— Image reconstruction, deep learning, un-
folded network, signal-dependent noise, Tikhonov regular-
ization.

1. INTRODUCTION

Many biomedical modalities are ill-posed image reconstruc-
tion problems that require prior information to stabilize the
solution, such as computerized tomography, magnetic res-
onance, and optical microscopy. In particular, single-pixel
imaging is aimed at recovering an image from a few point
measurements that correspond to the dot products between an
image and a set of functions that are implemented through a
spatial light modulator [1]. This is a typical under-determined
inverse problem subject to Poisson noise. Single-pixel imag-
ing has been successfully applied to fluorescence microscopy,
hyperspectral imaging, image-guided surgery, fluorescence
lifetime imaging, and other such techniques.

Image reconstruction problems have long benefited from
the theory of compressed sensing, but recent advances in deep
learning have revolutionized the field (see [2], and references
therein). In particular, unrolled networks that rely on the
computation of traditional solutions (e.g., pseudo inverse, ℓ1-
penalized, maximum a posteriori) can be interpreted as iter-
ative schemes that are optimized with respect to a particu-
lar task and database [3]. Unrolled networks based on con-
volutional neural networks can solve efficiently a variety of
problems, which includes image reconstruction problems in
magnetic resonance imaging [4], computed tomography [5],
and optical microscopy [6]. While most unrolled networks
relies on gradient steps with no matrix inversion, we have in-
vestigated the exploitation of generalized Tikhonov solutions
based on covariance matrices. For instance, inspired by the
expectation-maximization (EM) algorithm [7], the deep EM
network was proposed to solve inverse problems corrupted by
signal-dependent noise [8], such as Poisson corrupted mea-
surements encountered in computational optics. However,
signal-dependent noise enforces the resolution of a different
linear system for each image in the training database, which
prevents pre-computation and poses a severe computational
issue during the training phase. In practice, approximate (e.g.,
diagonal) resolutions are implemented, which leads to sub-
optimal image quality. Our contribution is to introduce an ap-
proximate solution , whose computational complexity is com-
patible with the training phase. In Section 2, we describe the
forward model of single-pixel imaging and the solution of the
inverse problem using the deep EM algorithm. In Section 3,
we detail the proposed Taylor approximation of the Bayesian
solution. In Section 4, we describe how the network is imple-
mented and trained. In Section 5, we report on and analyze
our reconstruction results.

2. COMPUTATIONAL OPTICS

2.1. Forward problem

The philosophy of computational optics is to recover an im-
age f ∈ [0, 1]N from hardware measurements using software
m = H1f ∈ RM where H1 ∈ RM×N is a linear opera-



tor. The system matrix H1 collects the patterns that are se-
quentially uploaded onto a spatial light modulator. Here, we
consider the case M < N where we acquire fewer measure-
ments than pixels in the image to speed up acquisitions. We
choose the patterns in a Hadamard basis H ∈ RN×N [9]; i.e.,
H1 = SH with S = [IM ,0]. Experimental implementation
of the negative values of H1 is achieved through the use of the
positive patterns H+

1 ∈ RM×N
+ and H−

1 ∈ RM×N
+ such that

H1 = H+
1 − H−

1 (see [10] for details). The acquisition is
corrupted by Poisson noise m̂α,± ∼ P(αH±

1 f), where α is
the intensity (in photons) that is inversely proportional to the
noise level. For images of size N = 64, even in the case of
small image intensities (e.g., α = 10 photons), the Hadamard
coefficients are sufficiently large (m̂α,± ≈ 1,000 photons) to
justify the use of the Gaussian approximation intoduced in
the next section. We finally preprocess the raw measurements
as mα = 1

α (m̂
α,+ − m̂α,−), to get measurements such that

E (mα) = H1f .

2.2. Inverse problem

We aim to compute the maximum a-posteriori solution
of the problem argmaxf log p(mα|f) + log p(f). We
choose p(f) ∝ exp− 1

2∥Hf∥2Σ-1 , where Σ is a covari-
ance prior, and approximate the likelihood as p(mα|f) ∝
exp− 1

2∥H1f −mα∥2Σα,f
-1 where Σα,f is a signal-dependent

noise covariance matrix. While exact log likelihood optimiza-
tion requires iterative algorithms [11], the problem with an
approximate likelihood admits a closed form solution in the
case where Σα,f is known

Gα
Bay(m

α) =
1

N
H⊤

[
IM

Σ21Σ
−1
1

]
Σ1(Σα,f +Σ1)

−1mα,

(1)
where Σ1, Σ2 and Σ12 are the blocks of the covariance ma-

trix defined by Σ =

[
Σ1 Σ⊤

21

Σ21 Σ2

]
, which can be precom-

puted as defined in [12]. Note that the left multiplication
with 1

NH⊤ can be implemented using fast inverse Hadamard
transform.

2.2.1. Deep expectation maximization

Deep-learning-based methods look for a reconstruction map-
ping Gθ, where θ represents the parameters of the deep neural
network Dθ that corrects artifacts in the image domain. To
solve the maximum a-posteriori problem, we adopt the deep
expectation (EM) architecture f (k) = Gα

θ,k(m
α), where the

k-th iteration f (k) is defined recursively by [8]

f̄ (k) = f (k) + Gα
Bay(m

α −H1f
(k)) (2a)

f (k+1) = Dθ(f̄
(k)) (2b)

with the initialization f (0) = 0. The parameters of the net-
work are optimized during the training phase by minimizing

the mean squared error 1
S

∑S
s=1 ∥Gθ(m

α
(s))−f(s)∥22, over an

image database {f(s),m
α
(s)}1≤s≤S .

2.2.2. Practical issues

The cost of the training phase is dominated by the evaluation
of Equation (1) and, in particular, by the computation of

Σ1(Σα,f +Σ1)
−1 = Pα,f . (3)

where the noise covariance matrix Σα,f is estimated from the
raw measurement by Σα,f = 1

α2Diag (m̂
α,+ + m̂α,−) [12].

Due to the measurement dependency of Σα,f ,(3) cannot be
precomputed and a different linear system should be solved
for each of the S images in the training database. To alleviate
this problem, [8] proposed to replace Pα,f in Equation (1) by
the diagonal approximation

Pα,f ≈ diag (Σ1) [Σα,f + diag (Σ1)]
−1. (4)

As Σα,f is diagonal for independent measurements, the com-
putation of Equation (4) is trivial. Despite the simplicity and
effectiveness of this approximation, it leads to degraded im-
age quality, as will be shown in Section 5.

3. PROPOSED METHOD

Instead of solving S different linear systems, our idea is to
introduce an approximation Pα,f ≈ Qα +Rα,f , where Qα

is independent of f and can be precomputed, and Rα,f is
a correction term that depends on f , but requires no system
resolution during the training phase. Then, for a matrix Σ̃α

independent of f we note that

Pα,f = Σ1(Σ1 +Σα,f + Σ̃α − Σ̃α)
−1

= Σ1(IM + (Σ1 + Σ̃α)
−1(Σα,f − Σ̃α))

−1(Σ1 + Σ̃α)
−1.

If (Σ1 + Σ̃α)
−1(Σα,f − Σ̃α) is small, then the first or-

der Taylor approximation gives Pα,f ≈ Σ1[IM − (Σ1 +

Σ̃α)
−1(Σα,f − Σ̃α)](Σ1 + Σ̃α)

−1, which is of the form
Pα,f ≈ Qα + Rα,f , where we identify Qα = Σ1(Σ1 +

Σ̃α)
−1 and Rα,f = −Qα(Σα,f − Σ̃α)Σ

−1
1 Qα. Note that

Qα can be computed once and for all before the learning
phase, while the computation of Rα,f only requires three
matrix products. We choose the upper bound Σ̃α = IM

N
α .

Indeed, by deriving the variance of the raw measurements,
we obtain Σα,f = IM

1
α

(
H+

1 f +H−
1 f

)
. Then, using the

properties of the Hadamard matrix H+
1 +H−

1 = 1, we have
Σα,f = IM

1
α

∑N
n=1 fn ≤ Σ̃α.

4. EXPERIMENTS

In our simulations and experiments, we consider Hadamard
patterns of size N = 64 × 64 pixels and M = 1024 mea-
surements. As described in [13], we choose Dθ as a three-
layer convolutional neural network with K = 1 iteration for



Bayesian denoised completion EM-Net αtrain = α EM-Net αtrain = 50 ph.

α Diag Exact Proposed Diag Proposed Diag Proposed

5 20.73± 1.37 21.73± 1.43 21.61± 1.57 22.18± 1.71 22.37± 1.70 21.62± 1.68 22.00± 1.77

10 21.97± 1.31 22.94± 1.42 22.82± 1.58 23.58± 1.80 23.71± 1.80 23.16± 1.69 23.40± 1.78

Table 1: Peak signal-to-noise ratio (PSNR) of the reconstructions over the stl-10 test set. The Bayesian denoised completion
reconstruction corresponds to Equation (1) using the diagonal (‘Diag’) approximation, the exact (‘Exact’) inversion, and the
proposed (‘Proposed’) approximation. The EM-Net reconstructions correspond to Equation (2), either trained with the true
image intensity or fixed intensity of 50 photons.

Fig. 1: Reconstructions from Bayesian denoised completion using the diagonal approximation (second column), the proposed
approximation (third column) and the exact solution (fourth column), from an EM-Net using the diagonal approximation (fifth
column), the proposed approximation (sixth column), and the exact solution (last column). First row: experimental data with
α ≃ 5 ph and αtrain = 5 ph; second row: experimental data with α ≃ 5 ph and αtrain = 50 ph.

simplicity. All of the networks are trained using 105,000 im-
ages (i.e., the ‘unlabeled’ and ‘train’ subsets of the STL10
database; 8,000 images are used for the test (i.e., the ‘test’
subset of STL10). The original 96×96 images were cropped
to 64×64, and normalized between −1 and 1. We implement
our methods using the Python SPyRiT package [14], which is
based on Pytorch [15]. For training, we consider the ADAM
optimizer for 30 epochs. The step size is initialized to 10−3

and is reduced by half every 10 epochs. The weight decay reg-
ularization parameter is set to 10−8. On a NVIDIA GeForce
GTX 1660 Ti, the training phase takes 2 h 25 min consider-
ing the exact solution and 38 min considering both the diag-
onal and proposed approximations. Note that the training of
a network that computes the exact solution is infeasible for
M > 1024 or K > 1 due to memory allocation limitations.
Therefore, we select the scenario {M = 1024,K = 1} for
which all approaches can be compared. We also image two
samples using our hyperspectral single-pixel camera: a thin
slice of a real cherry tomato, and a cat. The latter is an image
from the STL-10 test set that we have printed on a transpar-
ent sheet. The raw datasets are freely distributed [16]. We
reconstruct only one spectral channel per dataset among the
2,048 channels available. In practice, low image intensities
correspond to a high noise level, therefore we propose to re-
construct images having intensities of 5 and 10 photons using

networks trained with image intensities of 5, 10 and 50 pho-
tons (see Table 1 and Fig. 1).

5. RESULTS AND DISCUSSION

First, we compare the simulations of the analytical solutions
computed using the different reconstruction methods (see Ta-
ble 1). We observe that the diagonal approximation leads to
reduced image quality compared to the exact solution. For
instance, at α = 5 photons, the mean PSNR degradation is
1 dB, while the proposed approximation performs very sim-
ilarly to the exact Bayesian inversion. Then, we assess the
robustness of the different reconstruction methods when the
estimated light intensity α differs from the noise level used
during the training of a network (second row Fig. 1). As ex-
pected, the reconstruction quality is lower when the training
noise level deviates from the acquisition noise level, for both
approximations. Interestingly, the superiority of the proposed
approximation is more pronounced in the presence of noise
deviation where only an estimate of the image intensity is
available. Indeed, while most of the severe artifacts present
in the images reconstructed using the diagonal approximation
are smoothed out by the convolutionnal layers (compare the
second and fifth column of Fig. 1), some of them remain vis-
ible. On the contrary, the reconstructions obtained with the



proposed approximation tend to keep details while removing
such artifacts (compare the fifth and sixth columns with the
last column of Fig. 1).

6. CONCLUSION

We consider the problem of reconstruction of an image from
few single-pixel camera measurements. In particular, we fo-
cus on a network that is based on a Bayesian formulation,
which necessitates the computation of generalized Tikhonov
solutions. It requires the resolution of many different linear
systems during the training phase, which raises memory and
computational cost issues. While a diagonal approximation
that does not suffer from these limitations has been proposed,
it leads to degraded image quality. In this work, we propose
an approximation, which has the same advantages as the diag-
onal approximation, while leading to improved image quality.
Coupled with neural networks, this improves both the quality
and the robustness of the reconstruction method.
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